
Markov Decision Process Notes Part 2  
 (Math 562)  
Reference Artificial Intelligence, Chapter 16/ Chapter 17, Making complex decisions, Russell and Norvig

https://en.wikipedia.org/wiki/Artificial_Intelligence:_A_Modern_Approach

http://aima.cs.berkeley.edu/

Review of Last Class  
Definition of  Markov decision process, or MDP,  

To sum up: a sequential decision problem for a fully observable, stochastic environment with a Markovian 
transition model and additive rewards is called a Markov decision process, or MDP, and consists of

a set of states (with an initial state  ); 

a set ACTIONS(s) of actions in each state; 

a transition model ; and 

a reward function . 

Methods for solving MDPs usually involve dynamic programming: simplifying a problem by recursively 
breaking it into smaller pieces and remembering the optimal solutions to the pieces.

definition of a policy:

Function 

definition of expected utility of a policy:

Each time a given policy is executed starting from the initial state, the stochastic nature of the 
environment may lead to a different environment history. 

The quality of a policy is therefore measured by the expected utility of the possible environment 
histories generated by that policy. 

definition of optimal policy:

An optimal policy is a policy that yields the highest expected utility.  (May not be unique)

We use  to denote an optimal policy. 
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How to calculate the utility of state sequences.  

Additive discounted rewards:

 

For a discount factor 

Consequences/Analysis of Additive discounted rewards  

finite rewards  

If environment history is infinite, but rewards bounded by 

 

 

Optimal policies and the utilities of states  
Utility of a state

Given this definition, the true utility of a state is just -that is, the expected sum of discounted 
rewards if the agent executes an optimal policy. We write this as ,

 

(For any fixed choice of optimal policy)

 

The utility function  allows the agent to select actions by using 

the principle of maximum expected utility.

 choose the action that maximizes the reward for the next step plus the expected discounted utility of the 
subsequent state:

 

We have defined the utility of a state, , as the expected sum of discounted rewards from that point 
onwards. 

From this, it follows that there is a direct relationship between the utility of a state and the utility of its 
neighbors: 
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the utility of a state is the expected reward for the next transition plus the discounted utility of the 
next state, assuming that the agent chooses the optimal action. That is, the utility of a state is given 
by

 

This is called the Bellman equation, after Richard Bellman (1957). 

Policy from Utility  

Given the utility function, can find the (an) optimal policy  as any element of the  in the 
preceding equation

Action Utility Function  

Another important quantity is the action-utility function, or Q-function: 

 is the expected utility of taking a given action in a given state. The -function is related to 
utilities in the obvious way:

 

Furthermore, the optimal policy can be extracted from the Q-function as follows:

 

We can also develop a Bellman equation for Q-functions, noting that the expected total reward for taking 
an action is its immediate reward plus the discounted utility of the outcome state, which in turn can be 
expressed in terms of the -function:
(17.8)

 

Solving the Bellman equations for  (or for  ) gives us what we need to find an optimal policy. The Q-
function shows up again and again in algorithms for solving MDPs, so we shall use the following definition:
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Reward scales  

  an affine transformation  transformation of rewards will leave the optimal policy unchanged in an MDP:

 

Optimal policies unchanged.

It turns out, however, that the additive reward decomposition of utilities leads to significantly more 
freedom in defining rewards. Let  be any function of the state . Then, according to the shaping 
theorem, the following transformation leaves the optimal policy unchanged:
(17.9)

 

Shaping theorem

To show that this is true, we need to prove that two MDPs,  and , have identical optimal policies as 
long as they differ only in their reward functions as specified above. 

[Proof by showing the bellman equation is invariant under transformation  ]

Algorithms for MDPs  
Value Iteration

Policy Iteration

Policy Valuation  

For a fixed (non-optimal) Policy , we can measure the corresponding state value function

  = Expected discounted rewards starting from state 

 

Satisfies Linear Equation

 

 

 

Linear equation with one equation for each state .   (Need to know the transition prob and rewards)     
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Define the bellman operator

 

 

 

So, can also write

 

Value iteration comes from iterating the Bellman Operator

 

Corresponds to choosing the best policy at each  according to the current value estimate 

 Convergence of Value Iteration  

Value iteration eventually converges to a unique set of solutions of the Bellman equations. 

we obtain some methods for assessing the error in the utility function returned when the algorithm 
is terminated early; this is useful because it means that we don't have to run forever. 

A contraction has only one fixed point; if there were two fixed points they would not get closer 
together when the function was applied, so it would not be a contraction.

When the function is applied to any argument, the value must get closer to the fixed point (because 
the fixed point does not move), so repeated application of a contraction always reaches the fixed 
point in the limit.

 

Next, we need a way to measure distances between utility vectors. We will use the max norm, which 
measures the length of a vector by the absolute value of its biggest component:

 

With this definition, the "distance" between two vectors, , is the maximum difference between 
any two corresponding elements. The main result of this section is the following: Let  and  be any 
two utility vectors. Then we have
(17.11)
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That is, the Bellman update is a contraction by a factor of  on the space of utility vectors. Hence, from the 
properties of contractions in general, it follows that value iteration always converges to a unique solution 
of the Bellman equations whenever .

We can also use the contraction property to analyze the rate of convergence to a solution. In particular, we 
can replace  in  Bellman equation,  with the true utilities , for which . Then we obtain the 
inequality

 

If we view  as the error in the estimate , we see that the error is reduced by a factor of at least 
 on each iteration. Thus, value iteration converges exponentially fast. 

We can calculate the number of iterations required as follows: 

First, recall from Equation (17.1)! that the utilities of all states are bounded by . 

This means that the maximum initial error . 

Suppose we run for  iterations to reach an error of at most . Then, because the error is reduced by 
at least  each time, we require . Taking logs, we find that

 

iterations suffice. 

 From Update Error to convergence error  

if  then .

Proof: Handwritten notes

What about the error in the policy?  
So far, we have analyzed the error in the utility function returned by the value iteration algorithm. What 
the agent really cares about, however, is how well it will do if it makes its decisions on the basis of this 
utility function. 

Suppose that after  iterations of value iteration, the agent has an estimate  of the true utility  
and obtains the maximum expected utility (MEU) policy  based on one-step look-ahead using  

 

Will the resulting behavior be nearly as good as the optimal behavior? This is a crucial question for 
any real agent, and it turns out that the answer is yes.
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  is the utility obtained if  is executed starting in , and the policy loss  is the 
most the agent can lose by executing  instead of the optimal policy . The policy loss of  is 
connected to the error in  by the following inequality:

 

if  then .

 

 Policy Iteration  
 The policy iteration algorithm alternates the following two steps, beginning from some initial policy  :

POLICY EVALUATION: given a policy , calculate , the utility of each state if  were to be 
executed.

POLICY IMPROVEMENT: Calculate a new MEU policy , using one-step look-ahead based on  

The algorithm terminates when the policy improvement step yields no change in the utilities.

at this point,  is a fixed point of the Belllman equation, so  must be optimal.

 

How do we implement POLICY-EVALUATION? It turns out that doing so is simpler than solving the 
standard Bellman equations (which is what value iteration does), because the action in each state is fixed 
by the policy. At the  th iteration, the policy  specifies the action  in state . This means that we 
have a simplified version of the Bellman equation relating the utility of  (under  ) to the utilities of its 
neighbors:

 

or

 

Can solve this linear equation (when state space is small)

Can approximately solve this linear equation by iterating a few times.
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