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or use later on, we record another version of the maximum principle th
not rédquite connectivity of the graph.

Lemma 5.4 um principle). Let u € (*(X) such that

X\T. Then

0 for all z €

(5.25)

Proof. Let xy € X such that u(z . Since u(zg) > u(y) for all y € X,
we have

5.2 Concentration of measure

As we will be working with random geometric graphs, we will require some basic
probabilistic estimates, referred to as concentration of measure, to control the ran-
dom behavior of the graph. In this section, we review some basic, and very useful,
concentration of measure results. It is a good idea to review the Section A.9 for a
review of basic probability before reading this section.

Let X1, Xs,...,X,, be a sequence of n independent and identically distributed
real-valued random variables and let S,, = %22;1 X;. In Section A.9.4 we saw how
to use Chebyshev’s inequality to obtain bounds of the form

o2
(5.26) B8, —pl 2 1) < 0
for any ¢ > 0, where y = E[X;] and ¢® = Var (X;). Without further assumptions on
the random variables X;, these estimates are essentially tight. However, if the random
variables X; are almost surely bounded (i.e., P(|X;| < b) = 1 for some b > 0), which
is often the case in practical applications, then we can obtain far sharper exponential
bounds.

To see what to expect, we note that the Central Limit Theorem says (roughly)
that

1 1
Snz,u+—N(O,02)+o<— as n — o0

NG NG >
where N (0, 0?) represents a normally distributed random variable with mean zero and
variance o2. Ignoring error terms, this says that Y, := /n(S, — p) is approximately
N(0,0%), and so we may expect Gaussian-like estimates of the form

2

P(|Y,| > ) < Cexp (—%)
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for z > 0. Setting x = \/nt we can rewrite this as

nt?

(5.27) P(Sy — pl = t) < Cexp (__)

202

for any ¢ > 0. Bounds of the form (5.26) and (5.27) are called concentration in-
equalities, or concentration of measure. In this section we describe the main ideas for
proving exponential bounds of the form (5.27), and prove the Hoeffding and Bernstein
inequalities, which are some of the most useful concentration inequalities. For more
details we refer the reader to [8|.

One normally proves exponential bounds like (5.27) with the Chernoff bounding
trick. Let s > 0 and note that

P(S, — pu > 1) =P(s(S — p) > st) =P (ex71) > et |

The random variable Y = (5~ ~#) is nonnegative, so we can apply Markov’s inequality
(see Proposition A.39) to obtain

]P’(Sn > t) < e 'R [es(sn—u)] ‘,/J'JF ﬂ/
= E [e% zz;ﬂxi—m] P/

=1
Applying (A.30) yields
(5.28) P(S,—p>t) <e* HE [e%(Xi_H)} — SR [eﬁ(xl—u)}".

i=1

This bound is the main result of the Chernoff bounding trick. The key now is to
obtain bounds on the moment generating function

Mx () := E[*H)],

where X = X;.
se where the X; are Bernoulli random variables, we
g function explicitly, and this leads
nt some prelimin

In
moment gen
fore giving them, w
function

ounds. Be-
ropositions regarding the

(5.29)

appears in many concentration inequalities.
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C +2 =60, or C =58. Then we check that 3

In general, we cannot compute the moment generating function explicitly, and are
left to derive upper bounds. The first bound is due to Hoeffding.

Lemma 5.8 (Hoeffding Lemma). Let X be a real-valued random variable for which
| X — u| < b almost surely for some b > 0, where pn = E[X]. Then we have

A2p2

(5.35) Mx(\) <e 2.
Proof. Since x +— e** is a convex function, we have

M < e xT—l—b sinh(Ab)

provided || < b (the right hand side is the secant line from (—b,e=*%) to (b, e*®);
recall sinh(t) = (' — e7*)/2 and cosh(t) = (e' + e7*)/2). Therefore we have

X—u+d

Mx(\) =E [** W] <E|e ™+ sinh(\b)

E[X]_T“—i_b sinh(\b)

= e 4 sinh(\b) = cosh(\b).

=e 4

22

The proof is completed by the elementary inequality cosh(z) < ez (compare Taylor
series). O

Combining the Hoeffding Lemma with (5.28) yields

2712
P(S,— 2 ) < B[ )" —exp (st + )
n

provided |X; — p| < b almost surely. Optimizing over s > 0 we find that s = nt/b?,
which yields the following result.
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Theorem 5.9 (Hoeffding inequality). Let X1, X5..., X, be a sequence of i.i.d. real-
valued random variables with finite expectation p = E[X;], and write S, = L 3" | X;.
Assume there exists b > 0 such that | X — p| < b almost surely. Then for any t > 0
we have

(5.36) P(S, —pu>t) < nt”
) w—pu>t)<exp|l——=]).
M P\ =52
Remark 5.10. Of course, the opposite inequality
nt?
P(S, —p < —t) <exp <—@>

holds by a similar argument. Thus, by the union bound we have

nt?
—ul >t < —— .
(1S, — il 2 ) < 20w (-5

The Hoeffding inequality is tight if 0 ~ b?, so that the right hand side looks like
the Gaussian distribution in (5.27), up to constants. For example, if X; are uniformly
distributed on [—b, b] then
I b?

2 2
), T3

g

vever, if 02 < b?, then one would expect to see o2 in place of b* as in (5.27
the présence of b? leads to a suboptimal bound.

X
Y:max{ —u,O}.
€

—1,1], as a

Example 5.2%het

where X is uniformly distributed
b =1, but we compute

and € < b. Then |Y| <1, so

0'2 a

—€
Hence, 02 < 1 when ¢ is
than are provided b

and we expect to get sha#per concentration bounds
oeffding inequality. This example ¥8gsimilar to what we

will see later in_g stency of graph Laplacians. JAN
The_Bérnstein inequality gives the sharper bounds that we desire, and OWS

fromgBernstein’s Lemma.

Lemma Bernstein Lemma). Let X be a real-valued randouis th finite

mean p = E[X] and™amiance o® = Var(X), and a — u| < b almost
surely for some b > 0. Then we%

g

(5 Mx(\) < exp (ﬁ(e’\b —
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he reader should contrast this with the case where X; form a uniform grie

0,1 this case, for Lipschitz functions the numerical integration erro NAz),
where A% he grid spacing. For n points on a uniform grid in [0, 1]¢ grid spacing
is Ax ~n~ hich suffers from the curse of dimensionality w d is large. The

able in that it is
overcomes the curse of
on grid by random variables.
olve PDEs in high dimensions via

Monte Carlo erre
independent of dime

timate (5.46), on the other hand, is g
g d! Thus, Monte Carlo integ
dimensionality by simply acing a uniform discretd
Monte Carlo based techniques liaye been used.
sampling random walks or Bro otie

Proof of Theorem 5.16. Let Y; = u(
a 2im Yy = Li(u), 0% = Var(Y]

We apply Bernstein’s inequality with S,, =
2 ([0,1]%) to find that

X0 —=

[1(u) = Ln(u)

with probabilit least 1 — 2exp <—2(a”—t2> for a, 0. Set t = \o//n for

A >0 to fi at
[[(u) — I(u)| < —=

with probability at least 1 —2exp <—¢) Restricting A < 30+/n/b ce etes

i 55)
the proof. ]

We conclude this section with the Azuma/McDiarmid inequality. This is slightly
more advanced and is not used in the rest of these notes, so the reader may skip ahead
without any loss. It turns out that the Chernoff bounding method used to prove the
Chernoff, Hoeffding, and Bernstein inequalities does not use in any essential way the
linearity of the sum defining S,,. Indeed, what matters is that S, does not depend
too much on any particular random variable X;. Using these ideas leads to far more
general (and more useful) concentration inequalities for functions of the form

(5.47) Y, = f(X1,Xa, ..., X,)

that may depend nonlinearly on the X;. To express that Y,, does not depend too
much on any of the X;, we assume that f satisfies the following bounded differences
condition: There exists b > 0 such that

(5.48) |f(z1, . xy e T) — f(T1, o Ty, 20)| <D
for all z1,...,z, and z;. In this case we have the following concentration inequality.

Theorem 5.18 (Azuma/McDiarmid inequality). Define Y,, by (5.47), where X1,..., X,
are i.i.d. random variables satisfying | X;| < M almost surely, and assume f satisfies
(5.48). Then for any t >0

(5.49) P(Y, — E[Y,] > t) < exp (‘25@2) .
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Proof. The proof uses conditional probability, which we have not developed in these
notes, so we give a sketch of the proof. For 2 < k < n we define

Zy =ElY, | Xq,..., Xi] —E[Y, | X1, ..., Xi—a].
and set Z; = E[Y, | X;| — E[Y,,]. Since
Y, =E[Y,| Xi,..., X,

we have the telescoping sum

Y, —EY,] =Y Z.
k=1

The random variables Z; record how much the conditional expectation changes when
we add information about X;. While the Z, are not independent, they form a mar-
tingale difference sequence, which allows us to essentially treat them as independent
and use a similar proof to Hoeffding’s inequality. The useful martingale difference
property is the identity

E[Zk| X1,...,Xk-1] =0

for k > 2, and E[Z;] = 0, which follow from the law of iterated expectations.
We now follow the Chernoff bounding method and law of iterated expectations to

obtain
P(Y, — E[Y,] > t) = P(e’Zha1 7 > 1)

< efstE[eS 2=t Zk]
_ e—stE[E[eszzzl Zk | Xi,... ,Xn—l]]
= e B[ Tio AR | X, X ]]:

Define

Ui = |S|up Elf (X1, X1, @ Xgrs - X)) = Yo | Xuy oo, X,
z|<M
and

Lk = | 1|I<1f1‘\/1E[f<X1, s 7Xk717x7Xk+17 - Xn) - Yn | Xla s 7Xk71]-

Then Ly < Zp < Uy. By (5.48) we have Uy < b and Ly > —b, and so |Z;| < b.
Following a very similar argument as in the proof of Lemma 5.8 we have

Zr+b
Ele*”* | X1, ..., Xpq] <E e + il sinh(sb) | X3, , Xp

522

= ¢~*" + sinh(sb) = cosh(sb) < ez,




