MATH/COMP 562 LECTURE NOTES RADEMACHER COMPLEXITY

ADAM M. OBERMAN

1. Rademacher Complexity

This section adapted from [MRT18, Section 3.1]

1.1. Setup.

Definition 1.1 (Empirical Rademacher complexity). Let \mathcal{G} be a family of functions mapping from z to $[a, b]$ and $S=\left(z_{1}, \ldots, z_{m}\right)$ a fixed sample of size m with elements in 2 . Then, the empirical Rademacher complexity of \mathcal{G} with respect to the sample S is defined as:

$$
\widehat{\Re}_{S}(\mathcal{G})=\underset{\boldsymbol{\sigma}}{\mathbb{E}}\left[\sup _{g \in \mathcal{G}} \frac{1}{m} \sum_{i=1}^{m} \sigma_{i} g\left(z_{i}\right)\right],
$$

where $\boldsymbol{\sigma}=\left(\sigma_{1}, \ldots, \sigma_{m}\right)^{\top}$, with $\sigma_{i} s$ independent uniform random variables taking values in $\{-1,+1\} .^{3}$ The random variables σ_{i} are called Rademacher variables.
Definition 1.2 (Rademacher complexity). Let \mathcal{D} denote the distribution according to which samples are drawn. For any integer $m \geq 1$, the Rademacher complexity of \mathcal{G} is the expectation of the empirical Rademacher complexity over all samples of size m drawn according to \mathcal{D} :

$$
\mathfrak{R}_{m}(\mathcal{G})=\underset{S \sim \mathcal{D}^{m}}{\mathbb{E}}\left[\widehat{\mathfrak{R}}_{S}(\mathcal{G})\right]
$$

Definition 1.3. For any sample $S=\left(z_{1}, \ldots, z_{m}\right)$ and any $g \in \mathcal{G}$, we denote by $\widehat{\mathbb{E}}_{S}[g]$ the empirical average of g over S

$$
\widehat{\mathbb{E}}_{S}[g]=\frac{1}{m} \sum_{i=1}^{m} g\left(z_{i}\right)
$$

Lemma 1.4. The function $H(S)=\widehat{\Re}_{S}(\mathcal{G})$ satisfies the bounded differences inequality,

$$
\begin{equation*}
\left|H(S)-H\left(S^{\prime}\right)\right| \leq \frac{b-a}{m} \tag{1}
\end{equation*}
$$

Proof. By definition, changing one point in S changes $\widehat{\Re}_{S}(\mathcal{G})$ by at most $(b-a) / m$
Definition 1.5. Given any $m \geq 1$ and any dataset $S=S^{m} \subset \mathcal{X}^{m}$ define the function

$$
\begin{equation*}
\Phi(S)=\Phi(S, \mathcal{D})=\sup _{g \in \mathcal{G}}\left(\mathbb{E}[g]-\widehat{\mathbb{E}}_{S}[g]\right) \tag{2}
\end{equation*}
$$

which is the worst generalization gap over for functions over the dataset S
Lemma 1.6 (Difference of sup). Let $f, g: \mathcal{X} \rightarrow \mathbb{R}$ be bounded. For any $I \subset \mathcal{X}$.

$$
\begin{equation*}
\sup _{x \in I} f(x)-\sup _{x \in I} g(x) \leq \sup _{x \in I}\{f(x)-g(x)\} \tag{3}
\end{equation*}
$$

Date: April 12, 2023.

Proof. Let $g^{*}=\sup _{x \in I} g(x)$. Then

$$
\begin{aligned}
\sup _{x \in I} f(x)-\sup _{x \in I} g(x) & =\sup _{x \in I} f(x)-g^{*} \\
& \leq \sup _{x \in I}\{f(x)-g(x)\} \quad \text { by definition of the supremum }
\end{aligned}
$$

Lemma 1.7. The function Φ defined by (2) satisfies the bounded differences inequality,

$$
\begin{equation*}
\left|\Phi(S)-\Phi\left(S^{\prime}\right)\right| \leq \frac{b-a}{m} \tag{4}
\end{equation*}
$$

Proof. Let S and S^{\prime} be two samples differing by exactly one point, say z_{m} in S and z_{m}^{\prime} in S^{\prime}. Then, since the difference of suprema does not exceed the supremum of the difference, we have

$$
\begin{aligned}
\Phi\left(S^{\prime}\right)-\Phi(S) & \leq \sup _{g \in \mathcal{G}}\left(\widehat{\mathbb{E}}_{S}[g]-\widehat{\mathbb{E}}_{S^{\prime}}[g]\right) & & \text { by }(3) \\
& =\sup _{g \in \mathcal{G}} \frac{g\left(z_{m}\right)-g\left(z_{m}^{\prime}\right)}{m} & & \text { since } S, S^{\prime} \text { differ at one point } \\
& \leq \frac{b-a}{m} & & \text { since } g(z) \in[a, b]
\end{aligned}
$$

Similarly, we can obtain $\Phi(S)-\Phi\left(S^{\prime}\right) \leq(b-a) / m$, thus (4) holds.

1.2. Expectation of Phi.

Theorem 1.8. The function Φ defined by (2) satisfies

$$
\underset{S}{\mathbb{E}}[\Phi(S)] \leq 2 \mathfrak{R}_{m}(\mathcal{G})
$$

Proof.

$$
\begin{array}{rlrl}
\underset{S}{\mathbb{E}}[\Phi(S)] & =\underset{S}{\mathbb{E}}\left[\sup _{g \in \mathcal{G}}\left(\mathbb{E}[g]-\widehat{\mathbb{E}}_{S}(g)\right)\right] & & \text { by definition } \\
& =\underset{S}{\mathbb{E}}\left[\sup _{g \in \mathcal{G}} \underset{S^{\prime}}{\mathbb{E}}\left[\widehat{\mathbb{E}}_{S^{\prime}}(g)-\widehat{\mathbb{E}}_{S}(g)\right]\right] & & \text { points in } S^{\prime} \text { sampled i.i.d. thus } \mathbb{E}[g]=\mathbb{E}_{S^{\prime}}\left[\widehat{\mathbb{E}}_{S^{\prime}}(g)\right] \\
& \leq \underset{S, S^{\prime}}{\mathbb{E}}\left[\sup _{g \in \mathcal{G}}\left(\widehat{\mathbb{E}}_{S^{\prime}}(g)-\widehat{\mathbb{E}}_{S}(g)\right)\right] & & \text { sub-additivity of sup } \\
& =\underset{S, S^{\prime}}{\mathbb{E}}\left[\sup _{g \in \mathcal{S}} \frac{1}{m} \sum_{i=1}^{m}\left(g\left(z_{i}^{\prime}\right)-g\left(z_{i}\right)\right)\right] & & \text { by definition } \\
& =\underset{\sigma, S, S^{\prime}}{\mathbb{E}}\left[\sup _{g \in \mathcal{G}} \frac{1}{m} \sum_{i=1}^{m} \sigma_{i}\left(g\left(z_{i}^{\prime}\right)-g\left(z_{i}\right)\right)\right] &
\end{array}
$$

For the last equation, we introduce Rademacher variables σ_{i}, which are uniformly distributed independent random variables taking values in $\{-1,+1\}$. This does not change the expectation
appearing in (3.10): when $\sigma_{i}=1$, the associated summand remains unchanged; when $\sigma_{i}=-1$, the associated summand flips signs, which is equivalent to swapping z_{i} and z_{i}^{\prime} between S and $S^{\prime \prime}$. Since we are taking the expectation over all possible S and $S^{\prime \prime}$, this swap does not affect the overall expectation; we are simply changing the order of the summands within the expectation.

In the next inequality, we will use the sub-additivity of the supremum function

$$
\begin{equation*}
\sup (U+V) \leq \sup (U)+\sup (V) \tag{5}
\end{equation*}
$$

Continue from the last equation above,

$$
\begin{align*}
& \leq \underset{\sigma, S^{\prime}}{\mathbb{E}}\left[\sup _{g \in \mathcal{G}} \frac{1}{m} \sum_{i=1}^{m} \sigma_{i} g\left(z_{i}^{\prime}\right)\right]+\underset{\sigma, S}{\mathbb{E}}\left[\sup _{g \in \mathcal{G}} \frac{1}{m} \sum_{i=1}^{m}-\sigma_{i} g\left(z_{i}\right)\right] \tag{5}\\
& =2 \underset{\sigma, S}{\mathbb{E}}\left[\sup _{g \in \mathcal{G}} \frac{1}{m} \sum_{i=1}^{m} \sigma_{i} g\left(z_{i}\right)\right] \\
& =2 \mathfrak{R}_{m}(\mathcal{G})
\end{align*}
$$

by defn
stems from the definition of Rademacher complexity and the fact that the variables σ_{i} and $-\sigma_{i}$ are distributed in the same way.

1.3. Putting it together.

Theorem 1.9. Let \mathcal{G} be a family of functions mapping from \mathcal{Z} to $[0,1]$. Then, for any $\delta>0$, with probability at least $1-\delta$ over the draw of an i.i.d. sample S of size m, each of the following holds for all $g \in \mathcal{G}$:

$$
\begin{align*}
& \mathbb{E}[g(z)] \leq \frac{1}{m} \sum_{i=1}^{m} g\left(z_{i}\right)+2 \Re_{m}(\mathcal{G})+\sqrt{\frac{\log \frac{1}{\delta}}{2 m}} \tag{6}\\
& \mathbb{E}[g(z)] \leq \frac{1}{m} \sum_{i=1}^{m} g\left(z_{i}\right)+2 \widehat{\Re}_{S}(\mathcal{G})+3 \sqrt{\frac{\log \frac{2}{\delta}}{2 m}} \tag{7}
\end{align*}
$$

Proof. Using (2), we first established the bounded differences inequality for Φ, (4). This allows us to apply McDiarmid's inequality. For any $\delta>0$,

$$
\Phi(S) \leq \underset{S}{\mathbb{E}}[\Phi(S)]+\sqrt{\frac{\log \frac{2}{\delta}}{2 m}}, \quad \text { with probability at least } 1-\delta / 2
$$

using δ instead of $\delta / 2$.
Using the Theorem 1.8, and the definition (2), this becomes

$$
\sup _{g \in \mathcal{G}}\left(\mathbb{E}[g]-\widehat{\mathbb{E}}_{S}[g]\right) \leq 2 \mathfrak{R}_{m}(\mathcal{G})+\sqrt{\frac{\log \frac{2}{\delta}}{2 m}}, \quad \text { with probability at least } 1-\delta / 2
$$

since, this holds for any $g \in \mathcal{G}$, we obtain (6).
To derive a bound in terms of the empirical Rademacher complexity, $\widehat{\Re}_{S}(\mathcal{G})$, We use (1) from Lemma 1.4. This allows us to use McDiarmid's inequality. Thus,

$$
\Re_{m}(\mathcal{G}) \leq \widehat{\Re}_{S}(\mathcal{G})+\sqrt{\frac{\log \frac{2}{\delta}}{2 m}} \quad \text { with probability } 1-\delta / 2
$$

Finally, we use the union bound to combine two inequalities above, which yields with probability at least $1-\delta$:

$$
\Phi(S) \leq 2 \widehat{\Re}_{S}(\mathcal{G})+3 \sqrt{\frac{\log \frac{2}{\delta}}{2 m}},
$$

which matches (7).

2. Rademacher Complexity for Linear Hypotheses

Definition 2.1. Define $B_{r}=\left\{x \in \mathbb{R}^{d} \mid\|x\| \leq r\right\}$. Let $S=\left\{x_{1}, \ldots x_{m}\right\} \subset B_{r}$ Consider the linear functions, $h(w, x)=w \cdot x$ and define

$$
\mathcal{H}_{\Lambda}=\left\{h(x, w)=w \cdot x \mid x \in X, w \in B_{\Lambda}\right\} .
$$

Theorem 2.2 (Theorem 5.10 of Mohri). The empirical Rademacher complexity of \mathcal{H}_{Λ} is bounded as follows,

$$
\widehat{\mathfrak{R}}_{S}\left(\mathcal{H}_{\Lambda}\right) \leq \frac{r \Lambda}{\sqrt{m}}
$$

Proof. The proof follows through a series of inequalities:

$$
\begin{aligned}
\widehat{\Re}_{S}(\mathcal{H}) & \left.=\frac{1}{m} \underset{\sigma}{\mathbb{E}}\left[\sup _{\|\mathbf{w}\| \leq \Lambda} \sum_{i=1}^{m} \sigma_{i} \mathbf{w} \cdot \mathbf{x}_{i}\right)\right] & & \text { by defn } \\
& =\frac{1}{m} \underset{\sigma}{\mathbb{E}}\left[\sup _{\|\mathbf{w}\| \leq \Lambda} \mathbf{w} \cdot \sum_{i=1}^{m} \sigma_{i} \mathbf{x}_{i}\right] & & \text { since } h \text { is linear } \\
& \left.\leq \frac{\Lambda}{m} \underset{\sigma}{\mathbb{E}}\left[\left\|\sum_{i=1}^{m} \sigma_{i} \mathbf{x}_{i}\right\|\right]\right]^{\prime} & & \text { Cauchy-Schwarz and }\|w\| \leq \Lambda \\
& \leq \frac{\Lambda}{m}\left[\underset{\sigma}{\mathbb{E}}\left[\left\|\sum_{i=1}^{m} \sigma_{i} \mathbf{x}_{i}\right\|^{2}\right]\right]^{\frac{1}{2}} & & \text { Jensen's inequality } \\
& =\frac{\Lambda}{m}\left[\underset{\sigma}{\mathbb{E}}\left[\sum_{i, j=1}^{m} \sigma_{i} \sigma_{j}\left(\mathbf{x}_{i} \cdot \mathbf{x}_{j}\right)\right]\right]^{\frac{1}{2}} & & \\
& \leq \frac{\Lambda}{m}\left[\sum_{i=1}^{m}\left\|\mathbf{x}_{i}\right\|^{2}\right]^{\frac{1}{2}} & & \mathbb{E}\left[\sigma_{i} \sigma_{j}\right]=\mathbb{E}\left[\sigma_{i}\right] \mathbb{E}\left[\sigma_{j}\right]=0 \text { for } i \neq j \\
& \leq \frac{\Lambda \sqrt{m r^{2}}}{m} & & \left\|\mathbf{x}_{i}\right\| \leq r \\
& =\frac{r \Lambda}{\sqrt{m}} & &
\end{aligned}
$$

References

[MRT18] Mehryar Mohri, Afshin Rostamizadeh, and Ameet Talwalkar. Foundations of machine learning. MIT press, 2018.

