
Markov Decision Process Notes Part 2
 (Math 562)
Reference Artificial Intelligence, Chapter 16/ Chapter 17, Making complex decisions, Russell and Norvig

https://en.wikipedia.org/wiki/Artificial_Intelligence:_A_Modern_Approach

http://aima.cs.berkeley.edu/

Review of Last Class
Definition of Markov decision process, or MDP,

To sum up: a sequential decision problem for a fully observable, stochastic environment with a Markovian
transition model and additive rewards is called a Markov decision process, or MDP, and consists of

a set of states (with an initial state);

a set ACTIONS(s) of actions in each state;

a transition model ; and

a reward function .

Methods for solving MDPs usually involve dynamic programming: simplifying a problem by recursively
breaking it into smaller pieces and remembering the optimal solutions to the pieces.

definition of a policy:

Function

definition of expected utility of a policy:

Each time a given policy is executed starting from the initial state, the stochastic nature of the
environment may lead to a different environment history.

The quality of a policy is therefore measured by the expected utility of the possible environment
histories generated by that policy.

definition of optimal policy:

An optimal policy is a policy that yields the highest expected utility. (May not be unique)

We use to denote an optimal policy.

af://n0
af://n276
https://en.wikipedia.org/wiki/Artificial_Intelligence:_A_Modern_Approach
http://aima.cs.berkeley.edu/
af://n56
af://n295

How to calculate the utility of state sequences.

Additive discounted rewards:

For a discount factor

Consequences/Analysis of Additive discounted rewards

finite rewards

If environment history is infinite, but rewards bounded by

Optimal policies and the utilities of states
Utility of a state

Given this definition, the true utility of a state is just -that is, the expected sum of discounted
rewards if the agent executes an optimal policy. We write this as ,

(For any fixed choice of optimal policy)

The utility function allows the agent to select actions by using

the principle of maximum expected utility.

 choose the action that maximizes the reward for the next step plus the expected discounted utility of the
subsequent state:

We have defined the utility of a state, , as the expected sum of discounted rewards from that point
onwards.

From this, it follows that there is a direct relationship between the utility of a state and the utility of its
neighbors:

af://n143
uaf://mathjax-n145
af://n166
af://n167
uaf://mathjax-n169
af://n189
uaf://mathjax-n224
uaf://mathjax-n234

the utility of a state is the expected reward for the next transition plus the discounted utility of the
next state, assuming that the agent chooses the optimal action. That is, the utility of a state is given
by

This is called the Bellman equation, after Richard Bellman (1957).

Policy from Utility

Given the utility function, can find the (an) optimal policy as any element of the in the
preceding equation

Action Utility Function

Another important quantity is the action-utility function, or Q-function:

 is the expected utility of taking a given action in a given state. The -function is related to
utilities in the obvious way:

Furthermore, the optimal policy can be extracted from the Q-function as follows:

We can also develop a Bellman equation for Q-functions, noting that the expected total reward for taking
an action is its immediate reward plus the discounted utility of the outcome state, which in turn can be
expressed in terms of the -function:
(17.8)

Solving the Bellman equations for (or for) gives us what we need to find an optimal policy. The Q-
function shows up again and again in algorithms for solving MDPs, so we shall use the following definition:

uaf://mathjax-n240
af://n243
af://n252
uaf://mathjax-n257
uaf://mathjax-n259
uaf://mathjax-n261
uaf://mathjax-n263

Reward scales

 an affine transformation transformation of rewards will leave the optimal policy unchanged in an MDP:

Optimal policies unchanged.

It turns out, however, that the additive reward decomposition of utilities leads to significantly more
freedom in defining rewards. Let be any function of the state . Then, according to the shaping
theorem, the following transformation leaves the optimal policy unchanged:
(17.9)

Shaping theorem

To show that this is true, we need to prove that two MDPs, and , have identical optimal policies as
long as they differ only in their reward functions as specified above.

[Proof by showing the bellman equation is invariant under transformation]

Algorithms for MDPs
Value Iteration

Policy Iteration

Policy Valuation

For a fixed (non-optimal) Policy , we can measure the corresponding state value function

 = Expected discounted rewards starting from state

Satisfies Linear Equation

Linear equation with one equation for each state . (Need to know the transition prob and rewards)

af://n264
uaf://mathjax-n266
uaf://mathjax-n271
af://n293
af://n303
uaf://mathjax-n312
uaf://mathjax-n328
uaf://mathjax-n330

Define the bellman operator

So, can also write

Value iteration comes from iterating the Bellman Operator

Corresponds to choosing the best policy at each according to the current value estimate

 Convergence of Value Iteration

Value iteration eventually converges to a unique set of solutions of the Bellman equations.

we obtain some methods for assessing the error in the utility function returned when the algorithm
is terminated early; this is useful because it means that we don't have to run forever.

A contraction has only one fixed point; if there were two fixed points they would not get closer
together when the function was applied, so it would not be a contraction.

When the function is applied to any argument, the value must get closer to the fixed point (because
the fixed point does not move), so repeated application of a contraction always reaches the fixed
point in the limit.

Next, we need a way to measure distances between utility vectors. We will use the max norm, which
measures the length of a vector by the absolute value of its biggest component:

With this definition, the "distance" between two vectors, , is the maximum difference between
any two corresponding elements. The main result of this section is the following: Let and be any
two utility vectors. Then we have
(17.11)

uaf://mathjax-n375
uaf://mathjax-n376
uaf://mathjax-n341
uaf://mathjax-n391
uaf://mathjax-n343
af://n355
uaf://mathjax-n424
uaf://mathjax-n426

That is, the Bellman update is a contraction by a factor of on the space of utility vectors. Hence, from the
properties of contractions in general, it follows that value iteration always converges to a unique solution
of the Bellman equations whenever .

We can also use the contraction property to analyze the rate of convergence to a solution. In particular, we
can replace in Bellman equation, with the true utilities , for which . Then we obtain the
inequality

If we view as the error in the estimate , we see that the error is reduced by a factor of at least
 on each iteration. Thus, value iteration converges exponentially fast.

We can calculate the number of iterations required as follows:

First, recall from Equation (17.1)! that the utilities of all states are bounded by .

This means that the maximum initial error .

Suppose we run for iterations to reach an error of at most . Then, because the error is reduced by
at least each time, we require . Taking logs, we find that

iterations suffice.

 From Update Error to convergence error

if then .

Proof: Handwritten notes

What about the error in the policy?
So far, we have analyzed the error in the utility function returned by the value iteration algorithm. What
the agent really cares about, however, is how well it will do if it makes its decisions on the basis of this
utility function.

Suppose that after iterations of value iteration, the agent has an estimate of the true utility
and obtains the maximum expected utility (MEU) policy based on one-step look-ahead using

Will the resulting behavior be nearly as good as the optimal behavior? This is a crucial question for
any real agent, and it turns out that the answer is yes.

uaf://mathjax-n429
uaf://mathjax-n431
af://n447
af://n456
uaf://mathjax-n500

 is the utility obtained if is executed starting in , and the policy loss is the
most the agent can lose by executing instead of the optimal policy . The policy loss of is
connected to the error in by the following inequality:

if then .

 Policy Iteration
 The policy iteration algorithm alternates the following two steps, beginning from some initial policy :

POLICY EVALUATION: given a policy , calculate , the utility of each state if were to be
executed.

POLICY IMPROVEMENT: Calculate a new MEU policy , using one-step look-ahead based on

The algorithm terminates when the policy improvement step yields no change in the utilities.

at this point, is a fixed point of the Belllman equation, so must be optimal.

How do we implement POLICY-EVALUATION? It turns out that doing so is simpler than solving the
standard Bellman equations (which is what value iteration does), because the action in each state is fixed
by the policy. At the th iteration, the policy specifies the action in state . This means that we
have a simplified version of the Bellman equation relating the utility of (under) to the utilities of its
neighbors:

or

Can solve this linear equation (when state space is small)

Can approximately solve this linear equation by iterating a few times.

af://n308
uaf://mathjax-n528
uaf://mathjax-n530

