We will describe a sample supervised learning problem in detail: the problem of deciding
whether to wait for a table at a restaurant. This problem will be used throughout the chapter
to demonstrate different model classes. For this problem the output, y, is a Boolean variable
that we will call WillWait; it is true for examples where we do wait for a table. The input, z,

is a vector of ten attribute values, each of which has discrete values:

. ALTERNATE: whether there is a suitable alternative restaurant nearby.
. BAR: whether the restaurant has a comfortable bar area to wait in.

. FRI/SAT: true on Fridays and Saturdays.

. HUNGRY: whether we are hungry right now.

O s W N =

. PATRONS: how many people are in the restaurant (values are None, Some, and
Full).

. PRICE: the restaurant’s price range ($, $$, $$8).

. RAINING: whether it is raining outside.

. RESERVATION: whether we made a reservation.

o O NN

. TYPE: the kind of restaurant (French, Italian, Thai, or burger).
10. WAITESTIMATE: host’s wait estimate: 0 — 10, 10 — 30, 30 — 60, or >60 minutes.

A set of 12 examples, taken from the experience of one of us (SR), is shown in Figure 19.215.
Note how skimpy these data are: there are 2° x 3% x 4% = 9,216 possible combinations of
values for the input attributes, but we are given the correct output for only 12 of them; each
of the other 9,204 could be either true or false; we don’t know. This is the essence of
induction: we need to make our best guess at these missing 9,204 output values, given only

the evidence of the 12 examples.

Figure 19.2

Input Attributes Output
Example

Alt Bar Fri Hun Pat Price Rain Res Type Est WillWait
X Yesse No No Yes Some $3%5 No Yes French 0-10 y, = Yes
X2 Yes: No No Yes Full $ No No Thai 30-60 y» = No
X3 No Yes No No Some $ No No Burger 0-10 y3=Yes
X4 Yes No Yes Yes Full $ Yes No Thai 10-30 y4 = Yes
X5 Yese No Yes No Full $3% No Yes French >60 ys=No
X6 No Yes No Yes Some $$ Yes Yes Italian 0-10 yg= Yes
X7 No Yes No No None 3 Yes. No Burger 0-10 y7=No
Xg No No No Yes Some $$ Yes VYes Thai 0-10 yg= Yes
X9 No Yes Yes No Full 3 Yes No Burger >60 yo= No
X10 Yes Yes Yes Yes Full $$% No Yes Italian 10-30 y;o = No
X1 No No No No None $ No No Thai 0-10 y;; = No
X12 Yes Yes Yes Yes Full $ No No Burger 30-60 y;; = Yes

Examples for the restaurant domain.

19.3 Learning Decision Trees

A decision tree is a representation of a function that maps a vector of attribute values to a
single output value—a “decision.” A decision tree reaches its decision by performing a
sequence of tests, starting at the root and following the appropriate branch until a leaf is
reached. Each internal node in the tree corresponds to a test of the value of one of the input
attributes, the branches from the node are labeled with the possible values of the attribute,

and the leaf nodes specify what value is to be returned by the function.

Decision tree

In general, the input and output values can be discrete or continuous, but for now we will
consider only inputs consisting of discrete values and outputs that are either true (a positive
example) or false (a negative example). We call this Boolean classification. We will use j to
index the examples (x; is the input vector for the jth example and y; is the output), and z;;

for the ith attribute of the jth example.

Positive

Neguative

The tree representing the decision function that SR uses for the restaurant problem is shown
in Figure 19.3I5. Following the branches, we see that an example with Patrons = Full and

Wait Estimate = 0-10 will be classified as positive (i.e., yes, we will wait for a table).

Figure 19.3

Patrons?

Alternate? Hungry?
W No Yes
Reservation? Fri/Sat? Alternate?
No Yes No Yes No Yes
Bar? Raining?
No Yes No Yes

A decision tree for deciding whether to wait for a table.

19.3.1 Expressiveness of decision trees

A Boolean decision tree is equivalent to a logical statement of the form:
Output < (Pathy V Pathy V ---),

where each Path; is a conjunction of the form (4,, = v, A A, = v, A - -) of attribute-value
tests corresponding to a path from the root to a true leaf. Thus, the whole expression is in
disjunctive normal form, which means that any function in propositional logic can be

expressed as a decision tree.

For many problems, the decision tree format yields a nice, concise, understandable result.
Indeed, many “How To” manuals (e.g., for car repair) are written as decision trees. But some
functions cannot be represented concisely. For example, the majority function, which
returns true if and only if more than half of the inputs are true, requires an exponentially
large decision tree, as does the parity function, which returns true if and only if an even

number of input attributes are true. With real-valued attributes, the function y > A; + A, is

hard to represent with a decision tree because the decision boundary is a diagonal line, and
all decision tree tests divide the space up into rectangular, axis-aligned boxes. We would
have to stack a lot of boxes to closely approximate the diagonal line. In other words,

decision trees are good for some kinds of functions and bad for others.

Is there any kind of representation that is efficient for all kinds of functions? Unfortunately,
the answer is no—there are just too many functions to be able to represent them all with a
small number of bits. Even just considering Boolean functions with n Boolean attributes, the
truth table will have 2" rows, and each row can output true or false, so there are 2%" different
functions. With 20 attributes there are 2148576 ~ 1(300,000 functions, so if we limit ourselves

to a million-bit representation, we can’t represent all these functions.

19.3.2 Learning decision trees from examples

We want to find a tree that is consistent with the examples in Figure 19.2I5 and is as small as
possible. Unfortunately, it is intractable to find a guaranteed smallest consistent tree. But
with some simple heuristics, we can efficiently find one that is close to the smallest. The
Learn-Decision-Tree algorithm adopts a greedy divide-and-conquer strategy: always test the
most important attribute first, then recursively solve the smaller subproblems that are
defined by the possible results of the test. By “most important attribute,” we mean the one
that makes the most difference to the classification of an example. That way, we hope to get
to the correct classification with a small number of tests, meaning that all paths in the tree

will be short and the tree as a whole will be shallow.

Figure 19.4(a) D shows that Type is a poor attribute, because it leaves us with four possible
outcomes, each of which has the same number of positive as negative examples. On the
other hand, in (b) we see that Patrons is a fairly important attribute, because if the value is
None or Some, then we are left with example sets for which we can answer definitively (No
and Yes, respectively). If the value is Full, we are left with a mixed set of examples. There are

four cases to consider for these recursive subproblems:

1. If the remaining examples are all positive (or all negative), then we are done: we
can answer Yes or No. Figure 19.4(b)E shows examples of this happening in the
None and Some branches.

2. If there are some positive and some negative examples, then choose the best

attribute to split them. Figure 19.4(b)E shows Hungry being used to split the

https://jigsaw.vitalsource.com/books/9780134671932/epub/OPS/xhtml/fileP70010171580000000000000000131B6.xhtml%23P7001017158000000000000000013235

remaining examples.

3. If there are no examples left, it means that no example has been observed for this
combination of attribute values, and we return the most common output value from
the set of examples that were used in constructing the node’s parent.

4. If there are no attributes left, but both positive and negative examples, it means that
these examples have exactly the same description, but different classifications. This
can happen because there is an error or noise in the data; because the domain is
nondeterministic; or because we can’t observe an attribute that would distinguish
the examples. The best we can do is return the most common output value of the

remaining examples.

Noise

Figure 19.4

HBEAOQEBEE

(a)

Splitting the examples by testing on attributes. At each node we show the positive (light boxes) and
negative (dark boxes) examples remaining. (a) Splitting on Type brings us no nearer to distinguishing
between positive and negative examples. (b) Splitting on Patrons does a good job of separating positive
and negative examples. After splitting on Patrons, Hungry is a fairly good second test.

The Learn-Decision-Tree algorithm is shown in Figure 19.51E. Note that the set of examples is
an input to the algorithm, but nowhere do the examples appear in the tree returned by the

algorithm. A tree consists of tests on attributes in the interior nodes, values of attributes on

the branches, and output values on the leaf nodes. The details of the ImPorTANCE function are
given in Section 19.3.3IE. The output of the learning algorithm on our sample training set is
shown in Figure 19.6C. The tree is clearly different from the original tree shown in Figure
19.35. One might conclude that the learning algorithm is not doing a very good job of
learning the correct function. This would be the wrong conclusion to draw, however. The
learning algorithm looks at the examples, not at the correct function, and in fact, its
hypothesis (see Figure 19.6/5) not only is consistent with all the examples, but is
considerably simpler than the original tree! With slightly different examples the tree might

be very different, but the function it represents would be similar.

Figure 19.5

function LEARN-DECISION-TREE(examples, attributes, parent_examples) returns a tree

if examples is empty then return PLURALITY-VALUE(parent_examples)
else if all examples have the same classification then return the classification
else if attributes is empty then return PLURALITY-VALUE(examples)
else
A argmax, c yuribures IMPORTANCE (a, examples)
tree <—a new decision tree with root test A
for each value v of A do
exs<{e : ecexamples and e.A = v}
subtree <+~ LEARN-DECISION-TREE(exs, attributes — A, examples)
add a branch to rree with label (A = v) and subtree subtree
return rree

The decision tree learning algorithm. The function ImporTANCE is described in Section 19.3.3IE. The
function PLURALITY-VALUE selects the most common output value among a set of examples, breaking ties
randomly.

Figure 19.6

Patrons?

Hungry?

Yes

Type?

French ltalian

Fri/Sat?

No Yes

The decision tree induced from the 12-example training set.

The learning algorithm has no reason to include tests for Raining and Reservation, because it
can classify all the examples without them. It has also detected an interesting and previously
unsuspected pattern: SR will wait for Thai food on weekends. It is also bound to make some
mistakes for cases where it has seen no examples. For example, it has never seen a case
where the wait is 0-10 minutes but the restaurant is full. In that case it says not to wait
when Hungry is false, but SR would certainly wait. With more training examples the

learning program could correct this mistake.

We can evaluate the performance of a learning algorithm with a learning curve, as shown in
Figure 19.71C. For this figure we have 100 examples at our disposal, which we split randomly
into a training set and a test set. We learn a hypothesis h with the training set and measure
its accuracy with the test set. We can do this starting with a training set of size 1 and
increasing one at a time up to size 99. For each size, we actually repeat the process of
randomly splitting into training and test sets 20 times, and average the results of the 20
trials. The curve shows that as the training set size grows, the accuracy increases. (For this
reason, learning curves are also called happy graphs.) In this graph we reach 95% accuracy,

and it looks as if the curve might continue to increase if we had more data.

Figure 19.7

§ 09 A
7
]
= 0.8 -
)
8
g 0.7 1
(&)
g
= 0.6 A1
)
(=9
g
a 05 4
0.4 - - . r \

0 20 40 60 80 100

Training set size

A learning curve for the decision tree learning algorithm on 100 randomly generated examples in the
restaurant domain. Each data point is the average of 20 trials.

Learning curve

Happy graphs

19.3.3 Choosing attribute tests

The decision tree learning algorithm chooses the attribute with the highest ImporTANCE. We
will now show how to measure importance, using the notion of information gain, which is
defined in terms of entropy, which is the fundamental quantity in information theory

(Shannon and Weaver, 1949).

Entropy

https://jigsaw.vitalsource.com/books/9780134671932/epub/OPS/xhtml/fileP7001017158000000000000000015495.xhtml%23P7001017158000000000000000016547

Entropy is a measure of the uncertainty of a random variable; the more information, the less
entropy. A random variable with only one possible value—a coin that always comes up
heads—has no uncertainty and thus its entropy is defined as zero. A fair coin is equally likely
to come up heads or tails when flipped, and we will soon show that this counts as “1 bit” of
entropy. The roll of a fair four-sided die has 2 bits of entropy, because there are 2* equally
probable choices. Now consider an unfair coin that comes up heads 99% of the time.
Intuitively, this coin has less uncertainty than the fair coin—if we guess heads we’ll be wrong
only 1% of the time—so we would like it to have an entropy measure that is close to zero,
but positive. In general, the entropy of a random variable V' with values v having

probability P(vy) is defined as
1
Entropy: H(V) = Z P(vy) log, Pl =— Z P(v)log, P(vy).
k k

We can check that the entropy of a fair coin flip is indeed 1 bit:
H(Fair) = —(0.510g, 0.5+ 0.510g, 0.5) = 1.
And of a four-sided die is 2 bits:
H(Die4) = —(0.251og, 0.25 + 0.251og, 0.25 + 0.25log, 0.25 + 0.25 log, 0.25) = 2
For the loaded coin with 99% heads, we get

H(Loaded) = —(0.991og, 0.99 + 0.01log, 0.01) ~ 0.08 bits.

It will help to define B(q) as the entropy of a Boolean random variable that is true with
probability g:

B(q) = —(qlogy g + (1 — g)logy(1 — q))-

Thus, H(Loaded) = B(0.99) ~ 0.08. Now let’s get back to decision tree learning. If a training
set contains p positive examples and n negative examples, then the entropy of the output

variable on the whole set is

p
H(Output) = B .
(Output) (p+n)

The restaurant training set in Figure 19.25 has p = n = 6, so the corresponding entropy is
B(0.5) or exactly 1 bit. The result of a test on an attribute A will give us some information,
thus reducing the overall entropy by some amount. We can measure this reduction by

looking at the entropy remaining after the attribute test.

An attribute A with d distinct values divides the training set E into subsets FEj, ..., E;. Each
subset Ej, has p; positive examples and nj negative examples, so if we go along that branch,
we will need an additional B(py/ (px, + nx)) bits of information to answer the question. A
randomly chosen example from the training set has the kth value for the attribute (i.e., is in
E}, with probability (py + ng)/(p + n)), so the expected entropy remaining after testing
attribute A4 is

d

Remainder(A) = Z Pe + e B(Ph)

— ptn Dr + i

The information gain from the attribute test on A is the expected reduction in entropy:

Gain(A) = B(L> — Remainder(A).
p+n

Information gain

In fact Gain(A) is just what we need to implement the ImporTANCE function. Returning to the

attributes considered in Figure 19.415, we have

Gain(Patrons) =1 — [(%) + %B() (%) 541 bits,

25 cen(2)] =0
Gain(Type) —1—[% (%) % () % (%) %‘2 (—)}zObits,

NN

confirming our intuition that Patrons is a better attribute to split on first. In fact, Patrons has
the maximum information gain of any of the attributes and thus would be chosen by the

decision tree learning algorithm as the root.

19.3.4 Generalization and overfitting

https://jigsaw.vitalsource.com/books/9780134671932/epub/OPS/xhtml/fileP70010171580000000000000000131B6.xhtml%23P7001017158000000000000000013235

