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For use later on, we record another version of the maximum principle that does
not require connectivity of the graph.

Lemma 5.4 (Maximum principle). Let u 2 `2(X ) such that Lu(x) > 0 for all x 2
X \ �. Then

(5.25) max
x2X

u(x) = max
x2�

u(x).

Proof. Let x0 2 X such that u(x0) = maxx2X u(x). Since u(x0) � u(y) for all y 2 X ,
we have

Lu(x0) =
X

y2X

wxy(u(y)� u(x0))  0.

Since Lu(x) > 0 for all x 2 X \ �, we must have x0 2 �, which completes the
proof.

5.2 Concentration of measure
As we will be working with random geometric graphs, we will require some basic
probabilistic estimates, referred to as concentration of measure, to control the ran-
dom behavior of the graph. In this section, we review some basic, and very useful,
concentration of measure results. It is a good idea to review the Section A.9 for a
review of basic probability before reading this section.

Let X1, X2, . . . , Xn be a sequence of n independent and identically distributed
real-valued random variables and let Sn = 1

n

P
n

i=1 Xi. In Section A.9.4 we saw how
to use Chebyshev’s inequality to obtain bounds of the form

(5.26) P(|Sn � µ| � t)  �2

nt2

for any t > 0, where µ = E[Xi] and �2 = Var (Xi). Without further assumptions on
the random variables Xi, these estimates are essentially tight. However, if the random
variables Xi are almost surely bounded (i.e., P(|Xi|  b) = 1 for some b > 0), which
is often the case in practical applications, then we can obtain far sharper exponential
bounds.

To see what to expect, we note that the Central Limit Theorem says (roughly)
that

Sn = µ+
1p
n
N(0, �2) + o

✓
1p
n

◆
as n ! 1

where N(0, �2) represents a normally distributed random variable with mean zero and
variance �2. Ignoring error terms, this says that Yn :=

p
n(Sn � µ) is approximately

N(0, �2), and so we may expect Gaussian-like estimates of the form

P(|Yn| � x)  C exp

✓
� x2

2�2

◆
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for x > 0. Setting x =
p
nt we can rewrite this as

(5.27) P(|Sn � µ| � t)  C exp

✓
�nt2

2�2

◆

for any t > 0. Bounds of the form (5.26) and (5.27) are called concentration in-
equalities, or concentration of measure. In this section we describe the main ideas for
proving exponential bounds of the form (5.27), and prove the Hoeffding and Bernstein
inequalities, which are some of the most useful concentration inequalities. For more
details we refer the reader to [8].

One normally proves exponential bounds like (5.27) with the Chernoff bounding
trick. Let s > 0 and note that

P(Sn � µ � t) = P(s(Sn � µ) � st) = P
�
es(Sn�µ) � est

�
.

The random variable Y = es(Sn�µ) is nonnegative, so we can apply Markov’s inequality
(see Proposition A.39) to obtain

P(Sn � µ � t)  e�stE
⇥
es(Sn�µ)

⇤

= e�stE
h
e

s
n

Pn
i=1(Xi�µ)

i

= e�stE
"

nY

i=1

e
s
n (Xi�µ)

#
.

Applying (A.30) yields

(5.28) P(Sn � µ � t)  e�st

nY

i=1

E
⇥
e

s
n (Xi�µ)

⇤
= e�stE

⇥
e

s
n (X1�µ)

⇤n
.

This bound is the main result of the Chernoff bounding trick. The key now is to
obtain bounds on the moment generating function

MX(�) := E[e�(X�µ)],

where X = X1.
In the case where the Xi are Bernoulli random variables, we can compute the

moment generating function explicitly, and this leads to the Chernoff bounds. Be-
fore giving them, we present some preliminary technical propositions regarding the
function

(5.29) h(�) = (1 + �) log(1 + �)� �,

which appears in many concentration inequalities.
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We now choose C + 2 = 60, or C = 58. Then we check that 8
9(C + 3)  C and so

P(|P | � 61 log n)  P(Y � 58 log n)  1

n2
.

Since here are n paths from leaves to the root, we union bound over all paths to find
that

P(Z � 61 log n)  1

n
.

Therefore, with probability at least 1� 1
n
, quicksort takes at most O(n log n) opera-

tions to complete. 4

In general, we cannot compute the moment generating function explicitly, and are
left to derive upper bounds. The first bound is due to Hoeffding.

Lemma 5.8 (Hoeffding Lemma). Let X be a real-valued random variable for which
|X � µ|  b almost surely for some b > 0, where µ = E[X]. Then we have

(5.35) MX(�)  e
�2b2

2 .

Proof. Since x 7! esx is a convex function, we have

e�x  e��b +
x+ b

b
sinh(�b)

provided |x|  b (the right hand side is the secant line from (�b, e��b) to (b, e�b);
recall sinh(t) = (et � e�t)/2 and cosh(t) = (et + e�t)/2). Therefore we have

MX(�) = E
⇥
e�(X�µ)

⇤
 E


e��b +

X � µ+ b

b
sinh(�b)

�

= e��b +
E[X]� µ+ b

b
sinh(�b)

= e��b + sinh(�b) = cosh(�b).

The proof is completed by the elementary inequality cosh(x)  e
x2

2 (compare Taylor
series).

Combining the Hoeffding Lemma with (5.28) yields

P(Sn � µ � t)  e�stE
⇥
e

s
n (X1�µ)

⇤n
= exp

✓
�st+

s2b2

2n

◆
,

provided |Xi � µ|  b almost surely. Optimizing over s > 0 we find that s = nt/b2,
which yields the following result.



5.2. CONCENTRATION OF MEASURE 107

Theorem 5.9 (Hoeffding inequality). Let X1, X2 . . . , Xn be a sequence of i.i.d. real-
valued random variables with finite expectation µ = E[Xi], and write Sn = 1

n

P
n

i=1 Xi.
Assume there exists b > 0 such that |X � µ|  b almost surely. Then for any t > 0
we have

(5.36) P(Sn � µ � t)  exp

✓
�nt2

2b2

◆
.

Remark 5.10. Of course, the opposite inequality

P(Sn � µ  �t)  exp

✓
�nt2

2b2

◆

holds by a similar argument. Thus, by the union bound we have

P(|Sn � µ| � t)  2 exp

✓
�nt2

2b2

◆
.

The Hoeffding inequality is tight if �2 ⇡ b2, so that the right hand side looks like
the Gaussian distribution in (5.27), up to constants. For example, if Xi are uniformly
distributed on [�b, b] then

�2 =
1

2b

Z
b

�b

x2 dx =
b2

3
.

However, if �2 ⌧ b2, then one would expect to see �2 in place of b2 as in (5.27), and
the presence of b2 leads to a suboptimal bound.

Example 5.2. Let

Y = max

⇢
1� |X|

"
, 0

�
.

where X is uniformly distributed on [�1, 1], as above, and " ⌧ b. Then |Y |  1, so
b = 1, but we compute

�2  1

2

Z
"

�"

dx = ".

Hence, �2 ⌧ 1 when " is small, and we expect to get sharper concentration bounds
than are provided by the Hoeffding inequality. This example is similar to what we
will see later in consistency of graph Laplacians. 4

The Bernstein inequality gives the sharper bounds that we desire, and follows
from Bernstein’s Lemma.

Lemma 5.11 (Bernstein Lemma). Let X be a real-valued random variable with finite
mean µ = E[X] and variance �2 = Var (X), and assume that |X � µ|  b almost
surely for some b > 0. Then we have

(5.37) MX(�)  exp

✓
�2

b2
(e�b � 1� �b)

◆
.
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The reader should contrast this with the case where Xi form a uniform grid over
[0, 1]d. In this case, for Lipschitz functions the numerical integration error is O(�x),
where �x is the grid spacing. For n points on a uniform grid in [0, 1]d the grid spacing
is �x ⇠ n�1/d, which suffers from the curse of dimensionality when d is large. The
Monte Carlo error estimate (5.46), on the other hand, is remarkable in that it is
independent of dimension d! Thus, Monte Carlo integration overcomes the curse of
dimensionality by simply replacing a uniform discretization grid by random variables.
Monte Carlo based techniques have been used to solve PDEs in high dimensions via
sampling random walks or Brownian motions.

Proof of Theorem 5.16. Let Yi = u(Xi). We apply Bernstein’s inequality with Sn =
1
n

P
n

i=1 Yi = In(u), �2 = Var(Yi) and b = 2kukL1([0,1]d) to find that

|I(u)� In(u)|  t

with probability at least 1 � 2 exp

✓
� nt

2

2(�2+ 1
3 bt)

◆
for any t > 0. Set t = ��/

p
n for

� > 0 to find that
|I(u)� In(u)| 

��p
n

with probability at least 1�2 exp

✓
� �

2
�
2

2
⇣
�2+ b��

3
p
n

⌘

◆
. Restricting �  3�

p
n/b completes

the proof.

We conclude this section with the Azuma/McDiarmid inequality. This is slightly
more advanced and is not used in the rest of these notes, so the reader may skip ahead
without any loss. It turns out that the Chernoff bounding method used to prove the
Chernoff, Hoeffding, and Bernstein inequalities does not use in any essential way the
linearity of the sum defining Sn. Indeed, what matters is that Sn does not depend
too much on any particular random variable Xi. Using these ideas leads to far more
general (and more useful) concentration inequalities for functions of the form

(5.47) Yn = f(X1, X2, . . . , Xn)

that may depend nonlinearly on the Xi. To express that Yn does not depend too
much on any of the Xi, we assume that f satisfies the following bounded differences
condition: There exists b > 0 such that

(5.48) |f(x1, . . . , xi, . . . , xn)� f(x1, . . . , exi, . . . , xn)|  b

for all x1, . . . , xn and exi. In this case we have the following concentration inequality.

Theorem 5.18 (Azuma/McDiarmid inequality). Define Yn by (5.47), where X1, . . . , Xn

are i.i.d. random variables satisfying |Xi|  M almost surely, and assume f satisfies
(5.48). Then for any t > 0

(5.49) P(Yn � E[Yn] � t)  exp

✓
� t2

2nb2

◆
.
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Proof. The proof uses conditional probability, which we have not developed in these
notes, so we give a sketch of the proof. For 2  k  n we define

Zk = E[Yn |X1, . . . , Xk]� E[Yn |X1, . . . , Xk�1].

and set Z1 = E[Yn |X1]� E[Yn]. Since

Yn = E[Yn |X1, . . . , Xn],

we have the telescoping sum

Yn � E[Yn] =
nX

k=1

Zk.

The random variables Zk record how much the conditional expectation changes when
we add information about Xk. While the Zk are not independent, they form a mar-
tingale difference sequence, which allows us to essentially treat them as independent
and use a similar proof to Hoeffding’s inequality. The useful martingale difference
property is the identity

E[Zk |X1, . . . , Xk�1] = 0

for k � 2, and E[Z1] = 0, which follow from the law of iterated expectations.
We now follow the Chernoff bounding method and law of iterated expectations to

obtain

P(Yn � E[Yn] � t) = P(es
Pn

k=1 Zk � est)

 e�stE[es
Pn

k=1 Zk ]

= e�stE[E[es
Pn

k=1 Zk |X1, . . . , Xn�1]]

= e�stE[es
Pn�1

k=1 ZkE[esZn |X1, . . . , Xn�1]].

Define

Uk = sup
|x|M

E[f(X1, . . . , Xk�1, x,Xk+1, . . . Xn)� Yn |X1, . . . , Xk�1],

and
Lk = inf

|x|M

E[f(X1, . . . , Xk�1, x,Xk+1, . . . Xn)� Yn |X1, . . . , Xk�1].

Then Lk  Zk  Uk. By (5.48) we have Uk  b and Lk � �b, and so |Zk|  b.
Following a very similar argument as in the proof of Lemma 5.8 we have

E[esZk |X1, . . . , Xk�1]  E

e�sb +

Zk + b

b
sinh(sb) |X1, . . . , Xk�1

�

= e�st + sinh(sb) = cosh(sb)  e
s2b2

2 ,


