MATH/COMP 562 LECTURE NOTES STABILITY THEORY

ADAM M. OBERMAN

Contents

1. Convex analysis	1
1.1. Lipschitz and strong convexity (for functions)	1
2. Stability Theory Setup	2
3. Stability Theory	2
3.1. Strongly convex losses	3
3.2. Define stability	3
3.3. Stability Theorem	3
4. Learning bounds for stable algorithms	5
4.1. Bounded differences	5
References	7

Notes adapted from [MRT18, Chapter 14] and [SSBD14, Ch 13]

1. Convex analysis

1.1. Lipschitz and strong convexity (for functions).

Definition 1.1. The function $f: W \to \mathbb{R}$ is Lipchitz continuous with constant C_f , if

$$|f(w_1) - f(w_2)| \le C_f ||w_1 - w_2||, \quad \forall w_1, w_2 \in W$$

Definition 1.2. The function $f: W \subset \mathbb{R}^d \to \mathbb{R}$ is λ -strongly convex (on W), if $f(w) - \lambda ||w||^2$ is convex on W.

Exercise 1.1. Show that $f \ \lambda$ convex on \mathbb{R}^d means $f(w) - \lambda \|w - w_0\|^2$ is convex for any $w_0 \in \mathbb{R}^d$

Lemma 1.3. Suppose f is λ -strongly convex. Let w^* be a minimizer of f. Then

(SC)
$$f(w) - f(w^*) \ge \lambda ||w - w^*||^2, \quad \forall u$$

Remark 1.4. Intuition of this: consider $f : \mathbb{R} \to \mathbb{R}$ smooth. Then Taylor expansion around w^* :

$$f(w^* + v) = f(w^*) + \nabla f(w^*) \cdot v + v^2 f''(w^*)/2 + O(v^3)$$

Set $\lambda = f''$ for a local version of the inequality. So the global version of this idea given by strong convexity.

Date: April 12, 2023.

ADAM M. OBERMAN

2. Stability Theory Setup

We are considering a supervised learning problem (classification or regression). For now, consider the case of binary classification, or one dimensional regression. We may assume normalized vector data $\mathcal{X} \subset [-1,1]^d \subset \mathbb{R}^d$. We assume labels are either $\mathcal{Y} \subset \mathbb{R}$ or $\mathcal{Y} = \{-1,1\}$

Definition 2.1. Given the ML setup $\mathcal{Z} = \mathcal{X} \times \mathcal{Y}$, and a class of functions \mathcal{H} , $h : \mathcal{X} \to \mathcal{Y}$. A learning algorithm is a operator A which takes a finite subset, $Z \subset \mathcal{Z}$ and returns a function h = A(Z).

Note, in the parametric setting $\mathcal{H} = \{h(x, w) \mid w \in W\}$, so we have $h_w(x) = A(Z)$. We can simply write w = A(Z).

Write z = (x, y) and for the dataset, $S^m = \{(x_i, y_i)\}_{i=1}^m$ write

$$Z = (z_1, \ldots, z_m) = ((x_1, y_1), \ldots, (x_m, y_m))$$

Definition 2.2 (bounded data). We say the learning problem $(\mathcal{X}, \mathcal{Y})$ is bounded if there exist constants r_x, r_y such that

$$||x|| \le r_x, \quad \forall x \in \mathcal{X},$$

and

$$|y| \le r_y, \quad \forall y \in \mathcal{Y}$$

We are given a loss function

$$\ell:\mathbb{R} imes\mathcal{Y} o\mathbb{R}^+$$

Example 2.3. In the case of regression,

$$\ell(f, y) = (f - y)^2$$

Example 2.4. For classification, with, Y = -1, +1, consider,

$$\ell(f, y) = \begin{cases} -\log(\sigma(f)), & y = +1\\ -\log(1 - \sigma(f)), & y = -1 \end{cases}$$

3. STABILITY THEORY

Definition 3.1. Define the bounded linear hypotheses

$$\mathcal{H}_{lin,W} = \{h(x,w) = w \cdot x \mid x \in \mathcal{X}, w \in W\}$$

Let $W \subset \mathbb{R}^d$ be a convex and bounded, with radius C_w . Given a loss function $\ell : \mathbb{R} \times \mathcal{Y} \to \mathbb{R}$, define $\ell : W \times Z \to \mathbb{R}$ by

$$\ell(w,z) = \ell(w \cdot x, y)$$

Then, in this overloaded notation,

$$\ell(h_w(x), y) = \ell(w \cdot x, y) = \ell(w, z), \quad \forall h \in \mathcal{H}_{lin}$$

STABILITY THEORY

3.1. Strongly convex losses. Given a loss function $\ell : \mathbb{R} \times \mathcal{Y} \to \mathbb{R}$, define $\ell_w : Z \times \mathbb{R}^+ \to \mathbb{R}$ by

$$\ell_w(z,\lambda) = \ell(w,z,\lambda) = \ell(w \cdot x, y) + \lambda ||w||^2$$

Lemma 3.2. Suppose $\ell(s, y)$ is a convex function s, (for all z), and $\lambda \ge 0$. Then $\ell(w, z, \lambda)$ is λ -strongly convex function of w, for all z = (x, y).

Proof. Class Notes / HW

We say a loss is Lipschitz continuous if it is Lipschitz continuous as a function of w, independent of z.

Definition 3.3. The loss $\ell: W \times Z \to \mathbb{R}$ is Lipchitz continuous with constant C_{ℓ} , if

(Lip)
$$|\ell(w_1, z) - \ell(w_2, z)| \le C_{\ell} ||w_1 - w_2||, \quad \forall w_1, w_2 \in W, z \in Z$$

Definition 3.4. Given a dataset $Z = \{z_1, \ldots, z_m\}$, where each $z_i \in \mathbb{Z}$. Given a loss function $\ell : \mathbb{R} \times \mathcal{Y} \to \mathbb{R}^+$ Define for $w \in W$,

$$L(w, Z, \lambda) = \frac{1}{m} \sum_{i=1}^{m} \ell(w, z_i) + \lambda ||w||^2$$

3.2. Define stability.

Remark 3.5. In what follows, we will usually have $\beta(m) = C/m$

Definition 3.6 (Replace one Stability). Given $\ell, \rho(z)$. Let Z_1, Z_2 be two datasets of size m, which differ in exactly one element.

The operator A is replace one stable in w if there exists $C_w > 0$ such that

(S1)
$$||A(Z_1) - A(Z_2)|| = ||w_1 - w_2|| \le \frac{C_w}{m}$$

The operator A is uniformly replace one stable in ℓ with rate $\beta(m)$, if there exists a function $\beta = \beta(m)$

(1)
$$|\ell(w_1, z) - \ell(w_2, z)| \le \beta(m), \quad \forall z \in \mathbb{Z}$$

The operator A is replace one stable in the expected loss, with rate $\beta(m)$, if there exists a function $\beta = \beta(m)$ such that

(S2)
$$L(A(Z_1)) - L(A(Z_2)) \le \beta(m)$$

for all datasets Z_1, Z_2 of size m which differ by only one element.

3.3. Stability Theorem. Define

$$w_i = A(Z_i) = \arg\min_{w \in W} L(w, Z_i, \lambda), \qquad i = 1, 2$$

Lemma 3.7. Suppose the loss is C_{ℓ} Lipschitz continuous. Then (S1) implies (1) and (S2) with $C_L = C_{\ell}C_w$

Proof.

$$\ell(w_1, z) - \ell(w_2, z) \le C_{\ell} \|w_1 - w_2\|$$
 by (Lip)

$$\leq C_{\ell}C_{w}rac{1}{m}$$
 by (S1)

The second result comes from taking expectations of the first inequality.

Definition 3.8. Given the loss, ℓ , the dataset, Z, and $\lambda > 0$, define the regularized empirical loss

(REL)
$$L(w, Z, \lambda) = \frac{1}{m} \sum_{i=1}^{m} \ell(w, z_i) + \lambda ||w||^2$$

The regularized loss minimization problem is to set

(RLM)
$$w = A(Z, \lambda) = \arg\min_{w} L(w, Z, \lambda)$$

Theorem 3.9. Given the loss $\ell : W \times Z$ which is

- (1) convex in w
- (2) Lipschitz continuous in w, as defined by (Lip)

Then the regularized loss minimization problem, (RLM), is replace one stable in w with constant $C_w = C_\ell/\lambda$ and replace on stable in the expected loss, with constant $C_L = C_\ell^2/\lambda$.

Proof. Let S_1, S_2 differ by one point,

(RO)
$$S_1 = \{z_1, \dots, z_{m-1}, z'_1\}, \qquad S_2 = \{z_1, \dots, z_{m-1}, z'_2\}$$

Define w_1, w_2 by (RLM),

$$w_i = w_i(S_i, \lambda) = \arg\min_w L(w, S_i, \lambda), \quad i = 1, 2$$

Since ℓ is convex in w, $L(w, S, \lambda)$ is λ -strongly convex in w. Thus, applying strong convexity of (REL), and the definition of w_1, w_2 , we obtain

$$\begin{split} \lambda \|w_1 - w_2\|^2 &\leq L(w_2, S_1, \lambda) - L(w_1, S_1, \lambda) & \text{by (SC) and (RLM)} \\ \lambda \|w_1 - w_2\|^2 &\leq L(w_1, S_2, \lambda) - L(w_2, S_2, \lambda) & \text{by (SC) and (RLM)} \end{split}$$

Adding the two inequalities above,

$$2\lambda \|w_1 - w_2\|^2 \le L(w_2, S_1, \lambda) - L(w_1, S_1, \lambda) + L(w_1, S_2, \lambda) - L(w_2, S_2, \lambda)$$

Using the fact that the datasets differ by only one point, we have

$$L(w_2, S_1, \lambda) - L(w_2, S_2, \lambda) = \frac{1}{m} \left(\ell(w_2, z_1') - \ell(w_2, z_2') \right)$$
 by (RO)

$$L(w_1, S_2, \lambda) - L(w_1, S_1, \lambda) = \frac{1}{m} \left(\ell(w_1, z_2') - \ell(w_1, z_1') \right)$$
 by (RO)

Combining the last three lines,

$$2\lambda \|w_1 - w_2\|^2 \le \frac{1}{m} \left(\ell(w_2, z_1') - \ell(w_2, z_2') + \ell(w_1, z_2') - \ell(w_1, z_1')\right)$$

Now apply the Lipschitz condition to obtain

$$\ell(w_2, z_1') - \ell(w_1, z_1') \le C_\ell \|w_1 - w_2\|$$
 by (Lip) at z_1'

$$-\ell(w_2, z_2') + \ell(w_1, z_2') \le C_\ell \|w_1 - w_2\|$$
 by (Lip) at z_z'

Combining, gives

$$2\lambda \|w_1 - w_2\|^2 \le \frac{2C_\ell}{m} \|w_1 - w_2\|$$

Simplify the last inequality to obtain

$$\|w_1 - w_2\| \le \frac{C_\ell}{\lambda m}$$

as desired. The second result follows directly from Lemma 3.7.

STABILITY THEORY

Remark 3.10. This proof used a symmetric differences technique. We started by fixing the dataset and changing w to get the first inequality. Later we fixed the w and changed the dataset to go from L to ℓ . Finally, we fixed the z and changed the w again to get another inequality.

4. LEARNING BOUNDS FOR STABLE ALGORITHMS

Definition 4.1. Define

(2) $\Phi(S) = L(A(S)) - L_S(A(S))$

to be the gap between the expected loss and the training loss of an algorithm.

Remark 4.2. The learning bounds for stable algorithms come from applying McDiarmid's inequality to Φ . This is similar to what was done for Rademacher complexity bounds. We need to

- (1) Show that Φ satisfies the bounded differences inequality
- (2) Apply McDiarmid's inequality to Φ
- (3) Bound the expected value of Φ and relate this to the quantity of interest (in this case, stability).

4.1. Bounded differences.

Lemma 4.3. Let Φ be defined by (2). Let A be a uniformly β -stable algorithm (in expectation). Suppose, in addition, that the loss is bounded by M. Then $\Phi(S)$ satisfies the bounded difference inequality

(3)
$$|\Phi(S_1) - \Phi(S_2)| \le 2\beta(m) + \frac{M}{m}$$

(where S_1, S_2 differ by one point).

Proof of Lemma 4.3. Using local notation, since copied from [MRT18].

Let Φ be defined for all samples S by

$$\Phi(S) = R(h_S) - \widehat{R}_S(h_S)$$

Let S' be another sample of size m with points drawn i.i.d. according to \mathcal{D} that differs from S by exactly one point. We denote that point by z_m in S, z'_m in S', i.e.,

$$S = (z_1, \dots, z_{m-1}, z_m)$$
 and $S' = (z_1, \dots, z_{m-1}, z'_m)$

By definition of Φ , the following inequality holds:

$$|\Phi(S') - \Phi(S)| \le |R(h_{S'}) - R(h_S)| + |\widehat{R}_{S'}(h_{S'}) - \widehat{R}_S(h_S)|$$

We bound each of these two terms separately.

First, by the β -stability of A, (S2), we have

$$|R(h_{S}) - R(h_{S'})| = \left| \mathbb{E}_{z} [L_{z}(h_{S})] - \mathbb{E}_{z} [L_{z}(h_{S'})] \right| \leq \mathbb{E}_{z} [|L_{z}(h_{S}) - L_{z}(h_{S'})|] \leq \beta$$
$$\left| \widehat{R}_{S}(h_{S}) - \widehat{R}_{S'}(h_{S'}) \right| = \frac{1}{m} \left| \left(\sum_{i=1}^{m-1} L_{z_{i}}(h_{S}) - L_{z_{i}}(h_{S'}) \right) + L_{z_{m}}(h_{S}) - L_{z'_{m}}(h_{S'}) \right|$$
$$\leq \frac{1}{m} \left[\left(\sum_{i=1}^{m-1} |L_{z_{i}}(h_{S}) - L_{z_{i}}(h_{S'})| \right) + \left| L_{z_{m}}(h_{S}) - L_{z'_{m}}(h_{S'}) \right| \right]$$

Using the uniform β -stability of A, (1), for the first terms, along with boundedness of L, for the last term, we have

$$\left|\widehat{R}_{S}(h_{S}) - \widehat{R}_{S'}(h_{S'})\right| \leq \frac{m-1}{m}\beta(m) + \frac{M}{m} \leq \beta(m) + \frac{M}{m}$$

Thus, Φ satisfies (3).

In the next result, we take expectations of Φ .

Lemma 4.4. Let Φ be defined by (2). Then

$$\mathbb{E}_{S \sim \mathcal{D}^m} \Phi(S) \le \mathbb{E}_{S, z \sim \mathcal{D}^{m+1}} \left[\left| L_z(h_S) - L_z(h_{S'}) \right| \right]$$

Proof. Local notation scope: we are copying from Mohri, so using his notation.

Rewrite

$$\Phi(S) = R(h_S) - \widehat{R}_S(h_S)$$

We now bound the expectation term, first noting that by linearity of expectation

$$\mathbb{E}_{S}[\Phi(S)] = \mathbb{E}_{S}[R(h_{S})] - \mathbb{E}_{S}\left[\widehat{R}_{S}(h_{S})\right]$$

By definition of the generalization error,

$$\mathbb{E}_{S \sim \mathcal{D}^{m}} \left[R\left(h_{S}\right) \right] = \mathbb{E}_{S \sim \mathcal{D}^{m}} \left[\mathbb{E}_{z \sim \mathcal{D}} \left[L_{z}\left(h_{S}\right) \right] \right] = \mathbb{E}_{S, z \sim \mathcal{D}^{m+1}} \left[L_{z}\left(h_{S}\right) \right]$$

By the linearity of expectation,

$$\mathbb{E}_{S \sim \mathcal{D}^{m}}\left[\widehat{R}_{S}\left(h_{S}\right)\right] = \frac{1}{m} \sum_{i=1}^{m} \mathbb{E}_{S \sim \mathcal{D}^{m}}\left[L_{z_{i}}\left(h_{S}\right)\right] = \mathbb{E}_{S \sim \mathcal{D}^{m}}\left[L_{z_{1}}\left(h_{S}\right)\right]$$

where the second equality follows from the fact that the z_i are drawn i.i.d. and thus the expectations $\mathbb{E}_{S \sim \mathcal{D}^m} [L_{z_i}(h_S)], i \in [m]$, are all equal. The last expression in the equation above is the expected loss of a hypothesis on one of its training points. We can rewrite it as

$$\mathbb{E}_{S \sim D^m} \left[L_{z_1} \left(h_S \right) \right] = \mathbb{E}_{S, z \sim \mathcal{D}^{m+1}} \left[L_z \left(h_{S'} \right) \right]$$

where S^\prime is a sample of m points containing z extracted from the m+1 points formed by S and z. Thus,

$$\left| \underset{S \sim \mathcal{D}^{m}}{\mathbb{E}} [\Phi(S)] \right| = \left| \underset{S, z \sim \mathcal{D}^{m+1}}{\mathbb{E}} [L_{z} (h_{S})] - \underset{S, z \sim \mathcal{D}^{m+1}}{\mathbb{E}} [L_{z} (h_{S'})] \right|$$
$$\leq \underset{S, z \sim \mathcal{D}^{m+1}}{\mathbb{E}} [|L_{z} (h_{S}) - L_{z} (h_{S'})|]$$

as desired.

Combining the lemma and the theorem, it means we can apply McDiarmid's inequality to $\Phi(S)$. Thus we have

Theorem 4.5. Assume that the loss function L is bounded by $M \ge 0$. Let \mathcal{A} be a uniformly β -stable learning algorithm. Let S be a sample of m points drawn i.i.d. according to distribution \mathcal{D} . Then, with probability at least $1 - \delta$ over the sample S drawn, the following holds:

$$R(h_S) \le \widehat{R}_S(h_S) + \beta + (2m\beta + M)\sqrt{\frac{\log\frac{1}{\delta}}{2m}}$$

_

In particular, in the case $\beta = C/m$, we have

$$R(h_S) \le \widehat{R}_S(h_S) + \frac{C}{m} + (2C+M)\sqrt{\frac{\log\frac{1}{\delta}}{2m}}$$

Proof. Use the two previous results, to apply McD inequality. Also apply the uniform stable definition.

References

- [MRT18] Mehryar Mohri, Afshin Rostamizadeh, and Ameet Talwalkar. *Foundations of machine learning*. MIT press, 2018.
- [SSBD14] Shai Shalev-Shwartz and Shai Ben-David. Understanding Machine Learning: From Theory to Algorithms. Cambridge University Press, 2014.