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1. Rademacher Complexity

This section adapted from [MRT18, Section 3.1]

1.1. Setup.

Definition 1.1 (Empirical Rademacher complexity). Let G be a family of functions mapping from
z to [a, b] and S = (z1, . . . , zm) a fixed sample of size m with elements in 2. Then, the empirical
Rademacher complexity of G with respect to the sample S is defined as:

!ℜS(G) = E
σ

"
sup
g∈G

1

m

m#

i=1

σig (zi)

$
,

where σ = (σ1, . . . , σm)
⊤, with σis independent uniform random variables taking values in

{−1,+1}.3 The random variables σi are called Rademacher variables.

Definition 1.2 (Rademacher complexity). Let D denote the distribution according to which
samples are drawn. For any integer m ≥ 1, the Rademacher complexity of G is the expectation
of the empirical Rademacher complexity over all samples of size m drawn according to D :

Rm(G) = E
S∼Dm

%
!RS(G)

&

Definition 1.3. For any sample S = (z1, . . . , zm) and any g ∈ G, we denote by !ES[g] the
empirical average of g over S

!ES[g] =
1

m

m#

i=1

g (zi)

Lemma 1.4. The function H(S) = !ℜS(G) satisfies the bounded differences inequality,

(1) |H(S)−H (S ′)| ≤ b− a

m

Proof. By definition, changing one point in S changes !ℜS(G) by at most (b− a)/m □
Definition 1.5. Given any m ≥ 1 and any dataset S = Sm ⊂ Xm define the function

(2) Φ(S) = Φ(S,D) = sup
g∈G

'
E[g]− !ES[g]

(

which is the worst generalization gap over for functions over the dataset S

Lemma 1.6 (Difference of sup). Let f, g : X → R be bounded. For any I ⊂ X .

(3) sup
x∈I

f(x)− sup
x∈I

g(x) ≤ sup
x∈I

{f(x)− g(x)}
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Proof. Let g∗ = supx∈I g(x). Then

sup
x∈I

f(x)− sup
x∈I

g(x) = sup
x∈I

f(x)− g∗

≤ sup
x∈I

{f(x)− g(x)} by definition of the supremum

□
Lemma 1.7. The function Φ defined by (2) satisfies the bounded differences inequality,

(4) |Φ(S)− Φ (S ′)| ≤ b− a

m

Proof. Let S and S ′ be two samples differing by exactly one point, say zm in S and z′m in S ′.
Then, since the difference of suprema does not exceed the supremum of the difference, we have

Φ (S ′)− Φ(S) ≤ sup
g∈G

'
!ES[g]− !ES′ [g]

(
by (3)

= sup
g∈G

g (zm)− g (z′m)

m
since S, S ′ differ at one point

≤ b− a

m
since g(z) ∈ [a, b]

Similarly, we can obtain Φ(S)− Φ (S ′) ≤ (b− a)/m, thus (4) holds. □
1.2. Expectation of Phi.

Theorem 1.8. The function Φ defined by (2) satisfies

E
S
[Φ(S)] ≤ 2Rm(G)

Proof.

E
S
[Φ(S)] = E

S

)
sup
g∈G

'
E[g]− !ES(g)

(*
by definition

= E
S

)
sup
g∈G

E
S′

%
!ES′(g)− !ES(g)

&*
points in S ′ sampled i.i.d. thus E[g] = ES′

%
!ES′(g)

&

≤ E
S,S′

)
sup
g∈G

'
!ES′(g)− !ES(g)

(*
sub-additivity of sup

= E
S,S′

"
sup
g∈S

1

m

m#

i=1

(g (z′i)− g (zi))

$
by definition

= E
σ,S,S′

"
sup
g∈G

1

m

m#

i=1

σi (g (z
′
i)− g (zi))

$

For the last equation, we introduce Rademacher variables σi, which are uniformly distributed
independent random variables taking values in {−1,+1}. This does not change the expectation
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appearing in (3.10): when σi = 1, the associated summand remains unchanged; when σi = −1,
the associated summand flips signs, which is equivalent to swapping zi and z′i between S and
S ′. Since we are taking the expectation over all possible S and S ′, this swap does not affect the
overall expectation; we are simply changing the order of the summands within the expectation.

In the next inequality, we will use the sub-additivity of the supremum function

(5) sup(U + V ) ≤ sup(U) + sup(V )

Continue from the last equation above,

≤ E
σ,S′

"
sup
g∈G

1

m

m#

i=1

σig (z
′
i)

$
+ E

σ,S

"
sup
g∈G

1

m

m#

i=1

−σig (zi)

$
by (5)

= 2E
σ,S

"
sup
g∈G

1

m

m#

i=1

σig (zi)

$

= 2Rm(G) by defn

stems from the definition of Rademacher complexity and the fact that the variables σi and −σi

are distributed in the same way. □
1.3. Putting it together.

Theorem 1.9. Let G be a family of functions mapping from Z to [0, 1]. Then, for any δ > 0,
with probability at least 1− δ over the draw of an i.i.d. sample S of size m, each of the following
holds for all g ∈ G :

E[g(z)] ≤ 1

m

m#

i=1

g (zi) + 2ℜm(G) +

+
log 1

δ

2m
(6)

E[g(z)] ≤ 1

m

m#

i=1

g (zi) + 2!ℜS(G) + 3

+
log 2

δ

2m
.(7)

Proof. Using (2), we first established the bounded differences inequality for Φ, (4). This allows
us to apply McDiarmid’s inequality. For any δ > 0,

Φ(S) ≤ E
S
[Φ(S)] +

+
log 2

δ

2m
, with probability at least 1− δ/2

using δ instead of δ/2.
Using the Theorem 1.8, and the definition (2), this becomes

sup
g∈G

'
E[g]− !ES[g]

(
≤ 2Rm(G) +

+
log 2

δ

2m
, with probability at least 1− δ/2

since, this holds for any g ∈ G, we obtain (6).

To derive a bound in terms of the empirical Rademacher complexity, !ℜS(G), We use (1) from
Lemma 1.4. This allows us to use McDiarmid’s inequality. Thus,

ℜm(G) ≤ !ℜS(G) +

+
log 2

δ

2m
with probability 1− δ/2



4 ADAM M. OBERMAN

Finally, we use the union bound to combine two inequalities above, which yields with probability
at least 1− δ :

Φ(S) ≤ 2!ℜS(G) + 3

+
log 2

δ

2m
,

which matches (7). □

2. Rademacher Complexity for Linear Hypotheses

Definition 2.1. Define Br = {x ∈ Rd | ‖x‖ ≤ r}. Let S = {x1, . . . xm} ⊂ Br Consider the
linear functions, h(w, x) = w · x and define

HΛ = {h(x, w) = w · x | x ∈ X,w ∈ BΛ}.

Theorem 2.2 (Theorem 5.10 of Mohri). The empirical Rademacher complexity of HΛ is bounded
as follows,

!RS(HΛ) ≤
rΛ√
m

Proof. The proof follows through a series of inequalities:

!ℜS(H) =
1

m
E
σ

"
sup

‖w‖≤Λ

m#

i=1

σiw · xi)

$
by defn

=
1

m
E
σ

"
sup

‖w‖≤Λ

w ·
m#

i=1

σixi

$
since h is linear

≤ Λ

m
E
σ

",,,,,

m#

i=1

σixi

,,,,,

$
Cauchy-Schwarz and ‖w‖ ≤ Λ

≤ Λ

m

-

.E
σ

-

.
,,,,,

m#

i=1

σixi

,,,,,

2
/

0

/

0

1
2

Jensen’s inequality

=
Λ

m

"
E
σ

"
m#

i,j=1

σiσj (xi · xj)

$$ 1
2

≤ Λ

m

"
m#

i=1

‖xi‖2
$ 1

2

E [σiσj] = E [σi]E [σj] = 0 for i ∕= j

≤ Λ
√
mr2

m
‖xi‖ ≤ r

=
rΛ√
m

□
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