Find file
507 lines (415 sloc) 13.8 KB
// Code by JeeLabs http://news.jeelabs.org/code/
// Released to the public domain! Enjoy!
#include <Wire.h>
#include "RTClib.h"
#ifdef __AVR__
#include <avr/pgmspace.h>
#elif defined(ESP8266)
#include <pgmspace.h>
#elif defined(ARDUINO_ARCH_SAMD)
// nothing special needed
#elif defined(ARDUINO_SAM_DUE)
#define PROGMEM
#define pgm_read_byte(addr) (*(const unsigned char *)(addr))
#define Wire Wire1
#endif
#if (ARDUINO >= 100)
#include <Arduino.h> // capital A so it is error prone on case-sensitive filesystems
// Macro to deal with the difference in I2C write functions from old and new Arduino versions.
#define _I2C_WRITE write
#define _I2C_READ read
#else
#include <WProgram.h>
#define _I2C_WRITE send
#define _I2C_READ receive
#endif
static uint8_t read_i2c_register(uint8_t addr, uint8_t reg) {
Wire.beginTransmission(addr);
Wire._I2C_WRITE((byte)reg);
Wire.endTransmission();
Wire.requestFrom(addr, (byte)1);
return Wire._I2C_READ();
}
static void write_i2c_register(uint8_t addr, uint8_t reg, uint8_t val) {
Wire.beginTransmission(addr);
Wire._I2C_WRITE((byte)reg);
Wire._I2C_WRITE((byte)val);
Wire.endTransmission();
}
////////////////////////////////////////////////////////////////////////////////
// utility code, some of this could be exposed in the DateTime API if needed
const uint8_t daysInMonth [] PROGMEM = { 31,28,31,30,31,30,31,31,30,31,30,31 };
// number of days since 2000/01/01, valid for 2001..2099
static uint16_t date2days(uint16_t y, uint8_t m, uint8_t d) {
if (y >= 2000)
y -= 2000;
uint16_t days = d;
for (uint8_t i = 1; i < m; ++i)
days += pgm_read_byte(daysInMonth + i - 1);
if (m > 2 && y % 4 == 0)
++days;
return days + 365 * y + (y + 3) / 4 - 1;
}
static long time2long(uint16_t days, uint8_t h, uint8_t m, uint8_t s) {
return ((days * 24L + h) * 60 + m) * 60 + s;
}
////////////////////////////////////////////////////////////////////////////////
// DateTime implementation - ignores time zones and DST changes
// NOTE: also ignores leap seconds, see http://en.wikipedia.org/wiki/Leap_second
DateTime::DateTime (uint32_t t) {
t -= SECONDS_FROM_1970_TO_2000; // bring to 2000 timestamp from 1970
ss = t % 60;
t /= 60;
mm = t % 60;
t /= 60;
hh = t % 24;
uint16_t days = t / 24;
uint8_t leap;
for (yOff = 0; ; ++yOff) {
leap = yOff % 4 == 0;
if (days < 365 + leap)
break;
days -= 365 + leap;
}
for (m = 1; ; ++m) {
uint8_t daysPerMonth = pgm_read_byte(daysInMonth + m - 1);
if (leap && m == 2)
++daysPerMonth;
if (days < daysPerMonth)
break;
days -= daysPerMonth;
}
d = days + 1;
}
DateTime::DateTime (uint16_t year, uint8_t month, uint8_t day, uint8_t hour, uint8_t min, uint8_t sec) {
if (year >= 2000)
year -= 2000;
yOff = year;
m = month;
d = day;
hh = hour;
mm = min;
ss = sec;
}
DateTime::DateTime (const DateTime& copy):
yOff(copy.yOff),
m(copy.m),
d(copy.d),
hh(copy.hh),
mm(copy.mm),
ss(copy.ss)
{}
static uint8_t conv2d(const char* p) {
uint8_t v = 0;
if ('0' <= *p && *p <= '9')
v = *p - '0';
return 10 * v + *++p - '0';
}
// A convenient constructor for using "the compiler's time":
// DateTime now (__DATE__, __TIME__);
// NOTE: using F() would further reduce the RAM footprint, see below.
DateTime::DateTime (const char* date, const char* time) {
// sample input: date = "Dec 26 2009", time = "12:34:56"
yOff = conv2d(date + 9);
// Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
switch (date[0]) {
case 'J': m = date[1] == 'a' ? 1 : m = date[2] == 'n' ? 6 : 7; break;
case 'F': m = 2; break;
case 'A': m = date[2] == 'r' ? 4 : 8; break;
case 'M': m = date[2] == 'r' ? 3 : 5; break;
case 'S': m = 9; break;
case 'O': m = 10; break;
case 'N': m = 11; break;
case 'D': m = 12; break;
}
d = conv2d(date + 4);
hh = conv2d(time);
mm = conv2d(time + 3);
ss = conv2d(time + 6);
}
// A convenient constructor for using "the compiler's time":
// This version will save RAM by using PROGMEM to store it by using the F macro.
// DateTime now (F(__DATE__), F(__TIME__));
DateTime::DateTime (const __FlashStringHelper* date, const __FlashStringHelper* time) {
// sample input: date = "Dec 26 2009", time = "12:34:56"
char buff[11];
memcpy_P(buff, date, 11);
yOff = conv2d(buff + 9);
// Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
switch (buff[0]) {
case 'J': m = buff[1] == 'a' ? 1 : m = buff[2] == 'n' ? 6 : 7; break;
case 'F': m = 2; break;
case 'A': m = buff[2] == 'r' ? 4 : 8; break;
case 'M': m = buff[2] == 'r' ? 3 : 5; break;
case 'S': m = 9; break;
case 'O': m = 10; break;
case 'N': m = 11; break;
case 'D': m = 12; break;
}
d = conv2d(buff + 4);
memcpy_P(buff, time, 8);
hh = conv2d(buff);
mm = conv2d(buff + 3);
ss = conv2d(buff + 6);
}
uint8_t DateTime::dayOfTheWeek() const {
uint16_t day = date2days(yOff, m, d);
return (day + 6) % 7; // Jan 1, 2000 is a Saturday, i.e. returns 6
}
uint32_t DateTime::unixtime(void) const {
uint32_t t;
uint16_t days = date2days(yOff, m, d);
t = time2long(days, hh, mm, ss);
t += SECONDS_FROM_1970_TO_2000; // seconds from 1970 to 2000
return t;
}
long DateTime::secondstime(void) const {
long t;
uint16_t days = date2days(yOff, m, d);
t = time2long(days, hh, mm, ss);
return t;
}
DateTime DateTime::operator+(const TimeSpan& span) {
return DateTime(unixtime()+span.totalseconds());
}
DateTime DateTime::operator-(const TimeSpan& span) {
return DateTime(unixtime()-span.totalseconds());
}
TimeSpan DateTime::operator-(const DateTime& right) {
return TimeSpan(unixtime()-right.unixtime());
}
////////////////////////////////////////////////////////////////////////////////
// TimeSpan implementation
TimeSpan::TimeSpan (int32_t seconds):
_seconds(seconds)
{}
TimeSpan::TimeSpan (int16_t days, int8_t hours, int8_t minutes, int8_t seconds):
_seconds((int32_t)days*86400L + (int32_t)hours*3600 + (int32_t)minutes*60 + seconds)
{}
TimeSpan::TimeSpan (const TimeSpan& copy):
_seconds(copy._seconds)
{}
TimeSpan TimeSpan::operator+(const TimeSpan& right) {
return TimeSpan(_seconds+right._seconds);
}
TimeSpan TimeSpan::operator-(const TimeSpan& right) {
return TimeSpan(_seconds-right._seconds);
}
////////////////////////////////////////////////////////////////////////////////
// RTC_DS1307 implementation
static uint8_t bcd2bin (uint8_t val) { return val - 6 * (val >> 4); }
static uint8_t bin2bcd (uint8_t val) { return val + 6 * (val / 10); }
boolean RTC_DS1307::begin(void) {
Wire.begin();
return true;
}
uint8_t RTC_DS1307::isrunning(void) {
Wire.beginTransmission(DS1307_ADDRESS);
Wire._I2C_WRITE((byte)0);
Wire.endTransmission();
Wire.requestFrom(DS1307_ADDRESS, 1);
uint8_t ss = Wire._I2C_READ();
return !(ss>>7);
}
void RTC_DS1307::adjust(const DateTime& dt) {
Wire.beginTransmission(DS1307_ADDRESS);
Wire._I2C_WRITE((byte)0); // start at location 0
Wire._I2C_WRITE(bin2bcd(dt.second()));
Wire._I2C_WRITE(bin2bcd(dt.minute()));
Wire._I2C_WRITE(bin2bcd(dt.hour()));
Wire._I2C_WRITE(bin2bcd(0));
Wire._I2C_WRITE(bin2bcd(dt.day()));
Wire._I2C_WRITE(bin2bcd(dt.month()));
Wire._I2C_WRITE(bin2bcd(dt.year() - 2000));
Wire.endTransmission();
}
DateTime RTC_DS1307::now() {
Wire.beginTransmission(DS1307_ADDRESS);
Wire._I2C_WRITE((byte)0);
Wire.endTransmission();
Wire.requestFrom(DS1307_ADDRESS, 7);
uint8_t ss = bcd2bin(Wire._I2C_READ() & 0x7F);
uint8_t mm = bcd2bin(Wire._I2C_READ());
uint8_t hh = bcd2bin(Wire._I2C_READ());
Wire._I2C_READ();
uint8_t d = bcd2bin(Wire._I2C_READ());
uint8_t m = bcd2bin(Wire._I2C_READ());
uint16_t y = bcd2bin(Wire._I2C_READ()) + 2000;
return DateTime (y, m, d, hh, mm, ss);
}
Ds1307SqwPinMode RTC_DS1307::readSqwPinMode() {
int mode;
Wire.beginTransmission(DS1307_ADDRESS);
Wire._I2C_WRITE(DS1307_CONTROL);
Wire.endTransmission();
Wire.requestFrom((uint8_t)DS1307_ADDRESS, (uint8_t)1);
mode = Wire._I2C_READ();
mode &= 0x93;
return static_cast<Ds1307SqwPinMode>(mode);
}
void RTC_DS1307::writeSqwPinMode(Ds1307SqwPinMode mode) {
Wire.beginTransmission(DS1307_ADDRESS);
Wire._I2C_WRITE(DS1307_CONTROL);
Wire._I2C_WRITE(mode);
Wire.endTransmission();
}
void RTC_DS1307::readnvram(uint8_t* buf, uint8_t size, uint8_t address) {
int addrByte = DS1307_NVRAM + address;
Wire.beginTransmission(DS1307_ADDRESS);
Wire._I2C_WRITE(addrByte);
Wire.endTransmission();
Wire.requestFrom((uint8_t) DS1307_ADDRESS, size);
for (uint8_t pos = 0; pos < size; ++pos) {
buf[pos] = Wire._I2C_READ();
}
}
void RTC_DS1307::writenvram(uint8_t address, uint8_t* buf, uint8_t size) {
int addrByte = DS1307_NVRAM + address;
Wire.beginTransmission(DS1307_ADDRESS);
Wire._I2C_WRITE(addrByte);
for (uint8_t pos = 0; pos < size; ++pos) {
Wire._I2C_WRITE(buf[pos]);
}
Wire.endTransmission();
}
uint8_t RTC_DS1307::readnvram(uint8_t address) {
uint8_t data;
readnvram(&data, 1, address);
return data;
}
void RTC_DS1307::writenvram(uint8_t address, uint8_t data) {
writenvram(address, &data, 1);
}
////////////////////////////////////////////////////////////////////////////////
// RTC_Millis implementation
long RTC_Millis::offset = 0;
void RTC_Millis::adjust(const DateTime& dt) {
offset = dt.unixtime() - millis() / 1000;
}
DateTime RTC_Millis::now() {
return (uint32_t)(offset + millis() / 1000);
}
////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////
// RTC_PCF8563 implementation
boolean RTC_PCF8523::begin(void) {
Wire.begin();
return true;
}
boolean RTC_PCF8523::initialized(void) {
Wire.beginTransmission(PCF8523_ADDRESS);
Wire._I2C_WRITE((byte)PCF8523_CONTROL_3);
Wire.endTransmission();
Wire.requestFrom(PCF8523_ADDRESS, 1);
uint8_t ss = Wire._I2C_READ();
return ((ss & 0xE0) != 0xE0);
}
void RTC_PCF8523::adjust(const DateTime& dt) {
Wire.beginTransmission(PCF8523_ADDRESS);
Wire._I2C_WRITE((byte)3); // start at location 3
Wire._I2C_WRITE(bin2bcd(dt.second()));
Wire._I2C_WRITE(bin2bcd(dt.minute()));
Wire._I2C_WRITE(bin2bcd(dt.hour()));
Wire._I2C_WRITE(bin2bcd(dt.day()));
Wire._I2C_WRITE(bin2bcd(0)); // skip weekdays
Wire._I2C_WRITE(bin2bcd(dt.month()));
Wire._I2C_WRITE(bin2bcd(dt.year() - 2000));
Wire.endTransmission();
// set to battery switchover mode
Wire.beginTransmission(PCF8523_ADDRESS);
Wire._I2C_WRITE((byte)PCF8523_CONTROL_3);
Wire._I2C_WRITE((byte)0x00);
Wire.endTransmission();
}
DateTime RTC_PCF8523::now() {
Wire.beginTransmission(PCF8523_ADDRESS);
Wire._I2C_WRITE((byte)3);
Wire.endTransmission();
Wire.requestFrom(PCF8523_ADDRESS, 7);
uint8_t ss = bcd2bin(Wire._I2C_READ() & 0x7F);
uint8_t mm = bcd2bin(Wire._I2C_READ());
uint8_t hh = bcd2bin(Wire._I2C_READ());
uint8_t d = bcd2bin(Wire._I2C_READ());
Wire._I2C_READ(); // skip 'weekdays'
uint8_t m = bcd2bin(Wire._I2C_READ());
uint16_t y = bcd2bin(Wire._I2C_READ()) + 2000;
return DateTime (y, m, d, hh, mm, ss);
}
Pcf8523SqwPinMode RTC_PCF8523::readSqwPinMode() {
int mode;
Wire.beginTransmission(PCF8523_ADDRESS);
Wire._I2C_WRITE(PCF8523_CLKOUTCONTROL);
Wire.endTransmission();
Wire.requestFrom((uint8_t)PCF8523_ADDRESS, (uint8_t)1);
mode = Wire._I2C_READ();
mode >>= 3;
mode &= 0x7;
return static_cast<Pcf8523SqwPinMode>(mode);
}
void RTC_PCF8523::writeSqwPinMode(Pcf8523SqwPinMode mode) {
Wire.beginTransmission(PCF8523_ADDRESS);
Wire._I2C_WRITE(PCF8523_CLKOUTCONTROL);
Wire._I2C_WRITE(mode << 3);
Wire.endTransmission();
}
////////////////////////////////////////////////////////////////////////////////
// RTC_DS3231 implementation
boolean RTC_DS3231::begin(void) {
Wire.begin();
return true;
}
bool RTC_DS3231::lostPower(void) {
return (read_i2c_register(DS3231_ADDRESS, DS3231_STATUSREG) >> 7);
}
void RTC_DS3231::adjust(const DateTime& dt) {
Wire.beginTransmission(DS3231_ADDRESS);
Wire._I2C_WRITE((byte)0); // start at location 0
Wire._I2C_WRITE(bin2bcd(dt.second()));
Wire._I2C_WRITE(bin2bcd(dt.minute()));
Wire._I2C_WRITE(bin2bcd(dt.hour()));
Wire._I2C_WRITE(bin2bcd(0));
Wire._I2C_WRITE(bin2bcd(dt.day()));
Wire._I2C_WRITE(bin2bcd(dt.month()));
Wire._I2C_WRITE(bin2bcd(dt.year() - 2000));
Wire.endTransmission();
uint8_t statreg = read_i2c_register(DS3231_ADDRESS, DS3231_STATUSREG);
statreg &= ~0x80; // flip OSF bit
write_i2c_register(DS3231_ADDRESS, DS3231_STATUSREG, statreg);
}
DateTime RTC_DS3231::now() {
Wire.beginTransmission(DS3231_ADDRESS);
Wire._I2C_WRITE((byte)0);
Wire.endTransmission();
Wire.requestFrom(DS3231_ADDRESS, 7);
uint8_t ss = bcd2bin(Wire._I2C_READ() & 0x7F);
uint8_t mm = bcd2bin(Wire._I2C_READ());
uint8_t hh = bcd2bin(Wire._I2C_READ());
Wire._I2C_READ();
uint8_t d = bcd2bin(Wire._I2C_READ());
uint8_t m = bcd2bin(Wire._I2C_READ());
uint16_t y = bcd2bin(Wire._I2C_READ()) + 2000;
return DateTime (y, m, d, hh, mm, ss);
}
Ds3231SqwPinMode RTC_DS3231::readSqwPinMode() {
int mode;
Wire.beginTransmission(DS3231_ADDRESS);
Wire._I2C_WRITE(DS3231_CONTROL);
Wire.endTransmission();
Wire.requestFrom((uint8_t)DS3231_ADDRESS, (uint8_t)1);
mode = Wire._I2C_READ();
mode &= 0x93;
return static_cast<Ds3231SqwPinMode>(mode);
}
void RTC_DS3231::writeSqwPinMode(Ds3231SqwPinMode mode) {
uint8_t ctrl;
ctrl = read_i2c_register(DS3231_ADDRESS, DS3231_CONTROL);
ctrl &= ~0x04; // turn off INTCON
ctrl &= ~0x18; // set freq bits to 0
if (mode == DS3231_OFF) {
ctrl |= 0x04; // turn on INTCN
} else {
ctrl |= mode;
}
write_i2c_register(DS3231_ADDRESS, DS3231_CONTROL, ctrl);
//Serial.println( read_i2c_register(DS3231_ADDRESS, DS3231_CONTROL), HEX);
}