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Proof. Again, we may prove the result just for ✓ = 0. The proof follows mostly from
Lemma A.37, with some additional observations.

1. (i) =) (ii): Assume u is convex. Since convexity is defined along lines, we
see that g(t) = u(x + tv) is convex for all x, v 2 Rd, and by Lemma A.37 g00(t) � 0
for all t. By (A.10) we have

(A.25) g00(t) =
d2

dt2
u(x+ tv) =

dX

i=1

dX

j=1

uxixj(x)vivj = v ·r2u(x)v,

and so r2u(x) � 0 for all x 2 Rd.
2. (ii) =) (iii): Assume (ii) holds and let g(t) = u(x + tv) for x, v 2 Rd. Let

y 2 Rd. Then by (A.25) we have g00(t) � 0 for all t, and so by Lemma A.37

g(t) � g(s) + g0(s)(t� s)

for all s, t. Set v = y � x, t = 1 and s = 0 to obtain

u(y) � u(x) +ru(x) · (y � x),

where we used the fact that

g0(0) =
d

dt

���
t=0

u(x+ tv) = ru · v.

3. (iii) =) (iv): The proof is similar to Lemma A.37.
4. (iv) =) (i): Assume (iv) holds, and define g(t) = u(x + tv) for x, v 2 Rd.

Then we have

(g0(t)� g0(s))(t� s) = (ru(x+ tv)�ru(x+ sv)) · v(t� s) � 0

for all t, s. By Lemma A.37 we have that g is convex for al x, v 2 Rd, from which it
easily follows that u is convex.

A.9 Probability
Here, we give a brief overview of basic probability. For more details we refer the
reader to [25].

A.9.1 Basic definitions
A probability space is a measure space (⌦,F ,P), where F is a �-algebra of measurable
subsets of ⌦ and P is a nonegative measure on F with P(⌦) = 1 (i.e., a probability
measure). Each A ⇢ ⌦ with A 2 F is an event, with probability P(A). We think of
each ! 2 ⌦ as a trial and if ! 2 A then event A occured. For two events A,B 2 F
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the union A [B is the event that A or B occured, and the intersection A \B is the
event that both A and B occured. By subadditivity of measures we have

P(A [ B)  P(A) + P(B),

which is called the union bound.

Example A.2. Consider rolling a 6-sided die. Then ⌦ = {1, 2, 3, 4, 5, 6}, F consists of
all subsets of ⌦, and P(A) = #A/6. If we roll the die twice, then ⌦ = {1, 2, 3, 4, 5, 6}2
and P(A) = #A/36. 4

Example A.3. Consider drawing a number uniformly at random in the interval
[0, 1]. Here, ⌦ = [0, 1], F is all Lebesgue measureable subsets of [0, 1], and P(A) is
the Lebesgue measure of A 2 F . 4

We will from now on omit the �-algebra F when referring to probability spaces.
Let (⌦,P) be a probability space. A random variable is a measurable function

X : ⌦ ! Rd. That is, to each trial ! 2 ⌦ we associate the value X(!).

Example A.4. In Example (A.2), suppose we win 10 times the number on the die
in dollars. Then the random variable X(!) = 10! describes our winnings. 4

The image of ⌦ under X, denoted ⌦X = {X(!) : ! 2 ⌦} ⇢ Rd is the sample
space of X, and we often say X is a random variable on ⌦X . The random variable
X : ⌦ ! ⌦X defines a measure on ⌦X which we denote by PX . Indeed, for any
B ⇢ ⌦X , the probability that X lies in B, written PX(X 2 B) is

PX(X 2 B) := P(X�1(B)).

With this new notation we can write

PX(X 2 B) =

Z

B

dPX(x).

We say that X has a density if there exists a nonnegative Lebesgue measurable
⇢ : ⌦X ! R such that

PX(X 2 B) =

Z

B

⇢(x) dx.

Let g : ⌦X ! Rm. Then Y = g(X) is a random variable. We define the expectation
EX [g(X)] to be

EX [g(X)] =

Z

⌦X

g(x) dPX(x) =

Z

⌦

g(X(!)) dP(!).

In particular
EX [X] =

Z

⌦X

x dPX(x) =

Z

⌦

X(!) dP(!).
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If X has a density then

EX [g(X)] =

Z

⌦X

g(x)⇢(x) dx.

We note that the expectation is clearly linear, so that

EX [f(X) + g(X)] = EX [f(X)] + EX [g(X)],

due to linearity of the integral.

A.9.2 Markov and Chebyshev inequalities

We introduce here basic estimates for bounding probabilities of random variables. An
important result is Markov’s inequality.

Proposition A.39 (Markov’s inequality). Let (⌦,P) be a probability space and X :
⌦ ! [0,1) be a nonnegative random variable. Then for any t > 0

(A.26) PX(X � t)  EX [X]

t
.

Proof. By definition we have

PX(X � t) =

Z 1

t

dPX(x) 
Z 1

t

x

t
dPX(x) =

1

t

Z 1

0

x dPX(x) =
EX [X]

t
.

Markov’s inequality can be improved if we have information about the variance
of X. We define the variance of a random variable X as

(A.27) Var(X) = EX [(X � EX [X])2].

Proposition A.40 (Chebyshev’s inequality). Let (⌦,P) be a probability space and
X : ⌦ ! R be a random variable with finite mean EX [X] and variance Var(X). Then
for any t > 0

(A.28) PX(|X � EX [X]| � t)  Var (X)

t2
.

Proof. Let Y = (X � EX [X])2. Then Y is a nonegative random variable and by
Markov’s inequality (A.26) we have

PX(|X � EX [X]| � t) = PX(Y � t2)  EX [Y ]

t2
=

Var (X)

t2
.
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A.9.3 Sequences of indepedendent random variables
Let (⌦,P) be a probability space, and X : ⌦ ! Rd be a random variable. We often
want to construct other independent copies of the random variable X. For example, if
we roll a die several times, then we have many instances of the same random variable.
We clearly cannot use the same probability space for each roll of the die, otherwise
all the rolls would always produce the same value (and would not be indepedent).

To construct an independent copy of X, we consider the product probability space
(⌦⇥⌦,P⇥ P) with the product probability measure P⇥ P. The product measure is
the unique measure satisfying

(P⇥ P)(A⇥ B) = P(A)P(B)

for all measurable A,B ⇢ ⌦. On the product probability space ⌦2 = ⌦⇥ ⌦ the two
independent copies of X are constructed via the random variable

(!1,!2) 7! (X(!1), X(!2)).

We normally give the random variables different names, so that X1(!1,!2) := X(!1)
and X2(!1,!2) := X(!2). Then X1 and X2 are themselves random variables (now
on ⌦2), and we say X1 and X2 are independent random variables with the same
distribution as X, or independent and identically distributed random variables.

An important property concerns the expectation of products of independent ran-
dom variables. If X1 and X2 are independent and identically distributed random
variables with the same distribution as X (as above) then

(A.29) E(X1,X2)[f(X1)g(X2)] = EX [f(X)]EX [g(X)].

Indeed, we have

E(X1,X2)[f(X1)g(X2)] =

Z

⌦

Z

⌦

f(x)g(y) dPX(x) dPX(y)

=

Z

⌦

f(x) dPX(x)

Z

⌦

g(y) dPX(y)

= EX [f(X)]EX [g(X)].

We also notice that
EX [f(X)] = E(X1,X2)[f(X1)],

since

E(X1,X2)[f(X1)] =

Z

⌦

Z

⌦

f(x) dPX(x) dPX(y) =

Z

⌦

f(x) dPX(x) = EX [f(x)].

We can continue constructing as many independent and identically distributed
copies of X as we like. The construction is as follows. Let n � 1 and consider the
product probability space (⌦n,Pn) with product measure

Pn = P⇥ P⇥ · · ·⇥ P| {z }
n times

.
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For i = 1, . . . , n we define the random variable Xi : ⌦n ! Rd by

Xi(!1,!2, . . . ,!n) = X(!i).

We say that X1, X2, . . . , Xn is a sequence of n independent and identically distributed
(i.i.d.) random variables. It is important to note how all Xi for i = 1, . . . , n are defined
on the same probability space, which allows us to compute probabilities involving all
the n random variables. As above, we have the product of expectations formula

(A.30) E(X1,X2,...,Xn)[f1(X1)f2(X2) · · · fn(Xn)] =
nY

i=1

EX [fi(X)].

We leave it to the reader to verify (A.30). In applications of probability theory, we
will not burden the notation and will write P in place of Pn and E in place of EX and
E(X1,X2,...,Xn). It will almost always be clear from context which probability measures
and expectations are being used, and when it is not clear we will specifically denote
the dependence. As above we have

EX [f(X)] = E(X1,X2,...,Xn)[f(Xi)],

for any i, so the choice of which expectation to use is irrelevant. Since we do not wish
to always specify the base random variable X on which the sequence is constructed,
we often write X1 or Xi in place of X.

A.9.4 Law of large numbers

To get some practice using probability, we give a proof of the weak law of large
numbers, using only the tools from Sections A.9.2 and A.9.3.

Theorem A.41 (Weak law of large numbers). Let X1, . . . , Xn be a sequence of inde-
pendent and identically distributed random variables with finite mean µ := E[Xi] and
variance �2 := Var (Xi). Let Sn = 1

n

P
n

i=1 Xi. Then for every " > 0 we have

(A.31) lim
n!1

P(|Sn � µ| � ") = 0.

Remark A.42. The limit in (A.31) shows that Sn ! µ in probability as n ! 1,
which is known as the weak law of large numbers. In fact, inspecting the proof below,
we have proved the slightly stronger statement

lim
n!1

P(|Sn � µ| � "n�↵) = 0,

for any ↵ 2 (0, 12).
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Proof. Note that E[Sn] = µ and compute

Var (Sn) = E[(Sn � µ)2]

=
1

n2
E

2

4
 

nX

i=1

Xi � µ

!2
3

5

=
1

n2
E
"

nX

i,j=1

(Xi � µ)(Xj � µ)

#

=
1

n2

nX

i,j=1

E[(Xi � µ)(Xj � µ)].

If i 6= j, then due to (A.30) we have E[(Xi � µ)(Xj � µ)] = 0 and so

Var (Sn) =
1

n2

nX

i,j=1

E[(Xi � µ)2] =
�2

n
.

By Chebyshev’s inequality (Proposition A.40) we have

P(|Sn � µ| � ")  �2

n"2

for all " > 0, which completes the proof.

A.10 Miscellaneous results

A.10.1 Vanishing lemma
Lemma A.43. Let U ⇢ Rd be open and bounded and let u 2 C(U). If

Z

U

u(x)'(x) dx = 0 for all ' 2 C1
c
(U)

then u(x) = 0 for all x 2 U .

Proof. Let us sketch the proof. Assume to the contrary that u(x0) 6= 0 at some
x0 2 U . We may assume, without loss of generality that " := u(x0) > 0. Since u is
continuous, there exists � > 0 such that

u(x) � "

2
whenever |x� x0| < �.

Now let ' 2 C1
c
(U) be a test function satisfying '(x) > 0 for |x � x0| < � and

'(x) = 0 for |x� x0| � �. Then

0 =

Z

U

u(x)'(x) dx =

Z

B(x0,�)

u(x)'(x) dx � "

2

Z

B(x0,�)

'(x) dx > 0,

which is a contradiction.


