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ADAM M. OBERMAN

Instructions. Refer to notes and references on https://adam-oberman.github.io/Math462/. Sub-
mit your solutions on MyCourses course page. Math exercises should be handwritten. You can get help
from other students, but you should do the write up yourself. Coding exercises: export a PDF of the
plots required.

3.1. Classification Implementation. Use the code provided at https://colab.research.google.
com/drive/1i9ep4yBvjAZwFOcO337w7weKhTlhfBQ6?usp=sharing.

Hint: see the better plots on the scikitliearn page.

Exercise 3.1. Run the classification code provided to answer the following questions.

(a) Plot the results using values of the dataset noise levels nmoon = ncircle set to 0.01, and set to
0.1.

(b) Give the decision tree accuracy on each dataset, as a function of the max depth, for values 1, 2, 3,
4, 5.

(c) Fix the noise level = .001. On which datasets does the linear classifier fail or succeed? Explain
why.

3.2. Gradient Descent and SGD. Define Gradient Descent by

(GD) wt+1 = wt − α∇w
!L(wt),

Exercise 3.2 (Gradient Descent and SGD Theory). Prove Theorem 3.1.

Theorem 3.1 (Gradient descent decreases the loss). Consider !L : R → R, a twice differentiable loss

function, with |!L′′(w)| ≤ CL, for all w. Choose 0 < α ≤ 2
CL

. For any wt ∈ R, define wt+1 by (GD).

Then the loss decreases, !L(wt+1) ≤ !L(wt).

Exercise 3.3 (Gradient Descent and SGD Implementation). You may use the code provided as a starting
point, or write your own.

https: // colab. research. google. com/ drive/ 1-YoLDf3OyH3SxLJtC5W4qG3L1zYxkyMf? usp=

sharing

Consider the model problem

!L(w) = 1

m

m"

i=1

(w − yi)
2

2

for w ∈ R, where m = 500 and yi are uniformly generated over [−1, 1].

(a) Run Gradient Descent (GD) on the model problem with α = .95, .75, .5, .25, .1 and α = .1. Plot
the loss on a log-plot (with the y-axis scaled logarithmically), so that the slope shows the rate of
convergence. What is the (approximate) rate of convergence as a function of α? the x-axis should
be the iteration count, and the y-axis should be the log of the error, see sample below.
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(b) Run SGD several times, using four combinations of batch size (try: 10, 50, 100, 200) three combi-
nations of and constant step sizes of (try: α = .1, .02, .004). You may need to adjust these values
to get illustrative results. You should observe that the loss decreases quickly for the first few steps,
then stops decreasing. Determine the approximate step number t and value of the loss in each case.
see the figure at https: // en. wikipedia. org/ wiki/ Stochastic_ gradient_ descent for an
example plot

Figure 1. Sample convergence rate plot for gradient descen

3.3. Exercises: Classification Theory. Consider the empirical loss

!L(hw) =
1

m

m"

i=1

ℓ(hw(xi), yi),

on a dataset with with Sm = {(x1, y1), . . . , (xm, ym)}, and yi ∈ {0, 1}. Suppose that there are n1

points with y = 1, and n0 points with y = 0, where n0 + n1 = m. Take hw to be the constant function
hw(x) = w where w ∈ [0, 1]. Define the log loss

ℓlog(p, y) =

#
− log p, y = 1

− log(1− p), y = 0

Exercise 3.4. (a) Using the constant model hw as above, simplify the sum in the empirical loss.
(b) Setting ℓ(w, y) = (w− y)2, find the value of w that minimizes the empirical loss. Express the value

in terms of n0, n1.
(c) Setting ℓ(w, y) = ℓlog(w, y), find the value of w that minimizes the empirical loss. Express the value

in terms of n0, n1.
(d) Setting ℓ(w, y) = |w − y|, what happens if we try to minimize the empirical loss over w ∈ [0, 1]?

Answer in terms of the cases n0 > n1, n0 = n1, n0 < n1. Is the loss strictly convex? Does this
convexity property of the loss explain anything?

3.4. Exercises: Features. Consider the dataset in two dimensions given by

S4 = {(e1,+1), (e2,−1), (−e1,+1), (−e2,−1)}, e1 = [1, 0]⊤, e2 = [0, 1]⊤

Consider the polynomial features given by

f(x) = [1, x1, x2, x
2
1, x

2
2, x1x2]

⊤ ∈ R6

https://en.wikipedia.org/wiki/Stochastic_gradient_descent
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along with the linear function hw(x) = w · f(x), for w ∈ R6, along with the threshold classifier
c(x) = sign(hw(x)).

Exercise 3.5. (a) Show that S4 can be classified with zero error (interpolated), using a function of the
form hw(x) = w · f(x). Provide a simple value for w that works.

(b) Build the 4× 4 feature similarity matrix Kij = f(xi) · f(xj). Is K full rank?
(c) Show that the feature f5(x) = x1x2 is zero for every point in the dataset. When w5 = 1 what does

the model predict on the diagonals x1 = x2 and x1 = −x2? Discuss why setting w5 = 0 should
generalize better than letting w5 be non-zero.

3.5. (PAC Learning bounds: skip this).


