
chapter fourteen

Sample Complexity,
VC Dimension, and

Rademacher Complexity

Sampling is a powerful technique at the core of statistical data analysis and machine
learning. Using a !nite, often small, set of observations, we attempt to estimate prop-
erties of an entire sample space. How good are estimates obtained from a sample? Any
rigorous application of sampling requires an understanding of the sample complexity
of the problem – the minimum size sample needed to obtain the required results. In this
chapter we focus on the sample complexity of two important applications of sampling:
range detection and probability estimation. Here a range is just a subset of the underly-
ing space. Our goal is to use one set of samples to detect a set of ranges or estimate the
probabilities of a set of ranges, where the set of possible ranges is large, in fact possibly
in!nite. For detection, we mean that we want the sample to intersect with each range
in the set, while for probability estimation, we want the fraction of points in the sample
that intersect with each range in the set to approximate the probability associated with
that range.

As an example, consider a sample x1, . . . , xm of m independent observations from
an unknown distribution D, where the values for our samples are in R. Given an
interval [a, b], if the probability of the interval is at least ε, i.e., Pr(x ∈ [a, b]) ≥ ε,
then the probability that a sample of size m = 1

ε
ln 1

δ
intersects (or, in this context,

detects) the interval [a, b] is at least 1 − (1 − ε)m ≥ 1 − δ. Given a set of k intervals,
each of which has probability at least ε, we can apply a union bound to show that the
probability that a sample of size m ′ = 1

ε
ln k

δ
intersects each of the k intervals is at least

1 − k(1 − ε)m
′ ≥ 1 − δ.

In many applications we need a sample that intersects with every interval that has
probability at least ε, and there can be an in!nite number of such intervals.What sample
size guarantees that? We cannot use a simple union bound to answer this question, as
our above analysis does not make sense when k is in!nite. However, if there are many
such intervals, there can be signi!cant overlap between them. For example, consider
samples chosen uniformly over [0, 1] with ε = 1/10; there are in!nitely many intervals
[a, b] of length at least 1/10, but the largest number of disjoint intervals of size at least
1/10 is ten. A sample point may intersect with many intervals, and thus a small sample
may be suf!cient.
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Indeed, the technique we will develop in this chapter will show that for any distribu-
tionD, a sample of size#( 1

ε
ln 1

δ
), with probability at least 1 − δ, intersects all intervals

of probability at least ε. Similarly, we will show that a sample of size #( 1
ε2
ln 1

δ
), with

probability at least 1 − δ, simultaneously estimates the probabilities of all intervals,
where each probability is estimated within an additive error bounded by ε.

The above example shows that the set of intervals on a line corresponds to a set of
ranges that is easy to sample. In this chapter we develop general methods for evaluating
the sample complexity of sets of ranges. We will see an example of sets of ranges with
signi!cantly larger sample complexity than the intervals example, and even sets of
ranges with in!nite sample complexity for either detection or probability estimation.
We also present applications of the theory to rigorousmachine learning and datamining
analysis.

14.1. The Learning Setting

The study of sample complexitywasmotivated by statistical machine learning. Tomoti-
vate our discussion of these concepts, we show how the task of learning a binary clas-
si!cation can be framed as either a detection or a probability estimation problem.

As a starting example, suppose that we know that a publisher uses a certain rule when
determining whether to review or reject a book based on the submitted manuscript. The
rule is a conjunction over certain Boolean variables (or their negations); for example,
there could be a Boolean variable for whether the manuscript is over 100 pages, for
whether the topic was of wide interest, for whether the author had suitable experience,
and so on. As outsiders, we might not know the rule, and the question is whether we
can learn the rule after seeing enough examples.

A second example involves learning the range of temperatures in which some elec-
tronic equipment is functioning correctly. We test the equipment at various tempera-
tures: some are too low and some are too high, but in between there is an interval of
temperatures in which the equipment is functioning correctly. The question is to deter-
mine an appropriate range of temperatures where the equipment functions.

Here is a general model for this sort of problem; we formalize these de!nitions later.
We have a universeU of objects that we wish to classify, and let c : U → {−1, 1} be the
correct, unknown classi!cation. Usually c(x) = 1 corresponds to x being a “positive”
example, and c(x) = −1 corresponds to x being a “negative” example. The correct
classi!cation also can be thought of as the subset of the universe corresponding to the
positive examples.

The learning algorithm receives a training set (x1, c(x1)), . . . , (xm, c(xm)), where
xi ∈ U is chosen according to an unknown distribution D, and c(xi) is the correct clas-
si!cation of xi. The algorithm also receives a collection C of hypotheses, or possi-
ble classi!cations, to choose from. This collection of hypotheses can be referred to as
the concept class. The output of the algorithm is a classi!cation h ∈ C. In the context
of binary classi!cation, every h ∈ C is also a function h : U → {−1, 1}. Equivalently,
each hypothesis is itself a subset of the universe, corresponding to the elements x with
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h(x) = 1. The correctness of the chosen classi!cation is evaluated with respect to its
error in classifying new objects chosen according to the distribution D.

In our !rst example, C is the collection of all possible conjunctions of subsets of
the Boolean variables or their negations. That is, each h ∈ C corresponds to a Boolean
formula given by a conjunction of variables; h(x) is 1 if the Boolean expression evalu-
ates to true on x, and −1 if it evaluates to false. In the second example, C is the set of
all intervals in R, so that for each h ∈ C, h(x) = 1 if x is a point in the corresponding
interval and h(x) = −1 otherwise.

Assume !rst that the correct classi!cation c is included in the collection C of possible
classi!cations. For any other h ∈ C let

$(c, h) = {x ∈ U | c(x) &= h(x)}

be the set of objects that are not classi!ed correctly by classi!cation h. The proba-
bility of a set $(c, h) is the probability that the distribution D generates an object
in $(c, h). If our training set intersects with every set $(c, h) that has probability at
least ε, then the learning algorithm can eliminate any classi!cation h ∈ C that has error
at least ε on input from D. Thus, a sample (training set) that with probability 1 − δ

detects (or intersects with) all sets {$(c, h)|PrD($(c, h)) ≥ ε, h ∈ C} guarantees that
such an algorithm outputs with probability 1 − δ a classi!cation that errs with proba-
bility bounded by ε.

Amore realistic scenario is that no classi!cation in C is perfectly correct. In that case,
we require the algorithm to return a classi!cation in C with an error probability that is
no more than ε larger (with respect toD) than any classi!cation in C. If our training set
approximates all sets {$(c, h) | h ∈ C} to within an additive error ε/2, then the learning
algorithm has suf!cient information to eliminate any h ∈ C with error which is at least
ε larger than the error of the best hypothesis in C.

Finally, we note a major difference between the two examples above. Since the num-
ber of possible conjunctions over a bounded number of variables or their complements
is bounded, the set of possible classi!cations in the !rst example is !nite, and we can
use standard techniques (union bound and Chernoff bound) to bound the size of the
required sample (training set), though the bound may be loose. In the second example,
the size of the concept class is not bounded and we need more advanced techniques
to obtain a bound on the sample complexity. We present here two major techniques to
evaluate the sample complexity, VC dimension and Rademacher complexity.

14.2. VC Dimension

We begin with the formal de!nitions, using the setting of intervals on a line to help
explain them, and then consider other examples.

The Vapnik–Chervonenkis (VC) dimension is de!ned on range spaces.

De4nition 14.1: A range space is a pair (X,R) where:

1. X is a (!nite or in!nite) set of points;
2. R is a family of subsets of X, called ranges.
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2 4 6

Figure 14.1: Let R be the collection of all closed intervals in R. Any 2 points can be shattered, but
there is no interval that separates {2, 6} from {4}. The VC dimension of (R,R) is therefore 2.

If for example X = R is the set of real numbers, then R could be the family of all
closed intervals [a, b] in R.

Given a set S ⊆ X , one can obtain a subset of S by intersecting it with a range R ∈ R.
The projection ofR on S corresponds to the collection of all subsets that can be obtained
in this way.

De4nition 14.2: Let (X,R) be a range space and let S ⊆ X. The projection of R on
S is

RS = {R ∩ S | R ∈ R}.

For example, let X = R andR be the set of all closed intervals. Consider S = {2, 4}.
The intersection of S with the interval [0, 1] gives the empty set; the intersection of S
with the interval [1, 3] is {2}; the intersection of S with the interval [3, 5] is {4}; and
the intersection of S with the interval [1, 5] is {2, 4}. Hence the projection ofR on S is
the set of all possible subsets of S in this case, and indeed the same is true for any set
of two distinct points.

Consider now a set S = {2, 4, 6}. You should convince yourself that the projection
of R on S includes seven of the eight subsets of S, but not {2, 6}. This is because an
interval containing 2 and 6 must also contain 4. More generally, the projection ofR on
any set S of three distinct points would contain only seven of the eight possible subsets
of S.

Wemeasure the complexity of a range space (X,R) by considering the largest subset
S of X such that all subsets of S are contained in the projection of R on S.

De4nition 14.3: Let (X,R) be a range space. A set S ⊆ X is shattered by R if
|RS| = 2|S|. The Vapnik–Chervonenkis (VC) dimension of a range space (X,R) is
the maximum cardinality of a set S ⊆ X that is shattered by R. If there are arbitrarily
large !nite sets that are shattered byR, then the VC dimension is in!nite.

We have shown that any set of two points is shattered by closed intervals on the real
number line, but that any set of three points is not. Of course, that argument also shows
that no larger set of points is shattered by closed intervals. Therefore, the VC dimension
of that range space is 2. Our example shows that a range space with an in!nite set
of points and an in!nite number of ranges can have a bounded VC dimension. (See
Figure 14.1.)

An important subtlety in the de!nition is that the VC dimension of a range space is d
if there is some set of cardinality d that is shattered byR. It does not imply that all sets
of cardinality d are shattered byR. On the other hand, to show that the VC dimension
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Figure 14.2: Let R be the collection of all half-space partitions on R2. Any three points can be
shattered, but there is no half-space partition that separates the two white points from the two black
points. Thus, the VC dimension of (R2,R) is 3.

is not d + 1 or larger, one must show that all sets of cardinality larger than d are not
shattered by R.

14.2.1. Additional Examples of VC Dimension

We consider some other simple examples of VC dimension.

Linear half-spaces
Let X = R2 and let R be the set of all half-spaces de!ned by a linear partition of the
plane. That is, we consider all possible lines ax+ by = c in the plane, and R consists
of all half-spaces ax+ by ≥ c. The VC dimenstion in this case is at least 3, since any
set of three points that do not lie on a line can be shattered. On the other hand, no set
of four points can be shattered. To see this, we need to consider several cases. First, if
any three points lie on a line they cannot be shattered, as we cannot separate the middle
point from the other two by any half-space. Hence we may assume no three points lie
on a line; this is often referred to as the points being in “general position”. Second, if
one point lies within the convex hull de!ned by the other three points, no half-space
can separate that point from the other three. Finally, if the four points de!ne a convex
hull, then there is no half-space that separates two non-neighboring points from the
other two. (See Figure 14.2.)

While harder to visualize, if X = Rd and R corresponds to all half-spaces in d
dimensions, the VC dimension is d + 1. (See Exercise 14.7.)

Convex sets
Let X = R2 and letR be the family of all closed convex sets on the plane. We show that
this range space has in!nite VC dimension by showing that for every n there exists a set
of size n that can be shattered. Let Sn = {x1, . . . , xn} be a set of n points on the boundary
of a circle. Any subset Y ⊆ Sn,Y &= ∅ de!nes a convex set that does not include any
point in Sn \ Y , and hence Y is included in the projection of R on Sn. The empty set is
easily seen to be in the projection as well. Hence, for any number of points n, the set
Sn is shattered and the VC dimension is therefore in!nite. (See Figure 14.3.)

Monotone Boolean conjunctions
Let y1, y2, . . . , yn be n Boolean variables, and let MCn be the collection of functions
de!ned by conjunctions of subsets of the non-negated variables yi. Let X = {0, 1}n
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Figure 14.3: Let R be the set of all convex bodies in R2. Any partition of the set of points on the
circle can be de!ned by a convex body. Therefore, the VC dimension of (R2,R) is in!nite.

correspond to all possible truth assignments of the n variables in the natural way. For
each function f ∈ MCn let Rf = {ā ∈ X : f (ā) = 1} be the set of inputs that satisfy
f , and let R = {Rf | f ∈ MCn}. Consider the set S ⊆ X of n points:

(0, 1, 1, . . . , 1)

(1, 0, 1, . . . , 1)

(1, 1, 0, . . . , 1)
...

(1, 1, 1, . . . , 0).

We claim that each subset of S is equal to S ∩ Rf for some Rf . For example, the com-
plete set S corresponds to S ∩ Rf for the trivial function that is always 1, i.e., f (ā) = 1.
More generally, the subset of S that has all points except those with a 0 in coordinates
i1, i2, . . . , i j is equal to S ∩ Rf for f (ā) = yi1 ∧ yi2 ∧ · · · ∧ yi j . This set can therefore be
shattered byR and the VC dimension is at least n. The VC dimension cannot be larger
than n since |R| = |MCn| = 2n, and hence there can be at most 2n distinct intersec-
tions of the form S ∩ Rf . If the VC dimension was larger than n, at least 2n+1 different
intersections would be needed.

14.2.2. Growth Function

The combinatorial signi!cance of the concept of the VC dimension is that it gives
a bound on the number of different ranges in the projection of the range space on a
smaller set of points. In particular, when a range space with !nite VC dimension d ≥ 2
is projected on a set of n points, the number of different ranges in the projection is
bounded by a polynomial in n with maximum degree d.

To prove this property we de!ne the growth function

G(d, n) =
d∑

i=0

(
n
i

)
.
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For n = d, we have G(d, n) = 2d , and for n > d ≥ 2, we have

G(d, n) ≤
d∑

i=0

ni

i!
≤ nd .

The growth function is related to the VC dimension through the following theorem.

Theorem 14.1 [Sauer–Shelah]: Let (X,R) be a range space with |X | = n and VC
dimension d. Then |R| ≤ G(d, n).

Proof: We prove the claim by induction on d, and for each d by induction on n. As
the base case, the claim clearly holds for d = 0 or n = 0, as in both of these cases
G(d, n) = 1, with the only possibleR being the family containing only the empty set.

Assume that the claim holds for d − 1 and n− 1, and for d and n− 1. We may
therefore assume |X | = n > 0. For some x ∈ X , consider two range spaces on X \ {x}:

R1 = {R \ {x} | R ∈ R}

and

R2 = {R \ {x} | R ∪ {x} ∈ R and R \ {x} ∈ R} .

We !rst observe that |R| = |R1| + |R2|. Indeed, each set R ∈ R is mapped to a set
R \ {x} ∈ R1, but if both R ∪ {x} and R \ {x} are inR, then both sets are mapped to the
same set R \ {x} ∈ R1. By including that set again inR2, we have |R| = |R1| + |R2|.

Now (X \ {x},R1) is a range space on n− 1 items, and its VC dimension is bounded
above by d, the VC dimension of (X,R). To see this, assume that R1 shatters a set S
of size d + 1 in X \ {x}. Then S is also shattered by R, as for any R ∈ R1, there is a
corresponding R′ in R that is either R or R ∪ {x}, and in either case the projection of
R on S contains S ∩ R′ = S ∩ R. But then R would shatter the set S, contradicting the
assumption that (X,R) has VC dimension d.

Similarly, (X \ {x},R2) is a range space on n− 1 items, and its VC dimension is
bounded above by d − 1. To see this, assume thatR2 shatters a set S of size d in X \ {x}.
Then consider the set S ∪ {x} in R. For any R ∈ R2, both R and R ∪ {x} are in R, and
hence one can obtain both (S ∪ {x}) ∩ R = S ∩ R and (S ∪ {x}) ∩ (R ∪ {x}) = S ∪ {x}
in the projection ofR on S. But thenR would shatter the set S ∪ {x}, contradicting the
assumption that (X,R) has VC dimension d.

Applying the induction hypothesis we get

|R| = |R1| + |R2| ≤ G(d, n− 1) + G(d − 1, n− 1)

≤
d∑

i=0

(
n− 1
i

)
+

d−1∑

i=0

(
n− 1
i

)

= 1 +
d−1∑

i=0

((
n− 1
i+ 1

)
+

(
n− 1
i

))

=
d∑

i=0

(
n
i

)
= G(d, n). !
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14.2.3. VC dimension component bounds

We can sometimes bound the VC dimension of a complex range space as a function of
the VC dimension of its simpler components.

The projection of a range space (X,R) on a setY ⊆ X de!nes a range space (Y,RY )
with RY = {R ∩ Y | R ∈ R}. We have the following corollary of Theorem 14.1.

Corollary 14.2: Let (X,R) be a range space with VC dimension d, and let Y ⊆ X.
Then

|RY | ≤ G(d, |Y |).

We also require the following technical lemma.

Lemma 14.3: If y ≥ x ln x ≥ e, then 2y
ln y ≥ x.

Proof: For y = x ln x we have ln y = ln x+ ln ln x ≤ 2 ln x. Thus

2y
ln y

≥ 2x ln x
2 ln x

= x.

Differentiating f (y) = ln y
2y we !nd that f (y) is monotonically decreasing when y ≥

x ln x ≥ e, and hence 2y
ln y is monotonically increasing on the same interval, proving the

lemma. !

We are now ready for the following theorem.

Theorem 14.4: Let (X,R1), . . . , (X,Rk) be k range spaces, each with VC dimen-
sion at most d. Let f : (R1, . . . ,Rk) → 2X be a mapping of k-tuples (r1, . . . , rk) ∈
(R1, . . . ,Rk) to subsets of X, and let

R f = { f (r1, . . . , rk) | r1 ∈ R1, . . . , rk ∈ Rk}.

The VC dimension of the range space (X,R f ) is O(kd ln(kd)).

Proof: Let the VC dimension of (X,R f ) be at least t, so there is a set Y ⊆ X shattered
by R f with t = |Y |. Since the VC dimension of (X,Ri), 1 ≤ i ≤ k, is at most d, by
Corollary 14.2, |Ri

Y | ≤ G(d, t ) ≤ td . Thus, the number of subsets in the projection of
R f on Y is bounded by

|R f
Y | ≤ |R1

Y | × · · · × |Rk
Y | ≤ tdk.

Since R f
Y shatters Y , |R f

Y | ≥ 2t . Hence tdk ≥ 2t . Let us assume that y ≥ x ln x for
y = t and x = 2(dk+1)

ln 2 and derive a contradiction. Applying Lemma 14.3,

2y
ln y

= 2t
ln t

≥ 2(dk + 1)
ln 2

.

It follows that

t ≥ (dk + 1) log2 t,

so 2t ≥ tdk+1 > tkd . Hence if t ≥ x ln x, which is#(dk ln(dk)), we have a contradiction.
It follows that t must be O(kd ln(kd)). !
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The following stronger result below is proven in Exercise 14.10.

Theorem 14.5: Let (X,R1), . . . , (X,Rk) be k range spaces each with VC dimen-
sions at most d. Let f : (R1, . . . ,Rk) → 2X be a mapping of k-tuples (r1, . . . , rk) ∈
(R1, . . . ,Rk) to subsets of X, and let

R f = { f (r1, . . . , rk) | r1 ∈ R1, . . . , rk ∈ Rk}.

The VC dimension of the range space (X,R f ) is O(kd ln k).

This yields the following corollary.

Corollary 14.6: Let (X,R1) and (X,R2) be two range spaces, each with VC dimen-
sion at most d. Let

R∪ = {r1 ∪ r2 | r1 ∈ R1 and r2 ∈ R2},

and

R∩ = {r1 ∩ r2 | r1 ∈ R1 and r2 ∈ R2}.

The VC dimensions of the range spaces (X,R∪) and (X,R∩) are O(d).

14.2.4. ε-nets and ε-samples

The applications of VC dimension to sampling, including to the types of learning prob-
lems mentioned at the beginning of the chapter, can be formulated in terms of objects
called ε-nets and ε-samples.

As a combinatorial object, an ε-net for a subset A ⊆ X of a range space is a subset
N ⊆ A of points that intersects with all ranges in the range space that are not too small
with respect to A, in that the range contains an ε-fraction of A. The object is called a
net because it “catches,” or intersects, every range of suf!cient size.

De4nition 14.4 [combinatorial de4nition]: Let (X,R) be a range space, and let
A ⊆ X be a !nite subset of X. A set N ⊆ A is a combinatorial ε-net for A if N has a
nonempty intersection with every set R ∈ R such that |R ∩ A| ≥ ε|A|.

However, ε-nets can also be de!ned more generally with respect to a distribution D
on the point set X . The combinatorial de!nition above corresponds to a setting where
the distribution D is uniform over the set A. The more general form below is more
useful for many algorithmic applications. In what follows, recall that PrD(R) for a set
R is the probability that a point chosen according to D is in R.

De4nition 14.5: Let (X,R) be a range space, and let D be a probability distribution
on X. A set N ⊆ X is an ε-net for X with respect to D if for any set R ∈ R such that
PrD(R) ≥ ε, the set R contains at least one point from N, i.e.,

∀R ∈ R, PrD(R) ≥ ε ⇒ R ∩ N &= ∅.

An ε-sample (also called an ε-approximation) provides even stronger guarantees
than an ε-net. It not only intersects every suitably large range, but also ensures that
every range has roughly the right relative frequency within the sample.
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De4nition 14.6: Let (X,R) be a range space, and let D be a probability distribution
on X. A set S ⊆ X is an ε-sample for X with respect to D if for all sets R ∈ R,

∣∣∣∣PrD(R) − |S ∩ R|
|S|

∣∣∣∣ ≤ ε.

Again, by !xing the distribution D to be uniform over a !nite set A ⊆ X , we obtain
the combinatorial version of this concept.

De4nition 14.7 [combinatorial de4nition]: Let (X,R) be a range space, and let
A ⊆ X be a !nite subset of X. A set N ⊆ A is a combinatorial ε-sample for A if for all
sets R ∈ R,

∣∣∣∣
|A ∩ R|

|A|
− |N ∩ R|

|N|

∣∣∣∣ ≤ ε.

In what follows, we may say ε-net and ε-sample in place of the more exact terms
combinatorial ε-net and combinatorial ε-sample when the meaning should be clear
from context.

Our goal is to obtain ε-nets and ε-samples through sampling. We say that a set S is a
sample of sizem from a distributionD if them elements of Swere chosen independently
with distribution D.

De4nition 14.8: A range space (X,R) has the uniform convergence property if for
every ε, δ > 0 there is a sample size m = m(ε, δ) such that for every distribution D
over X, if S is a random sample from D of size m then, with probability at least 1 − δ,
S is an ε-sample for X with respect to D.

In the following sections we show that the minimum sample size that contains an
ε-net or an ε-sample for a range space can be bounded in terms of the VC dimension
of the range space, independent of the numbers of its points or ranges. In particular,
we will show that a range space has the uniform convergence property if and only if its
VC dimension is !nite. These results show that the VC dimension is a concrete, useful
measure of the complexity of a range space.

14.3. The ε-net Theorem

As a !rst step, we use a standard union bound argument to obtain bounds on the size
of a combinatorial ε-net via the probabilistic method.

Theorem 14.7: Let (X,R) be a range space with VC dimension d ≥ 2 and let A ⊆ X
have size |A| = n. Then there exists a combinatorial ε-net N for A of size at most 0 d ln n

ε
1.

Proof: Consider the projection of the range spaceR on A; denote this byR′. By The-
orem 14.1, the size of R′ is at most G(d, n) ≤ nd .

Suppose we take a sample of k = 0 d ln n
ε

1 points of A independently and uniformly
at random. For each set R ∈ R such that |R ∩ A| ≥ ε|A|, there is a corresponding set
R′ ∈ R′. The probability that our sample misses a given set R′ is (1 − ε)k, and there are
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at most nd possible sets R′ to consider. Applying a union bound, the probability that
the sample misses at least one such R′ is at most

nd (1 − ε)k < nde−d ln n = 1.

Since the probability that a random sample of size k = 0 d ln n
ε

1 misses at least one set R′

is strictly less than 1, by the probabilistic method there is a set of that size that misses
no set R′ ∈ R′, and is therefore an ε-net for A. !

We can, however, in general do much better than the bound of Theorem 14.7. Our
goal is to show that with high probability we can obtain an ε-net from a random sample
of elements where the size of the sample does not depend on n, as long as the VC dimen-
sion is !nite. This may appear somewhat surprising; while O(1/ε) points on average
are needed to hit any particular range, it is not clear how to hit all of them without some
dependence on n. Essentially, we are !nding that the union bound of Theorem 14.7 is
too weak an approach in this setting, and that the VC dimension provides a means to
avoid it.

The following theorem, whose proof takes a somewhat unusual path that we some-
times refer to as “double sampling”, provides our main results on ε-nets. The theorem
holds for our more general notion of ε-nets, not just combinatorial ε-nets.

Theorem 14.8: Let (X,R) be a range space with VC dimension d and let D be a
probability distribution on X. For any 0 < δ, ε ≤ 1/2, there is an

m = O
(
d
ε
ln
d
ε

+ 1
ε
ln

1
δ

)

such that a random sample from D of size greater than or equal to m is an ε-net for X
with probability at least 1 − δ.

In particular, Theorem 14.8 implies that there exists an ε-net of size O( d
ε
ln d

ε
).

Proof: LetM be a set of m independent samples from X according to D, and let E1 be
the event that M is not an ε-net for X with respect to the distribution D, i.e.,

E1 = {∃R ∈ R | PrD(R) ≥ ε and |R ∩M| = 0}.

We want to show that Pr(E1) ≤ δ for a suitable m. Notice that for any particular R,
since PrD(R) ≥ ε, the expected size of |R ∩M|would be at least εm, and hence it seems
natural that Pr(E1) is small. However, as the union bound argument of Theorem 14.7
is too weak to provide this strong a bound, we use an indirect means to bound Pr(E1).

To do this, we choose a second set T of m independent samples from X according
to D and de!ne E2 to be the event that some range R with PrD(R) ≥ ε has an empty
intersection with M but a reasonably large intersection with T :

E2 = {∃R ∈ R | PrD(R) ≥ ε and |R ∩M| = 0 and |R ∩ T | ≥ εm/2}.

Since T is a random sample and PrD(R) ≥ ε, the event |R ∩ T | ≥ εm/2 should occur
with nontrivial probability and therefore the events E1 and E2 should have similar prob-
ability. The following lemma formalizes this intuition:
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Lemma 14.9: For m ≥ 8/ε,

Pr(E2) ≤ Pr(E1) ≤ 2 Pr(E2).

Proof: As the event E2 is included in the event E1, we have Pr(E2) ≤ Pr(E1). For
the second inequality, note that if event E1 holds, there is some particular R′ so that
|R′ ∩M| = 0 and PrD(R′) ≥ ε. We use the de!nition of conditional probability to
obtain

Pr(E2)
Pr(E1)

= Pr(E1 ∩ E2)
Pr(E1)

= Pr(E2 | E1) ≥ Pr(|T ∩ R′| ≥ εm/2).

Now for a !xed range R′ and a random sample T the random variable |T ∩ R′| has
a binomial distribution B(m, PrD(R′)). Since PrD(R′) ≥ ε, by applying the Chernoff
bound (Theorem 4.5), we have for m ≥ 8/ε,

Pr(|T ∩ R′| < εm/2) ≤ e−εm/8 < 1/2.

Thus,

Pr(E2)
Pr(E1)

= Pr(E2 | E1) ≥ Pr(|T ∩ R′| ≥ εm/2) ≥ 1/2,

giving Pr(E1) ≤ 2 Pr(E2) as desired. !

The lemma above gives us an approach to showing that Pr(E1) is small. The intuition
is as follows: since M and T are both random samples of size m, it would be very
surprising to have |M ∩ R| = 0 but |T ∩ R| be large for some R. If we think of !rst
sampling the m items that formM and then sampling the m items that form T , we must
have somehow been very unlucky to have all the samples that intersect R come in the
second set of m samples, and none in the !rst.

Formally, we bound the probability of E2 by the probability of a larger event E ′
2:

E ′
2 = {∃R ∈ R | |R ∩M| = 0 and |R ∩ T | ≥ εm/2}.

The event E ′
2 excludes the condition that PrD(R) ≥ ε; in some sense, that has been

replaced by the condition on the size of |R ∩ T |. The event E ′
2 now depends only on

the elements in M ∪ T .

Lemma 14.10: It holds that

Pr(E1) ≤ 2 Pr(E2) ≤ 2 Pr(E ′
2 ) ≤ 2(2m)d2−εm/2.

Proof: Since M and T are random samples, we can assume that we !rst choose a set
of 2m elements and then partition it randomly into two equal size sets M and T .

For a !xed R ∈ R and k = εm/2, let

ER = {|R ∩M| = 0 and |R ∩ T | ≥ k}.

To bound the probability of ER we note that this event implies thatM ∪ T has at least k
elements of R, but all these elements were placed in T by the random partition. That is,
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of the
(2m
m

)
possible partitions of M ∪ T , we chose one of the

(2m−k
m

)
partitions where

no element of R is in M.
Hence

Pr(ER) ≤ Pr(|M ∩ R| = 0 | |R ∩ (M ∪ T )| ≥ k)

=
(2m−k

m

)
(2m
m

)

= (2m− k)!m!
(2m)!(m− k)!

= m(m− 1) · · · (m− k + 1)
(2m)(2m− 1) · · · (2m− k + 1)

≤ 2−εm/2.

Our bound on Pr(ER) does not depend on the choice of the set T ∪M, only on its
random partition into T andM. By Theorem 14.1 the projection ofR onM ∪ T has no
more than (2m)d ranges. Thus,

Pr(E ′
2 ) ≤ (2m)d2−εm/2. !

To complete the proof of Theorem 14.8 we show that for

m ≥ 8d
ε

ln
16d
ε

+ 4
ε
ln

2
δ
,

we have

Pr(E1) ≤ 2 Pr(E ′
2 ) ≤ 2(2m)d2−εm/2 ≤ δ.

Equivalently, we require

εm/2 ≥ ln(2/δ) + d ln(2m).

Clearly it holds that εm/4 ≥ ln(2/δ), since m > 4
ε
ln 2

δ
. It therefore suf!ces to show

that εm/4 ≥ d ln(2m) to complete the proof.
Applying Lemma 14.3 with y = 2m ≥ 16d

ε
ln 16d

ε
and x = 16d

ε
, we have

4m
ln(2m)

≥ 16d
ε

,

so
εm
4

≥ d ln(2m)

as required. !

The above theorem gives a near tight bound, as shown by the following theorem (see
Exercise 14.13 for a proof).

Theorem 14.11: A random sample of a range space with VC dimension d that, with
probability at least 1 − δ, is an ε-net must have size #( d

ε
).
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14.4. Application: PAC Learning

Probably Approximately Correct (PAC) Learning provides a framework for mathemat-
ical analysis of computational learning from examples. PAC characterizes the complex-
ity of a learning problem in terms of the number of examples and computation needed to
provide answers that are approximately correct, in that they are approximately correct
with good probability, on as yet unseen examples. We use the model of PAC learning to
demonstrate an application of VC dimension to learning theory. However, we note that
the VC dimension technique applies to a broader setting of statistical machine learning.

We turn now to a formal de!nition of PAC learning. We assume a set of items X
and a probability distribution D de!ned on X . We work here in the setting of binary
classi!cations, where a concept (or classi!cation) can be treated as a subsetC ⊆ X ; all
items in C are said to have a positive classi!cation and all items in X \C are said to
have a negative classi!cation. Equivalently, a classi!cation can be treated as a function
c(x) that is 1 if x ∈ C and −1 if x /∈ C. We use both notions of a classi!cation inter-
changeably, where the meaning is clear. The concept class C is the set of all possible
classi!cations de!ned by the problem.

The learning algorithm calls a function Oracle that produces a pair (x, c(x)), where
x is distributed according toD, and c(x) is 1 if x ∈ C and−1 otherwise. We assume that
successive calls to Oracle are independent. For clarity, we may write Oracle(C,D)
to specify the concept and distribution under consideration. We also assume that the
classi!cation problem is realizable, i.e. there is a classi!cation h ∈ C that conforms
with our input distribution. Formally,

∃ h ∈ C such that PrD(h(x) &= c(x)) = 0.

We now de!ne what it means for a concept to be learnable.

De4nition 14.9 [PACLearning]: A concept class C over input set X is PAC learnable1

if there is an algorithm L, with access to a function Oracle(C,D), that satis!es the
following properties: for every correct concept C ∈ C, every distribution D on X, and
every 0 < ε, δ ≤ 1/2, the number of calls that the algorithm L makes to the function
Oracle(C,D) is polynomial in ε−1 and δ−1, and with probability at least 1 − δ the
algorithm L outputs a hypothesis h such that PrD(h(x) &= c(x)) ≤ ε.

We !rst prove that any !nite concept class is PAC learnable.

Theorem 14.12: Any !nite concept class C can be PAC learned with m =
1
ε
(ln |C| + ln 1

δ
) samples.

Proof: Let c∗ ∈ C be the correct classi!cation. A hypothesis h is said to be “bad” if
PrD(h(x) &= c∗(x)) ≥ ε. The probability that any particular bad hypothesis is consistent

1 PAC learning is mainly concerned with the computational complexity of learning. In particular, a concept class C
is ef!ciently PAC learnable if the algorithm runs in time polynomial in the size of the problem, 1/ε and 1/δ. Such
an algorithm uses at most polynomially many samples. Here we are only interested in the sample complexity
of the learning process; however, we note that the computational complexity of the learning algorithm is not
necessarily polynomial in the sample size.
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with m random samples is bounded above by (1 − ε)m, and hence the probability that
any bad hypothesis is consistent with m random samples is bounded above by

|C|(1 − ε)m ≤ δ.

The result follows. !

We can also apply the PAC learning framework to in!nite concept classes. Let us
consider learning an interval [a, b] ∈ R. The concept class here is the collection of all
closed intervals in R:

C = {[x, y] | x ≤ y} ∪ ∅.

Notice that we also include a trivial concept that corresponds to the empty interval.
Let c∗ ∈ C be the concept to be learned, and h be the hypothesis returned by our

algorithm. The training set is a collection of n points drawn from a distribution D on
R, where each point in the interval [a, b] is a positive example and each point outside
the interval is a negative example. If none of the sample points are positive examples,
then our algorithm returns the trivial hypothesis, where h(x) = −1 everywhere. If any
of the sample points are positive examples, then let c and d respectively be the smallest
and largest values of positive examples. Our algorithm then returns the interval [c, d]
as its hypothesis. (If there is only one positive example, the algorithm will return an
interval of the form [c, c].) By design, our algorithm can only make an error on an
input x if x ∈ [a, b]; our algorithm will not make an error outside this interval, because
it always returns −1 for points x /∈ [a, b].

We now determine the probability that our algorithm returns a bad hypothesis. Let
us !rst consider the case where PrD(x ∈ [a, b]) ≤ ε. Because our algorithm can only
return an incorrect answer on points in the interval [a, b], our algorithm always returns
a hypothesis with a probability of error at most ε in this case, and hence never returns
a bad hypothesis.

Now let us consider when PrD(x ∈ [a, b]) > ε. In this case, let a ′ ≥ a be the small-
est value such that PrD([a, a ′]) ≥ ε/2. Similarly, let b ′ ≤ b be the largest value such
that PrD([b ′, b]) ≥ ε/2. Here a ′ ≤ b ′ since PrD(x ∈ [a, b]) > ε. For convenience, we
assume a ′ < b ′; the case a ′ = b ′ can be handled similarly. (If a ′ = b ′, then the point
a ′ has nonzero probability of being selected, and we can divide up that probability
among the intervals [a, a ′] and [b ′, b] so the probability of each is at least ε/2.) For our
algorithm to return a bad hypothesis with error at least ε, it must be the case that no
sample points fell either in the interval [a, a ′] or the interval [b ′, b], or both. Otherwise,
our algorithm would return a range [c, d] that covers [a ′, b ′], and correspondingly the
probability our hypothesis would be incorrect on a new input chosen fromD would be
at most ε.

The probability that a training set of n points does not have any examples from either
[a, a ′] or [b, b ′] is bounded above by

2
(
1 − ε

2

)n
≤ 2e−εn/2.

Hence choosing n ≥ 2 ln(2/δ)/ε samples guarantees that the probability of choosing a
bad hypothesis is bounded above by δ, and therefore this concept class is PAC learnable.
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While the above example of learning intervals demonstrates an in!nite concept class
that is PAC learnable, the approach to this problem of considering intervals around the
maximum andminimum sampled points appears ad hoc. The idea behind this approach,
however, can be generalized. Observe that a concept class C over input set X de!nes
a range space (X, C). We show that the number of examples required to PAC learn a
concept class is the same as the number of samples needed to construct an ε-net for a
range space of VC dimension equal to the VC dimension of the range space de!ned by
the concept class.

Theorem 14.13: Let C be a concept class that de!nes a range space with VC dimen-
sion d. For any 0 < δ, ε ≤ 1/2, there is an

m = O
(
d
ε
ln
d
ε

+ 1
ε
ln

1
δ

)

such that C is PAC learnable with m samples.

Proof: Let X be the ground set of inputs and assume that c ∈ C is the correct classi-
!cation. For any c ′ ∈ C, c ′ &= c let $(c ′, c) = {x | c(x) &= c ′(x)}, where c(x) and c ′(x)
are the labeling functions for c and c ′ respectively. Let $(c) = {$(c ′, c) | c ′ ∈ C}.
That is, $(c) is a collection of all the possible sets of points of disagreement with the
correct classi!cation. The symmetric difference range space with respect to C and c is
(X, $(c)). We prove the following lemma about the symmetric difference range space.

Lemma 14.14: The VC dimension of (X, $(c)) is equal to the VC dimension of (X, C).

Proof: For any set S ⊆ X we de!ne a bijection from the projection of (X, C) on S,
denoted by CS, to the projection of (X, $(c)) on S, denoted by $(c)S. The bijec-
tion maps each element c ′ ∩ S ∈ CS to $(c ′ ∩ S, c ∩ S) ∈ $(c)S. To show this is a
bijection, we !rst consider two elements c ′, c ′′ ∈ C with c ′ ∩ S &= c ′′ ∩ S, and show
that $(c ′ ∩ S, c ∩ S) &= $(c ′′ ∩ S, c ∩ S). If c ′ ∩ S &= c ′′ ∩ S, then there is an element
y ∈ S such that c ′(y) &= c ′′(y). Without loss of generality, assume that c ′(y) &= c(y) but
c ′′(y) = c(y). In that case y ∈ $(c ′ ∩ S, c) ∩ S but y &∈ $(c ′′ ∩ S, c ∩ S). Similarly, if
for two elements c ′, c ′′ ∈ C there is an element y ∈ S such that $(c ′ ∩ S, c ∩ S) &=
$(c ′′ ∩ S, c ∩ S), then there is an element y ∈ S such that c ′(y) &= c ′′(y), so c ′ ∩ S &=
c ′′ ∩ S, proving the bijection.

Thus, for any S ⊆ X , |CS| = |$(c)S|, and S is shattered by C if and only if it is
shattered by $(c). The two range spaces therefore have the same VC dimension. !

Since the range space (X, $(c)) has a VC dimension d, by Theorem 14.8 there is an

m = O
(
d
ε
ln
d
ε

+ 1
ε
ln

1
δ

)

so that any sample of size m or larger is, with probability at least 1 − δ, an ε-net for
that range space, and therefore has a nonempty intersection with every set $(c ′, c) that
has probability at least ε. Thus, with probability at least 1 − δ, our training set allows
the algorithm to exclude any hypothesis with error probability at least ε. !
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We saw in Section 14.2.1 that the VC dimension of the collection of closed intervals
on R is 2. Applying Theorem 14.13 to the problem of learning an interval on the line
gives an alternative proof to the result we saw in Section 14.4 that this range space can
be learned with O( 1

ε
ln 1

δ
) samples.

14.5. The ε-sample Theorem

Recall that an ε-sample for a range space (X,R) maintains the relative probability
weight of all sets R ∈ R within a tolerance of ε (De!nition 14.6), while an ε-net just
includes at least one element from each range with total probability at least ε. Surpris-
ingly, adding just another O(1/ε) factor to the sample size gives an ε-sample, again
with probability at least 1 − δ. The proof of this result uses the same “double sampling”
method as in the proof of the ε-net theorem, albeit with a somewhat more complicated
argument.

Theorem 14.15: Let (X,R) be a range space with VC dimension d and let D be a
probability distribution on X. For any 0 < ε, δ < 1/2, there is an

m = O
(
d
ε2

ln
d
ε

+ 1
ε2

ln
1
δ

)

such that a random sample from D of size greater than or equal to m is an ε-sample
for X with probability at least 1 − δ.

Proof: LetM be a set of m independent samples from X according to D, and let E1 be
the event that M is not an ε-sample for X with respect to the distribution D, i.e.

E1 =
{
∃R ∈ R |

∣∣∣∣PrD(R) − |M ∩ R|
|M|

∣∣∣∣ > ε

}
.

We want to show that Pr(E1) ≤ δ for a suitable m. We choose a second set T of m
independent samples from X according to D, and de!ne E2 to be the event that some
range R is not well approximated by M but is reasonably well approximated by T :

E2 =
{
∃R ∈ R |

∣∣∣∣
|R ∩M|

|M|
− PrD(R)

∣∣∣∣ > ε and
∣∣∣∣
|R ∩ T |

|T |
− PrD(R)

∣∣∣∣ ≤ ε

2

}
.

Lemma 14.16:

Pr(E2) ≤ Pr(E1) ≤ 2 Pr(E2).

Proof: Clearly the event E2 is included in the event E1, thus Pr(E2) ≤ Pr(E1). For
the second inequality we again use conditional probability. If E1 holds, there is some
particular R ′ so that

∣∣ |R ′∩M|
|M| − PrD(R ′)

∣∣ > ε. Therefore,

Pr(E2)
Pr(E1)

= Pr(E1 ∩ E2)
Pr(E1)

= Pr(E2 | E1) ≥ Pr
(∣∣∣∣

|R ′ ∩ T |
|T |

− PrD(R ′)
∣∣∣∣ ≤ ε

2

)
.

Now for a !xed range R ′ and a random sample T , the random variable |T ∩ R ′| has a
binomial distribution B(m, PrD(R ′)), and applying the Chernoff bound (Theorem 4.5)
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we have

Pr(||T ∩ R ′| − mPrD(R ′)| > εm/2) ≤ 2e−εm/12 < 1/2

for m ≥ 24/ε. We conclude

Pr(E2)
Pr(E1)

= Pr(E2 | E1) ≥ Pr
(∣∣∣∣

|R ′ ∩ T |
|T |

− PrD(R ′)
∣∣∣∣ ≤ ε

2

)
≥ 1/2. !

Next we bound the probability of E2 by the probability of a larger event E ′
2:

E ′
2 =

{
∃R ∈ R | ||R ∩ T | − |R ∩M|| ≥ ε

2
m

}
.

To see that E2 ⊆ E ′
2, assume that a set R satis!es the conditions of E2, i.e.

||R ∩M| − mPrD(R)| ≥ εm,

and

||R ∩ T | − mPrD(R)| ≤ εm/2.

In that case

||R ∩M| − m PrD(R)| − ||R ∩ T | − mPrD(R)| ≥ εm/2,

and by the reverse triangle inequality2

||R ∩ T | − |R ∩M|| ≥ ||R ∩M| − m PrD(R)| − ||R ∩ T | − mPrD(R)| ≥ εm/2.

The event E ′
2 depends only on the elements in M ∪ T .

Lemma 14.17:

Pr(E2) ≤ Pr(E ′
2 ) ≤ (2m)de−ε2m/8.

Proof: Since M and T are random samples, we can assume that we !rst choose a
random sample of 2m elements Z = z1, . . . , z2m and then partition it randomly into two
sets of sizem each. Since Z is a random sample, any partition that is independent of the
actual values of the elements generates two random samples. We will use the following
partition: for each pair of sampled items z2i−1 and z2i, i = 1, . . . ,m, with probability
1/2 (independent of other choices) we place z2i−1 in T and z2i inM, otherwise we place
z2i−1 in M and z2i in T .

For a !xed R ∈ R, let ER be the event {||R ∩ T | − |R ∩M|| ≥ ε
2m}. To bound the

probability of ER we consider the contribution of the assignment of each pair z2i−1, z2i
to the value of ||R ∩ T | − |R ∩M||. If the two items are both in R or the two items are
both not in R, the contribution of the pair is 0. If one item is in R and the other is not
in R then the contribution of the pair is 1 with probability 1/2 and −1 with probability

2 The reverse triangle inequality is simply |x− y| ≥ ||x| − |y||, which follows easily from the triangle inequality.
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1/2. There are no more than m such pairs, so from the Chernoff bound in Theorem 4.7
we can conclude

Pr(ER) ≤ e−ε2m/8.

By Theorem 14.1 the projection of R on Z has no more than (2m)d ranges. Thus,
by the union bound we have

Pr(E ′
2 ) ≤ (2m)de−ε2m/8. !

To complete the proof of Theorem 14.15 we show that for

m ≥ 32d
ε2

ln
64d
ε2

+ 16
ε2

ln
2
δ

we have

Pr(E1) ≤ 2 Pr(E ′
2 ) ≤ 2(2m)de−ε2m/8 ≤ δ.

We remark that this value of m satis!es

m = O
(
d
ε2

ln
d
ε

+ 1
ε2

ln
1
δ

)

as given in the statement of the theorem; although our explicit bound has a ln 64d
ε2
, that

term is O(ln d
ε
). Equivalently, we require

ε2m/8 ≥ ln(2/δ) + d ln(2m).

Clearly it holds that ε2m/16 ≥ ln(2/δ), since m > 16
ε2
ln 2

δ
. It therefore suf!ces to

show that ε2m/16 ≥ d ln(2m) to complete the proof.
Applying Lemma 14.3 with y = 2m ≥ 64d

ε2
ln 64d

ε2
and x = 64d

ε2
, we have

4m
ln(2m)

≥ 64d
ε2

,

so

ε2m
16

≥ d ln(2m)

as required. !

Since an ε-sample is also an ε-net, the lower bound on the sample complexity of
ε-nets in Theorem 14.11 holds for ε-samples. Together with the upper bound of Theo-
rem 14.15, this gives:

Theorem 14.18: A range space has the uniform convergence property if and only if
its VC dimension is !nite.

14.5.1. Application: Agnostic Learning

In our discussion of PAC learning in Section 14.4, we assumed that the algorithm is
given a concept class C that includes the correct classi!cation c. That is, there is a
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classi!cation that is correct on all items in X , and in particular conforms with all exam-
ples in the training set. This assumption does not hold in most applications. First, the
training set may have some errors. Second, we may not know any concept class that
is guaranteed to include the correct classi!cation and is also simple to represent and
compute. In this section we extend our discussion of PAC learning to the case in which
the concept class does not necessarily include a perfectly correct classi!cation, which
is referred to as the unrealizable case or agnostic learning. Since the concept class may
not have a correct or even close to correct classi!cation, the goal of the the algorithm
in this case is to select a classi!cation c ′ ∈ C with an error that is no more than ε larger
than that of any other classi!cation in C. Formally, let c be the correct classi!cation
(which may not be in C). We require the output classi!cation c ′ to satisfy the following
inequality:

PrD(c ′(x) &= c(x)) ≤ inf
h∈C

PrD(h(x) &= c(x)) + ε.

Recall from Section 14.4 that the symmetric difference range space with respect to
the concept class C and the correct classi!cation c is (X, $(c)). If the examples in the
training set de!ne an ε/2-sample for that range space then the algorithm has suf!ciently
many examples to estimate the error probability of each c ′ ∈ C to within an additive
error ε/2, and thus can select a classi!cation that satis!es the above requirement.3

Applying Theorem 14.15, agnostic learning of a concept class with VC dimension d
requires O

(
min

(
|X |, d

ε2
ln d

ε2
+ 1

ε2
ln 1

δ

))
samples.

Finally, we state a general characterization of concept classes that are agnostic PAC
learnable.

Theorem 14.19: The following three conditions are equivalent:

1. A concept class C over a domain X is agnostic PAC learnable.
2. The range space (X, C) has the uniform convergence property.
3. The range space (X, C) has a !nite VC dimension.

14.5.2. Application: Data Mining

Data mining involves extracting useful information from raw data. In some cases, such
as anomaly detection, one is interested in rare events. Finding such rare events may
require a complete analysis of the entire data set that is expensive in both computational
time and memory requirements. In other cases, however, the goal of data mining is to
detect major patterns or trends in data and ignore random 'uctuations. In such settings,
analyzing a properly selected sample of the data instead of the entire data set can give
an excellent approximation at a fraction of the cost. The crucial question here is how
large the sample should be to give a reliable estimate.We give here two examples where
using ε-samples can provide an answer to this question.

3 Recall that we are only concerned herewith the sampling complexity of the problem.Depending on the particular
concept class, the computation cost may not be practically feasible.
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Example: Estimating dense neighborhoods
Assume that we are given a large set of n points in the plane and we need to answer a
sequence of queries of the form “what fraction of the points are at distance at most r
from point (x, y)?”, for arbitrary values of (x, y) and r. Estimates of this kind are used
by businesses to determine where to locate new stores or other resources. For example,
if points represent home locations for customers, query locations (x, y) might represent
possible locations for a bank to place an automated teller machine, in which case quick
estimates of how many customers are near the location would be useful for planning
purposes.

We can answer each query by scanning the entire set of n points. Alternatively, we
can de!ne a range space (R2,R), where R includes, for each pair (x, y) ∈ R2 and
r ∈ R+, the set of all the points inside the disk of radius r centered at (x, y). Since the
VC dimension of the set of all disks on the plane is 3 (see Exercise 14.6), we can sample
a random set of m = O

( 1
ε2
ln 1

ε
+ 1

ε2
ln 1

δ

)
points and give fast approximate answers to

all the queries by scanning only the sample.
Generating a random sample may require an initial scan of all the n points, but we

need to execute it only once. The ε-sample theorem guarantees that with probability
at least 1 − δ, the answers to all of the queries are within ε of the correct value. Fur-
thermore, since the ε-sample estimates all possible disks, we could also use it for other
purposes, such as approximately identifying the k densest disks.

Example: Mining frequent itemsets
Consider a supermarket that wants to design discounts for customers based on buying
a collection of items. In this case, the supermarket is interested not only in what are
the most frequent items purchased, but also in what sets of items are most frequently
bought together. This problem arises in many settings, and is commonly referred to
as the problem of mining frequent itemsets. Formally, we can describe the problem
as follows: we are given a set of items I and a collection of transactions T , where
a transaction is a subset of I. We are interested in sets of items that appear in many
transactions, where what is meant by many transactions can depend on the setting. We
might use a threshold, or a percentage of transactions.

Mining frequent itemsets is challenging to accomplish ef!ciently, both because the
number of customer transactions is usually large, and because it takes signi!cant mem-
ory to store all possible frequent itemsets. Even if one limits the problem to itemsets
of size up to k, there are

(|I|
k

)
possible itemsets, which grows large even for small k.

All known exact solutions to this problem require either several passes over the data or
signi!cant storage or both to store candidate frequent itemsets and their counts. On the
other hand, solving the problem on a relatively small sample can give effective results
much more ef!ciently.

A natural goal would be to make sure we !nd all suf!ciently frequent itemsets
and discard all suf!ciently infrequent itemsets. There might be some itemsets that are
ambiguously in between the thresholds we set for frequent and infrequent itemsets,
and that could therefore be characterized either way. Suppose that we want to cor-
rectly characterize all sets with frequency greater than θ as frequent and all sets with
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frequency less than θ − ε as infrequent; sets with frequency [θ − ε, θ] would be in the
ambiguous range. How many transactions do we need to sample?

Our goal is to approximate the true frequency of each set within an additive error
of ε/2. Then we can treat all sets with frequency at least θ − ε/2 as frequent itemsets
and all sets with frequency less than θ − ε/2 as infrequent itemsets, ensuring that we
correctly characterize sets with frequency greater than θ and sets with frequency less
than θ − ε.

If all transactions have size at most &, then there are O(|I|&) different itemsets that
could be frequent. Applying a Chernoff bound and a union bound would require a
sample of size#

(
θ
ε2

(
& ln |I| + ln 1

δ

))
. In practice, & << |I|. In such a case an ε-sample

can give a signi!cantly better bound. (Although, strictly speaking, here we need an
(ε/2)-sample.)

For each subset s ⊆ I, let T (s) = {t ∈ T and s ⊆ t} denote the collection of all
transactions in the data set that include s. Let R = {T (s) | s ⊆ I}, and consider the
range space (T ,R). We would like to bound the VC dimension of this range space
by a parameter that can be evaluated in one pass over the data (say when the data is
!rst loaded to the system). We !rst observe that the VC dimension is bounded by &,
the maximum size of any transaction in the data set. Indeed, a transaction of size q has
2q subsets and is therefore included in no more than 2q ranges. Since no transaction
can belong to more than 2& ranges, no set of more than & transactions can be shattered.
Thus, by Theorem 14.15, with probability at least 1 − δ, a sample of size

O
(

&

ε2
ln

&

ε
+ 1

ε2
ln

1
δ

)
(14.1)

can guarantee that all itemsets are accurately determined to within ε/2 of their true
proportion with probability at least 1 − δ, and thus is suf!cient for identifying all the
frequent itemsets. A better bound is proven in Exercise 14.12.

14.6. Rademacher Complexity

Rademacher complexity is an alternative approach for computing sample complex-
ity. Unlike the VC-dimension based bounds, which were distribution independent, the
Rademacher complexity bounds depend on the training set distribution, and thus can
give better bounds for speci!c input distributions. Furthermore, the Rademacher com-
plexity can, in principle, be estimated from the training set, allowing for strong bounds
derived from a sample itself. Another advantage of Rademacher complexity is that it
can be applied to the estimation of any function, not just 0–1 classi!cation functions.
(There are, to be clear, generalizations of VC dimensions to non-binary function.)

To motivate the de!nition of Rademacher averages, let us start with the binary
classi!cation setting we used in section 14.1 and then generalize. We have a training
set (x1, c(x1)), . . . , (xm, c(xm)) where xi ∈ U and c(xi) ∈ {−1, 1}, and a set of possible
hypotheses h ∈ C where each h is a function from the universe U to {−1, 1}. The
training error of a hypothesis on the training set is the fraction of samples where the
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hypothesis disagrees with the given classi!cation. Formally,

ˆerr(h) = 1
m

|{i : h(xi) &= c(xi), 1 ≤ i ≤ m}|.

Now we make use of the fact that, because h(xi) and c(xi) take on values in {−1, 1},

1 − c(xi)h(xi)
2

=
{
0 if c(xi) = h(xi),
1 if c(xi) &= h(xi).

Hence we can write

ˆerr(h) = 1
m

m∑

i=1

1 − c(xi)h(xi)
2

= 1
2

− 1
2m

m∑

i=1

c(xi)h(xi).

The expression 1
m

∑m
i=1 c(xi)h(xi) represents the correlation between c and h; if c and

h always agree, the value of the expression is 1, and if they alway disagree, the value is
−1. The hypothesis that minimizes the training error is the hypothesis that maximizes
the correlation.

Now, given a collection of sample points xi, 1 ≤ i ≤ m, we consider how well our
class of possible hypotheses C can align with all possible classi!cations of these sample
points. To consider all possible classi!cations, we use the Rademacher variables: m
independent random variables, σ = (σ1, . . . , σm), with Pr(σi = −1) = Pr(σi = 1) =
1/2. The hypothesis that aligns best with !xed values of the Rademacher variables σ

is then the one that maximizes the value

1
m

m∑

i=1

σih(xi),

and our training error is

1
2

− max
h∈C

1
2m

m∑

i=1

σih(xi).

To consider all possible sample points, we consider the expectation over all possible
outcomes for σ , or

Eσ max
h∈C

1
m

m∑

i=1

σih(xi). (14.2)

This expression corresponds intuitively to how expressive our class of hypotheses C
is. For example, if C consisted of just a single hypothesis h, the expectation would be
0, as h(xi) = σi with probability 1/2 for any randomly chosen σ . On the other hand,
if C shatters the set {x1, x2, . . . , xm}, then the expectation would be 1, as there would
be some h ∈ C so that h(xi) = σi for all i for each possible randomly chosen σ . In this
particular setting, the expectation is always between 0 and 1, and intuitively a higher
number corresponds to a more expressive set of hypotheses.

To move to a more general de!nition of Rademacher averages, instead of thinking of
sets of hypotheses, we consider a set of real-valued functionsF , where the inputs to the
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function are de!ned according to a probability space with distribution D. Hence, for
f ∈ F , when we refer to E[ f ], this would correspond to E[ f (Z)] where Z is a random
variable with distribution D. We generalize the expectation (14.2) as follows.

De4nition 14.10: The empirical Rademacher average of a set of functions F with
respect to a sample S = {z1, . . . , zm}, is de!ned as

R̃m(F, S) = Eσ

[

sup
f∈F

1
m

m∑

i=1

σi f (zi)

]

,

where the expectation is taken over the distribution of the Rademacher variables σ =
(σ1, . . . , σm).

We remark that we use sup instead of max since we are dealing with a family of
real-valued functions, so the maximum technically may not exist.

For a !xed assignment of values to the Rademacher variables the value of
sup f∈F

1
m

∑m
i=1 σi f (zi) represents the best correlation between any function in F and

the vector (σ1, . . . , σm), generalizing the correlation for binary classi!cations. The
empirical Rademacher average therefore measures how well one can correlate random
partitions of the sample with some function in the set F , which provides a measure
of how expressive the set is. We therefore use the terms empirical Rademacher aver-
age and empirical Rademacher complexity interchangeably (both terms are used in the
literature).

Now let us look at the empirical Rademacher average in a different way. For large
m, an average 1

m

∑m
i=1 f (zi) over a random sample S = {z1, . . . , zm}, should provide a

good approximation to E[ f ]. Multiplying by the Rademacher variables, the expression
1
m

∑m
i=1 σi f (zi) corresponds to splitting the sample S into two subsamples, correspond-

ing to the values of i where σi = 1 and the values of i where σi = −1. If S is a random
sample then the expression is similar to the difference between the average of the two
random subsamples, and hence the expectation

Eσ

[
1
m

m∑

i=1

σi f (zi)

]

,

should be small. Finally, the empirical Rademacher complexity

R̃m(F, S) = Eσ

[

sup
f∈F

1
m

m∑

i=1

σi f (zi)

]

considers the supremum of this expectation over all functions in F . Intuitively, if the
empirical Rademacher average with respect to a sample of size m is small, then we
expectm to be suf!ciently large for a sample to provide a good estimate for all functions
in F . We formulate and prove this intuition in Theorem 14.20.

To remove the dependency on a particular sample we can take an expectation over
the distribution of all samples S of size m, where the samples are taken from the distri-
bution D.
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De4nition 14.11: The Rademacher average of F is de!ned as

Rm(F ) = ES[R̃m(F, S)] = ESEσ

[

sup
f∈F

1
m

m∑

i=1

σi f (zi)

]

,

where the expectation over S corresponds to samples of size m from a given
distribution D.

We similarly use the terms Rademacher average and Rademacher complexity inter-
changeably.

14.6.1. Rademacher Complexity and Sample Error

A key property of the Rademacher complexity of a set of functions F is that it bounds
the expected maximum error in estimating the mean of any function f ∈ F using a
sample.

Let ED[ f (z)] be the true mean of f with respect to distribution D. The estimate of
ED[ f (z)] using the sample S = {z1, . . . , zm} is 1

m

∑m
i=1 f (zi). The expected maximum

error, averaged over all samples of size m from D, is given by

ES

[

sup
f∈F

(

ED[ f (z)] − 1
m

m∑

i=1

f (zi)

)]

.

The following theorem bounds this error in terms of the Rademacher complexity of F .

Theorem 14.20:

ES

[

sup
f∈F

(

ED[ f (z)] − 1
m

m∑

i=1

f (zi)

)]

≤ 2Rm(F ).

Proof: Pick a second sample S ′ = {z ′
1, . . . , z

′
m}.

ES

[

sup
f∈F

(

ED[ f (z)] − 1
m

m∑

i=1

f (zi)

)]

= ES

[

sup
f∈F

(

ES ′
1
m

m∑

i=1

f (z ′
i ) − 1

m

m∑

i=1

f (zi)

)]

≤ ES,S ′

[

sup
f∈F

(
1
m

m∑

i=1

f (z ′
i ) − 1

m

m∑

i=1

f (zi)

)]

= ES,S ′,σ

[

sup
f∈F

(
1
m

m∑

i=1

σi( f (zi) − f (z ′
i ))

)]

≤ ES,σ

[

sup
f∈F

1
m

m∑

i=1

σi f (zi)

]

+ ES ′,σ

[

sup
f∈F

1
m

m∑

i=1

σi f (z ′
i )

]

= 2Rm(F ).
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The !rst equality holds because the expectation from the sample S ′ is the expectation
of f . The !rst inequality, in which the order of the expectationwith respect to S ′ with the
operation sup f∈F is interchanged, follows from Jensen’s inequaliy (Theorem 2.4), and
the fact that supremum is a convex function. For the second equality, we use the fact that
multiplying f (zi) − f (z ′

i ) by a Rademacher variable σi does not change the expectation
of the sum. If σi = 1 there is clearly no change, and if σi = −1 this is equivalent to
switching zi and z ′

i between the two samples, which does not change the expectation.
For the second inequality, we use that σi and −σi have the same distribution, so we can
change the sign to simplify the expression. !

Next we show that for bounded functions the Rademacher complexity is well
approximated by the empirical Rademacher complexity, and the estimation error is well
approximated by twice the Rademacher complexity, thereby obtaining a probabilistic
bound on the estimation error of any bounded function in F from a sample.

Theorem 14.21: Let F be a set of functions such that for any f ∈ F and for any
two values x and y in the domain of f , | f (x) − f (y)| ≤ c for some constant c. Let
Rm(F ) be the Rademacher complexity, and R̃m(F, S) the empirical Rademacher com-
plexity of the set F , with respect to a random sample S = {z1, . . . , zm} of size m from a
distribution D.

(1) For any ε ∈ (0, 1),

Pr(|R̃m(F, S) − Rm(F )|) ≥ ε) ≤ 2e−2mε2/c2 .

(2) For all f ∈ F and ε ∈ (0, 1),

Pr

(

ED[ f (z)] − 1
m

m∑

i=1

f (zi) ≥ 2R̃m(F, S) + 3ε

)

≤ 2e−2mε2/c2 .

Proof: To prove the !rst part of the theorem we observe that R̃m(F, S) is a function of
m random variables, z1, . . . , zm, and any change in one of these variables can change the
value of R̃m(F, S) by no more than c/m. Since ES[R̃m(F, S)] = Rm(F ) we can apply
Theorem 13.7 to obtain

Pr(|R̃m(F, S) − Rm(F |) ≥ ε) ≤ 2e−2mε2/c2 .

To prove the second part, we observe that ED[ f (z)] − 1
m

∑m
i=1 f (zi) is a function of

z1, . . . , zm, and a change in one of the zi changes the value of that function by no more
than c/m. Applying a one-sided form of Theorem 13.7 we have

Pr

((

ED[ f (z)] − 1
m

m∑

i=1

f (zi)

)

− ES

[

ED[ f (z)] − 1
m

m∑

i=1

f (zi)

]

≥ ε

)

≤ e−2mε2/c2 .

We now apply the bound in Theorem 14.20,

ES

[

ED[ f (z)] − 1
m

m∑

i=1

f (zi)

]

≤ 2Rm(F ),
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to obtain,

Pr

(

ED[ f (z)] − 1
m

m∑

i=1

f (zi) ≥ 2Rm(F ) + ε

)

≤ e−2mε2/c2 . (14.3)

From the !rst part of the theorem we know that Rm(F ) ≤ R̃m(F, S) + ε with probabil-
ity at least 1 − e−2mε2/c2 . Combining this with Eqn. (14.3), we have the second part of
the theorem,

Pr

(

ED[ f (z)] − 1
m

m∑

i=1

f (zi) ≥ 2R̃m(F, S) + 3ε

)

≤ 2e−2mε2/c2 . !

14.6.2. Estimating the Rademacher Complexity

While the Rademacher complexity can, in principle, be computed from a sample, in
practice it is often hard to compute the expected supremumover a large (or even in!nite)
set of functions. Massart’s theorem provides a bound that is often easy to compute for
!nite sets of functions.

Theorem 14.22 [Massart’s theorem]: Assume that |F | is !nite. Let S = {z1, . . . , zm}
be a sample, and let

B = max
f∈F

(
m∑

i=1

f 2(zi)

) 1
2

then

R̃m(F, S) ≤ B
√
2 ln |F |
m

.

Proof: For any s > 0,

esmR̃m(F ,S) = esEσ [sup f∈F
∑m

i=1 σi f (zi )],

where the expectation is taken over the assignments of the Rademacher variables σ =
(σ1, . . . , σm).

By Jensen’s inequality (Theorem 2.4),

esEσ [sup f∈F
∑m

i=1 σi f (zi )] ≤ Eσ

[
es sup f∈F

∑m
i=1 σi f (zi )

]

= Eσ

[

sup
f∈F

(
e
∑m

i=1 sσi f (zi )
)]

≤
∑

f∈F
Eσ

[(
e
∑m

i=1 sσi f (zi )
)]

=
∑

f∈F
Eσ

[
m∏

i=1

esσi f (zi )
]

=
∑

f∈F

m∏

i=1

Eσ

[
esσi f (zi )

]
.
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Here the !rst line follows from Jensen’s inequality, and the second line is just a
rearrangement of terms. The third line bounds the supremum by a summation, which is
possible since all the terms are positive. The fourth line changes the sum in the exponent
to a product, and the last line arises from the independence of the sample values.

Since E[σi f (zi)] = 0 and − f (zi) ≤ σi f (zi) ≤ f (zi), we can apply Hoeffding’s
Lemma (Lemma 4.13) to obtain

E
[
esσi f (zi )

]
≤ es

2(2 f (zi ))2/8 = es
2 f (zi )2/2.

Thus,

esmR̃m(F ,S) = esE[sup f∈F
∑m

i=1 σi f (zi )]

≤
∑

f∈F

m∏

i=1

es
2 f (zi )2/2

=
∑

f∈F
es

2/2
∑m

i=1 f (zi )
2

≤ |F |e(s2B2 )/2.

Hence, for any s > 0,

R̃m(F, S) ≤ 1
m

(
ln |F |
s

+ sB2

2

)
.

Setting s =
√
2 ln |F |
B yields

R̃m(F, S) ≤ B
√
2 ln |F |
m

. !

14.6.3. Application: Agnostic Learning of a Binary Classi!cation

Let C be a binary concept class de!ned on a domain X , and let D be a probability
distribution on X . For each x ∈ X let c(x) be the correct classi!cation of x. For each
hypothesis h ∈ C we de!ne a function fh(x) by

fh(x) =
{
1 if h(x) = c(x)
−1 otherwise.

LetF = { fh | h ∈ C}. Our goal is to !nd h ′ ∈ C such that with probability at least 1 − δ

E[ fh ′] ≥ sup
fh∈F

E[ fh] − ε.

Let S be a sample of size m. We apply Theorem 14.22 to bound the empirical
Rademacher average F with respect to S. Since the functions in F take on only the
values −1 and 1,

B = max
f∈F

(
m∑

i=1

f 2(zi)

) 1
2

=
√
m,
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and for a !nite F

R̃m(F, S) ≤
√
2 ln |F |
m

.

Next we express this bound in terms of the VC dimension of the concept class C.
Each function fh ∈ F corresponds to a hypothesis h ∈ C. Let d be the VC dimension
of C. The projection of the range space (X, C) on a sample of size m has no more than
md different sets, as we know from Theorem 14.1. Thus, the set of different functions
we need to consider is bounded by md , and hence

R̃m(F, S) ≤
√
2d lnm
m

.

The bound on R̃m(F, S) in conjunction with Theorem 14.21 can be used to obtain an
alternative bound on the sample complexity of agnostic learning, similar to the bound
found in Section 14.5.1. The details are considered in Exercise 14.15. However, for
speci!c distributions, the projection of (X, C) on the training set can be signi!cantly
smaller, yielding a smaller Rademacher complexity and smaller sample complexity.

14.7. Exercises

Exercise 14.1: Consider a range space (X, C) where X = {1, 2, . . . , n} and C is the
set of all subsets of X of size k for some k < n. What is the VC dimension of C?

Exercise 14.2: Consider a range space (R2, C) of all axis-aligned rectangles in R2.
That is, c ∈ C if for some x0 < x1 and y0 < y1, c = {(x, y) ∈ R2 | x0 ≤ x ≤ x1 and y0 ≤
y ≤ y1}.

(a) Show that the VC dimension of (R2, C) is equal to 4. You should show both a set
of four points that can be shattered, and show that no larger set can be shattered.

(b) Construct and analyze a PAC learning algorithm for the concept class of all axis-
aligned rectangles in R2.

Exercise 14.3: Consider a range space (R2, C) of all axis-aligned squares inR2. Show
that the VC dimension of (R2, C) is equal to 3.

Exercise 14.4: Consider a range space (R2, C) of all squares (that need not be axis-
aligned) in R2. Show that the VC dimension of (R2, C) is equal to 5.

Exercise 14.5: Consider a range space (R3, C) of all axis-aligned rectangular boxes
in R3. Find the VC dimension of (R3, C); you should show both the largest number of
points that can be shattered, and show that no larger set can be shattered.

Exercise 14.6: Prove that the VC dimension of the collection of all closed disks on
the plane is 3.
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Exercise 14.7: Prove that the VC dimension of the range space (Rd,R), where R
is the set of all half-spaces in Rd , is at least d + 1, by showing that the set consisting
of the origin (0, 0, . . . , 0) and the d unit points (1, 0, 0, . . . , 0), (0, 1, 0, . . . , 0), . . . ,
(0, 0, . . . , 1) is shattered by R.

Exercise 14.8: Let S = (X,R) and S ′ = (X,R ′) be two range spaces. Prove that if
R ′ ⊆ R then the VC dimension of S ′ is no larger than the VC dimension of S.

Exercise 14.9: Show that for n ≥ 2d and d ≥ 1 the growth function satis!es

G(d, n) =
d∑

i=0

(
n
i

)
≤ 2

(
ne
d

)d

.

Exercise 14.10: Use the bound of Exercise 14.9 to improve the result of Theorem 14.4
to show the VC dimension of the range space (X,R f ) is O(kd ln k).

Exercise 14.11: Use the bound of Exercise 14.9 to improve the result of Theorem 14.8
to show that there is an

m = O
(
d
ε
ln

1
ε

+ 1
ε
ln

1
δ

)

such that a random sample from D of size greater than or equal to m suf!ces to obtain
the required ε-net with probability at least 1 − δ. (Hint: Use Lemma 14.3 with x =
O( 1

ε
) and y = 2m

d .)

Exercise 14.12: (a) Improve the result in Eqn. (14.1) by showing that the VC dimen-
sion of the frequent-itemsets range space is bounded by the maximum number q such
that the data set has q different transactions all of size at least q.

(b) Show how to compute an upper bound on the number q de!ned in (a) in one pass
over the data.

Exercise 14.13: Prove Theorem 14.11 using the following hints. Let (X,R) be a range
space with VC dimension d. Let Y = {y1, . . . , yd} ⊆ X be a set of d elements that is
shattered by R. De!ne a probability distribution D on R as follows: Pr(y1) = 1 − 16ε,
Pr(y2) = Pr(y3) = · · · = Pr(yd ) = 16ε/(d − 1), and all other elements have probabil-
ity 0. Consider a sample of sizem = (d − 1)/(64ε). Show that with probability at least
1/2 the sample does not include at least half of the elements in {y2, . . . , yd}. Conclude
that with probability δ ≥ 1/2 the output classi!cation has error at least ε.

Exercise 14.14: Given a set of functions F and constants a, b ∈ R, consider the set
of functions

Fa,b = {a f + b | f ∈ F}.
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Let Rm() and R̃m() denote the Rademacher complexity and the empirical Rademacher
complexity, respectively. Prove that

(a) R̃m(Fa,b, S) = |a|R̃m(F, S),
(b) Rm(Fa,b) = |a|Rm(F ).

Exercise 14.15: We apply Theorem 14.21 to compute a bound on the sample com-
plexity of agnostic learning a binary classi!cation. Assume a concept class with VC
dimension d and a sample size m.

(a) Find a sample size m1 such that the Empirical Rademacher Average of the corre-
sponding set of functions is at most ε/4.

(b) Use Theorem 14.21 to !nd a sample sizem such that with probability at least 1 − δ

the expectation of all the functions are estimated within error ε.
(c) Compare your bound to the result obtained in Section 14.5.1.
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