
Markov Decision Process Notes (Math 562)  
notes taken from Aritificial Intelligence, Chapter 16/ Chapter 17, Making complex decisions, Russell and Norvig

https://en.wikipedia.org/wiki/Artificial_Intelligence:_A_Modern_Approach

http://aima.cs.berkeley.edu/

 

Example Evironment  

Evironment  

Suppose that an agent is situated in the  environment shown in Figure 17

Beginning in the start state, it must choose an action at each time step. 

The interaction with the environment terminates when the agent reaches one of the goal states, marked 
+1 or -1

the actions available to the agent in each state are given by Actions , sometimes abbreviated to  

We assume for now that the environment is fully observable, so that the agent always knows where it is.

Actions  

the actions in every state are    Up, Down, Left, and Right. 
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If the environment were deterministic, a solution would be easy

 , Right, Right, Right]$

Unfortunately, the environment won't always go along with this solution, because the actions are unreliable. 
The particular model of stochastic motion that we adopt is illustrated in Figure 17.1(b).

Each action achieves 

the intended effect with probability 0.8 , 

but the rest of the time, the action moves the agent at right angles to the intended direction.

Furthermore, if the agent bumps into a wall, it stays in the same square. 

Example  

For example, from the start square , the action  moves the agent to  with probability 0.8 , but 
with probability 0.1 , it moves right to , and with probability 0.1 , it moves left, bumps into the wall, and 
stays in . In such an environment, the sequence [ ,Right,Right,Right  goes up around the barrier 
and reaches the goal state at  with probability . There is also a small chance of 
accidentally reaching the goal by going the other way around with probability , for a grand total of 

0.32776 .
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0.32776 .

Transition Model  

The transition model (or just "model," when the meaning is clear) describes the outcome of each action in 
each state. Here, the outcome is stochastic, 

so we write  for the probability of reaching state  if action  is done in state . (Some authors 
write  for the transition model.) We will assume that transitions are Markovian: the probability 
of reaching  from  depends only on  and not on the history of earlier states.

 

utility function for the agent.  

To complete the definition of the task environment, we must specify the utility function for the agent. Because 
the decision problem is sequential, the utility function will depend on a sequence of states and actions-an 
environment history-rather than on a single state.

For now, we simply stipulate:

 that for every transition from  to  via action , the agent receives a reward . The rewards 
may be positive or negative, but they are bounded by 

For our particular example, 

the reward is -0.04 for all transitions except those entering terminal states (which have rewards +1 and -1 
). 

The utility of an environment history is just (for now) the sum of the rewards received. 

For example, if the agent reaches the +1 state after 10 steps, its total utility will be 
. The negative reward of -0.04 gives the agent an incentive to reach  quickly 

Another way of saying this is that the agent does not enjoy living in this environment and so it wants to 
leave as soon as possible.

Definition of  Markov decision process, or MDP,  

To sum up: a sequential decision problem for a fully observable, stochastic environment with a Markovian 
transition model and additive rewards is called a Markov decision process, or MDP, and consists of

a set of states (with an initial state  ); 

a set ACTIONS(s) of actions in each state; 

a transition model ; and 

a reward function . 

Methods for solving MDPs usually involve dynamic programming: simplifying a problem by recursively 
breaking it into smaller pieces and remembering the optimal solutions to the pieces.

Solution of an MDP  
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Solution of an MDP  

No fixed action sequence can solve the problem, because the agent might end up in a state other than the 
goal. 

Therefore, a solution must specify what the agent should do for any state that the agent might reach. A 
solution of this kind is called a policy. 

It is traditional to denote a policy by , and  is the action recommended by the policy  for state . 

No matter what the outcome of the action, the resulting state will be in the policy, and the agent will know what 
to do next.

definition of a policy:

Function 

definition of expected utility of a policy:

Each time a given policy is executed starting from the initial state, the stochastic nature of the environment may 
lead to a different environment history. 

The quality of a policy is therefore measured by the expected utility of the possible environment histories 
generated by that policy. 

definition of optimal policy:

An optimal policy is a policy that yields the highest expected utility.  (May not be unique)

We use  to denote an optimal policy. Given , the agent decides what to do by consulting its current 
percept, which tells it the current state , and then executing the action . A policy represents the agent 
function explicitly and is therefore a description of a simple reflex agent, computed from the information used 
for a utility-based agent.

The optimal policies for the world of Figure 17.1 are shown in Figure 17.2(a). There are two policies because the 
agent is exactly indifferent between going left and going up from  : going left is safer but longer, while 
going up is quicker but risks falling into  by accident. In general there will often be multiple optimal 
policies.
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The balance of risk and reward changes depending on the value of  for transitions between 
nonterminal states. 

The policies shown in Figure 17.2(a) are optimal for . 

Figure 17.2(b) shows optimal policies for four other ranges of  . When , life is so painful that 
the agent heads straight for the nearest exit, even if the exit is worth -1 . 

When , life is quite unpleasant; the agent takes the shortest route to the +1 
state from , and , but from  the cost of reaching +1 is so high that the agent 
prefers to dive straight into -1 . 

When life is only slightly dreary , the optimal policy takes no risks at all. In  and 
, the agent heads directly away from the -1 state so that it cannot fall in by accident, even though this 

means banging its head against the wall quite a few times. 

Finally, if , then life is positively enjoyable and the agent avoids both exits. As long as the actions in 
, , and  are as shown, every policy is optimal, and the agent obtains infinite total reward 

because it never enters a terminal state. It turns out that there are nine optimal policies in all for various 
ranges of ; 

discussion of MDP  
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discussion of MDP  

The introduction of uncertainty brings MDPs closer to the real world than deterministic search problems. For 
this reason, MDPs have been studied in several fields,

including AI, 

operations research, 

economics, and

control theory. 

Dozens of solution algorithms have been proposed.

 First, however, we spell out in more detail the definitions of utilities, optimal policies, and models for MDPs.

Utilities over time  

In the MDP example in Figure 17.1 the performance of the agent was measured by a sum of rewards for the 
transitions experienced. This choice of performance measure is not arbitrary, but it is not the only possibility for 
the utility function on environment histories, which we write as 

.

The first question to answer is whether there is a

 finite horizon or 

an infinite horizon 

for decision making. A finite horizon means that there is a fixed time  after which nothing matters-the game 
is over, so to speak. Thus,

 

Finite horizon, if running out of time, may take a different policy (End game)

so 

(Could make the time part of the state, but this obscures the special nature of time (which only goes 
forward)

Infinite horizon, no reason to behave differently in the same state (at different times)

so 

This means the optimal policy is stationary

Thus policies for infinite horizon case are simpler.  So we deal with infinite horizon case.

This does not necessarity mean that all state sequences are infinitte, just that there is no fixed 
deadline.   So can still have terminal states.

Example Tennis Set: Play until first player wins 6 games, but must win by two.

How to calculate the utility of state sequences.  
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How to calculate the utility of state sequences.  

Additive discounted rewards:

 

For a discount factor 

When  near 0, rewards in distant future are viewed as insignificant

When  near 1, agent is more willing to wait for long-term rewards

When  , the discounted case becomes the special case of purely additive rewards.  (However, can 
have an infinite reward if no termination!)

Reasons for additive rewards:

1. Empirical: humans and animal prefer near term rewards.

2. Economic: money is discounted, because can invest.  Equivalent interest rate:   E.g. .9 becomes 11 
percent. 

3. Uncertainty about the true rewards: they may not arrive.   Under certain conditions,  equivalent to a 
probabilty  of accidental termination (so no rewards)

4. Fourth: in utility theory, idea of stationary preferences leads to additive discounted rewards.

5. Fifth: Mathematical, to avoid infinite rewards. 

Consequences/Analysis of Additive discounted rewards  

finite rewards  

If environment history is infinite, but rewards bounded by 

 

proper policites: finite histories  

If the environment contains terminal states and if the agent is guaranteed to get to one eventually, then we will 
never need to compare infinite sequences. A policy that is guaranteed to reach a terminal state is called a 
proper policy. 

With proper policies, we can use  (i.e., additive undiscounted rewards). The first three policies shown in 
Figure 17.2(b) are proper, but the fourth is improper. It gains infinite total reward by staying away from the 
terminal states when the reward for transitions between nonterminal states is positive.

The existence of improper policies can cause the standard algorithms for solving MDPs to fail with additive 
rewards, and so provides a good reason for using discounted rewards.

average rewards (nice but problematic)  
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average rewards (nice but problematic)  

Infinite sequences can be compared in terms of the average reward obtained per time step. Suppose that 
transitions to square  in the  world have a reward of 0.1 while transitions to other nonterminal 
states have a reward of 0.01 . Then a policy that does its best to stay in  will have higher average reward 
than one that stays elsewhere. Average reward is a useful criterion for some problems, but the analysis of 
average-reward algorithms is complex.

Additive discounted rewards present the fewest difficulties in evaluating histories, so we shall use them 
henceforth.

 

Why expected Utilities?  
Because of uncertainty there is no best policy!

Example,  

fair coin toss, with reward  for heads, and reward of  for tails,

The policy woth best expected rewards is is , to bet heads.

Then for one toss, expected reward is  

 

 

Over many tosses, discounted future rewards is :

 

Which is finite. 

 

Optimal policies and the utilities of states  
Having decided that the utility of a given history is the sum of discounted rewards, we can

  compare policies by comparing the expected utilities obtained when executing them. 

We assume the agent is in some initial state  and 

define random state varaible  
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define random state varaible  

define  (a random variable) to be the state the agent reaches at time  when executing a particular policy . 
(Obviously, , the state the agent is in now.) 

 

The probability distribution over state sequences , is determined by

the initial state ,

 the policy , and 

the transition model for the environment. 

 

The expected utility obtained by executing  starting in  is given by 

 

where the expectation  is with respect to the probability distribution over state sequences determined by  
and . 

Now, out of all the policies the agent could choose to execute starting in , one (or more) will have higher 
expected utilities than all the others. We  use  to denote one of these policies:

 

Remember that  is a policy, 

so it recommends an action for every state

 its connection with  in particular is that it's an optimal policy when  is the starting state. 

Theorem

A remarkable consequence of using discounted utilities with infinite horizons is that the optimal policy is 
independent of the starting state. 

(Of course, the action sequence won't be independent; remember that a policy is a function specifying an action 
for each state.)

Intuition:

This fact seems intuitively obvious: if policy  is optimal starting in  and policy  is optimal starting in , then, 
when they reach a third state , there's no good reason for them to disagree with each other, or with , about 
what to do next. So we can simply write  for an optimal policy.

The proof follows directly from the uniqueness of the utility function on states, below.

Utility of a state

af://n445
uaf://mathjax-n435
uaf://mathjax-n437


Utility of a state

Given this definition, the true utility of a state is just -that is, the expected sum of discounted rewards if 
the agent executes an optimal policy. We write this as ,

 

(For any fixed choice of optimal policy)

 

Figure 17.3 shows the utilities for the  world. Notice that the utilities are higher for states closer to the +1 
exit, because fewer steps are required to reach the exit.

 

The utility function  allows the agent to select actions by using 

the principle of maximum expected utility.

 choose the action that maximizes the reward for the next step plus the expected discounted utility of the 
subsequent state:

 

We have defined the utility of a state, , as the expected sum of discounted rewards from that point 
onwards. 

From this, it follows that there is a direct relationship between the utility of a state and the utility of its 
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From this, it follows that there is a direct relationship between the utility of a state and the utility of its 
neighbors: 

the utility of a state is the expected reward for the next transition plus the discounted utility of the next 
state, assuming that the agent chooses the optimal action. That is, the utility of a state is given by

 

This is called the Bellman equation, after Richard Bellman (1957). 

The utilities of the states defined as the expected utility of subsequent state sequences-are solutions of the set 
of Bellman equations. In fact, they are the unique solutions, 

Policy from Utility  

Given the utility function, can find the (an) optimal policy  as any element of the  in the 
preceding equation

 

Bellman equation Example  

Let us look at one of the Bellman equations for the  world. The expression for  is

 

where the four expressions correspond to Up, Left, Down and Right moves. When we plug in the numbers from 
Figure 17.3 , with , we find that  is the best action.

Action Utility Function  

Another important quantity is the action-utility function, or Q-function: 

 is the expected utility of taking a given action in a given state. The -function is related to utilities 
in the obvious way:

 

Furthermore, the optimal policy can be extracted from the Q-function as follows:

 

We can also develop a Bellman equation for Q-functions, noting that the expected total reward for taking an 
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We can also develop a Bellman equation for Q-functions, noting that the expected total reward for taking an 
action is its immediate reward plus the discounted utility of the outcome state, which in turn can be expressed 
in terms of the -function:
(17.8)

 

Solving the Bellman equations for  (or for  ) gives us what we need to find an optimal policy. The Q-function 
shows up again and again in algorithms for solving MDPs, so we shall use the following definition:

 

Reward scales  

  an affine transformation  transformation of rewards will leave the optimal policy unchanged in an MDP:

 

Optimal policies unchanged.

It turns out, however, that the additive reward decomposition of utilities leads to significantly more freedom in 
defining rewards. Let  be any function of the state . Then, according to the shaping theorem, the 
following transformation leaves the optimal policy unchanged:
(17.9)

 

Shaping theorem

To show that this is true, we need to prove that two MDPs,  and , have identical optimal policies as long as 
they differ only in their reward functions as specified above. 

[skip proof]
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