
37

Splitting datasets one
 feature at a time:

 decision trees

Have you ever played a game called Twenty Questions? If not, the game works like
this: One person thinks of some object and players try to guess the object. Players
are allowed to ask 20 questions and receive only yes or no answers. In this game, the
people asking the questions are successively splitting the set of objects they can
deduce. A decision tree works just like the game Twenty Questions; you give it a
bunch of data and it generates answers to the game.

This chapter covers
! Introducing decision trees
! Measuring consistency in a dataset
! Using recursion to construct a decision tree
! Plotting trees in Matplotlib

Licensed to Brahim Chaibdraa <chaib@iad.ift.ulaval.ca>

38 CHAPTER 3 Splitting datasets one feature at a time: decision trees

 The decision tree is one of the most commonly used classification techniques;
recent surveys claim that it’s the most commonly used technique.1 You don’t have to
know much about machine learning to understand how it works.

 If you’re not already familiar with decisions trees, the concept is straightforward.
Chances are good that you’ve already seen a decision tree without knowing it. Figure 3.1
shows a flowchart, which is a decision tree. It has decision blocks (rectangles) and termi-
nating blocks (ovals) where some conclusion has been reached. The right and left arrows
coming out of the decision blocks are known as branches, and they can lead to other deci-
sion blocks or to a terminating block. In this particular example, I made a hypothetical
email classification system, which first checks the domain of the sending email address.
If this is equal to myEmployer.com, it will classify the email as “Email to read when
bored.” If it isn’t from that domain, it checks to see if the body of the email contains the
word hockey. If the email contains the word hockey, then this email is classified as “Email
from friends; read immediately”; if the body doesn’t contain the word hockey, then it gets
classified as “Spam; don’t read.”

 The kNN algorithm in chapter 2 did a great job of classifying, but it didn’t lead to
any major insights about the data. One of the best things about decision trees is that
humans can easily understand the data.

 The algorithm you’ll build in this chapter will be able to take a set of data, build a
decision tree, and draw a tree like the one in figure 3.1. The decision tree does a great
job of distilling data into knowledge. With this, you can take a set of unfamiliar data
and extract a set of rules. The machine learning will take place as the machine creates
these rules from the dataset. Decision trees are often used in expert systems, and the
results obtained by using them are often comparable to those from a human expert
with decades of experience in a given field.

1 Giovanni Seni and John Elder, Ensemble Methods in Data Mining: Improving Accuracy Through Combining Predic-
tions, Synthesis Lectures on Data Mining and Knowledge Discovery (Morgan and Claypool, 2010), 28.

Figure 3.1 A decision
tree in flowchart form

Licensed to Brahim Chaibdraa <chaib@iad.ift.ulaval.ca>

39Tree construction

Now that you know a little of what decision trees are good for, we’re going to get into
the process of building them from nothing but a pile of data. In the first section, we’ll
discuss methods used to construct trees and start writing code to construct a tree.
Next, we’ll address some metrics that we can use to measure the algorithm’s success.
Finally, we’ll use recursion to build our classifier and plot it using Matplotlib. When
we have the classifier working, we’ll take some data of a contact lens prescription and
use our classifier to try to predict what lenses people will need.

3.1 Tree construction

In this section we’re going to walk through the decision tree–building algorithm, with
all its fine details. We’ll first discuss the mathematics that decide how to split a dataset
using something called information theory. We’ll then write some code to apply this the-
ory to our dataset, and finally we’ll write some code to build a tree.

 To build a decision tree, you need to make a first decision on the dataset to dictate
which feature is used to split the data. To determine this, you try every feature and mea-
sure which split will give you the best results. After that, you’ll split the dataset into sub-
sets. The subsets will then traverse down the branches of the first decision node. If the
data on the branches is the same class, then you’ve properly classified it and don’t need
to continue splitting it. If the data isn’t the same, then you need to repeat the splitting
process on this subset. The decision on how to split this subset is done the same way as
the original dataset, and you repeat this process until you’ve classified all the data.

 Pseudo-code for a function called createBranch() would look like this:

Check if every item in the dataset is in the same class:
 If so return the class label
 Else
 find the best feature to split the data
 split the dataset
 create a branch node
 for each split
 call createBranch and add the result to the branch node
 return branch node

Please note the recursive nature of createBranch. It calls itself in the second-to-last line.
We’ll write this in Python later, but first, we need to address how to split the dataset.

Decision trees
Pros: Computationally cheap to use, easy for humans to understand learned results,
missing values OK, can deal with irrelevant features

Cons: Prone to overfitting

Works with: Numeric values, nominal values

Licensed to Brahim Chaibdraa <chaib@iad.ift.ulaval.ca>

40 CHAPTER 3 Splitting datasets one feature at a time: decision trees

Some decision trees make a binary split of the data, but we won’t do this. If we split on
an attribute and it has four possible values, then we’ll split the data four ways and cre-
ate four separate branches. We’ll follow the ID3 algorithm, which tells us how to split
the data and when to stop splitting it. (See http://en.wikipedia.org/wiki/
ID3_algorithm for more information.) We’re also going to split on one and only one
feature at a time. If our training set has 20 features, how do we choose which one to
use first?

 See the data in table 3.1. It contains five animals pulled from the sea and asks if
they can survive without coming to the surface and if they have flippers. We would like
to classify these animals into two classes: fish and not fish. Now we want to decide
whether we should split the data based on the first feature or the second feature. To
answer this question, we need some quantitative way of determining how to split the
data. We’ll discuss that next.

3.1.1 Information gain

We choose to split our dataset in a way that makes our unorganized data more orga-
nized. There are multiple ways to do this, and each has its own advantages and disad-
vantages. One way to organize this messiness is to measure the information. Using

Can survive without
coming to surface?

Has flippers? Fish?

1 Yes Yes Yes

2 Yes Yes Yes

3 Yes No No

4 No Yes No

5 No Yes No

General approach to decision trees
1. Collect: Any method.

2. Prepare: This tree-building algorithm works only on nominal values, so any contin-
uous values will need to be quantized.

3. Analyze: Any method. You should visually inspect the tree after it is built.

4. Train: Construct a tree data structure.

5. Test: Calculate the error rate with the learned tree.

6. Use: This can be used in any supervised learning task. Often, trees are used to
better understand the data.

Table 3.1 Marine animal data

Licensed to Brahim Chaibdraa <chaib@iad.ift.ulaval.ca>

41Tree construction

information theory, you can measure the information before and after the split. Infor-
mation theory is a branch of science that’s concerned with quantifying information.

 The change in information before and after the split is known as the information
gain. When you know how to calculate the information gain, you can split your data
across every feature to see which split gives you the highest information gain. The split
with the highest information gain is your best option.

 Before you can measure the best split and start splitting our data, you need to
know how to calculate the information gain. The measure of information of a set is
known as the Shannon entropy, or just entropy for short. Its name comes from the father
of information theory, Claude Shannon.

If the terms information gain and entropy sound confusing, don’t worry. They’re meant
to be confusing! When Claude Shannon wrote about information theory, John von
Neumann told him to use the term entropy because people wouldn’t know what
it meant.

 Entropy is defined as the expected value of the information. First, we need to
define information. If you’re classifying something that can take on multiple values,
the information for symbol xi is defined as

where p(xi) is the probability of choosing this class.
 To calculate entropy, you need the expected value of all the information of all pos-

sible values of our class. This is given by

where n is the number of classes.
 Let’s see how to calculate this in Python. To start, you’ll create a file called trees.py.

Insert the code from the following listing into trees.py. This listing will do entropy cal-
culations on a given dataset for you.

Claude Shannon
Claude Shannon is considered one of the smartest people of the twentieth century.
In William Poundstone’s 2005 book Fortune’s Formula, he wrote this of Claude
Shannon:

“There were many at Bell Labs and MIT who compared Shannon’s insight to Ein-
stein’s. Others found that comparison unfair—unfair to Shannon.”†

† William Poundstone, Fortune’s Formula: The Untold Story of the Scientific Betting System that Beat the Casi-
nos and Wall Street” (Hill and Wang, 2005), 15.

l xi� � log2p xi� �=

H p xi� �log2p xi� �
i 1=
n¦–=

Licensed to Brahim Chaibdraa <chaib@iad.ift.ulaval.ca>

42 CHAPTER 3 Splitting datasets one feature at a time: decision trees

from math import log

def calcShannonEnt(dataSet):
 numEntries = len(dataSet)
 labelCounts = {}
 for featVec in dataSet:
 currentLabel = featVec[-1]
 if currentLabel not in labelCounts.keys():
 labelCounts[currentLabel] = 0
 labelCounts[currentLabel] += 1
 shannonEnt = 0.0
 for key in labelCounts:
 prob = float(labelCounts[key])/numEntries
 shannonEnt -= prob * log(prob,2)
 return shannonEnt

The code in listing 3.1 is straightforward. First, you calculate a count of the number of
instances in the dataset. This could have been calculated inline, but it’s used multiple
times in the code, so an explicit variable is created for it. Next, you create a dictionary
whose keys are the values in the final column. B If a key was not encountered previ-
ously, one is created. For each key, you keep track of how many times this label occurs.
Finally, you use the frequency of all the different labels to calculate the probability of
that label. This probability is used to calculate the Shannon entropy, C and you sum
this up for all the labels. Let’s try out this entropy stuff.

 The simple data about fish identification from table 3.1 is provided in the trees.py
file by utilizing the createDataSet() function. You can enter it yourself:

def createDataSet():
 dataSet = [[1, 1, 'yes'],
 [1, 1, 'yes'],
 [1, 0, 'no'],
 [0, 1, 'no'],
 [0, 1, 'no']]
labels = ['no surfacing','flippers']
return dataSet, labels

Enter the following in your Python shell:

>>> reload(trees.py)
>>> myDat,labels=trees.createDataSet()
>>> myDat
[[1, 1, 'yes'], [1, 1, 'yes'], [1, 0, 'no'], [0, 1, 'no'], [0, 1, 'no']]
>>> trees.calcShannonEnt(myDat)
0.97095059445466858

The higher the entropy, the more mixed up the data is. Let’s make the data a little
messier and see how the entropy changes. We’ll add a third class, which is called
maybe, and see how the entropy changes:

>>> myDat[0][-1]='maybe'
>>> myDat
[[1, 1, 'maybe'], [1, 1, 'yes'], [1, 0, 'no'], [0, 1, 'no'], [0, 1, 'no']]
>>> trees.calcShannonEnt(myDat)
1.3709505944546687

Listing 3.1 Function to calculate the Shannon entropy of a dataset

Create dictionary
of all possible
classes

B

Logarithm
base 2

C

Licensed to Brahim Chaibdraa <chaib@iad.ift.ulaval.ca>

43Tree construction

Let’s split the dataset in a way that will give us the largest information gain. We won’t
know how to do that unless we actually split the dataset and measure the information
gain.

 Another common measure of disorder in a set is the Gini impurity,2 which is the
probability of choosing an item from the set and the probability of that item being
misclassified. We won’t get into the Gini impurity. Instead, we’ll move on to splitting
the dataset and building the tree.

3.1.2 Splitting the dataset

You just saw how to measure the amount of disorder in a dataset. For our classifier
algorithm to work, you need to measure the entropy, split the dataset, measure the
entropy on the split sets, and see if splitting it was the right thing to do. You’ll do this
for all of our features to determine the best feature to split on. Think of it as a two-
dimensional plot of some data. You want to draw a line to separate one class from
another. Should you do this on the X-axis or the Y-axis? The answer is what you’re try-
ing to find out here.

 To see this in action, open your editor and add the following code to trees.py.

def splitDataSet(dataSet, axis, value):
 retDataSet = []
 for featVec in dataSet:
 if featVec[axis] == value:
 reducedFeatVec = featVec[:axis]
 reducedFeatVec.extend(featVec[axis+1:])
 retDataSet.append(reducedFeatVec)
 return retDataSet

The code in listing 3.2 takes three inputs: the dataset we’ll split, the feature we’ll split
on, and the value of the feature to return. Most of the time in Python, you don’t have
to worry about memory or allocation. Python passes lists by reference, so if you modify
a list in a function, the list will be modified everywhere. To account for this, you create
a new list at the beginning. B You create a new list each time because you’ll be calling
this function multiple times on the same dataset and you don’t want the original data-
set modified. Our dataset is a list of lists; you iterate over every item in the list and if it
contains the value you’re looking for, you’ll add it to your newly created list. Inside the
if statement, you cut out the feature that you split on. C This will be more obvious in
the next section, but think of it this way: once you’ve split on a feature, you’re finished
with that feature. You used the extend() and append() methods of the Python list
type. There’s an important difference between these two methods when dealing with
multiple lists.

 Assume you have two lists, a and b:

2 For more information, you should check out Introduction to Data Mining by Pan-Ning Tan, Vipin Kumar, and
Michael Steinbach; Pearson Education (Addison-Wesley, 2005), 158.

Listing 3.2 Dataset splitting on a given feature

Create
separate listB

Cut out the
feature split on

C

Licensed to Brahim Chaibdraa <chaib@iad.ift.ulaval.ca>

44 CHAPTER 3 Splitting datasets one feature at a time: decision trees

>>> a=[1,2,3]
>>> b=[4,5,6]
>>> a.append(b)
>>> a
[1, 2, 3, [4, 5, 6]]

If you do a.append(b), you have a list with four elements, and the fourth element is a
list. However, if you do

>>> a=[1,2,3]
>>> a.extend(b)
>>> a
[1, 2, 3, 4, 5, 6]

you now have one list with all the elements from a and b.
 Let’s try out the splitDataSet() function on our simple example. Add the code

from listing 3.2 to trees.py, and type in the following at your Python shell:

>>> reload(trees)
<module 'trees' from 'trees.pyc'>
>>> myDat,labels=trees.createDataSet()
>>> myDat
[[1, 1, 'yes'], [1, 1, 'yes'], [1, 0, 'no'], [0, 1, 'no'], [0, 1, 'no']]
>>> trees.splitDataSet(myDat,0,1)
[[1, 'yes'], [1, 'yes'], [0, 'no']]
>>> trees.splitDataSet(myDat,0,0)
[[1, 'no'], [1, 'no']]

You’re now going to combine the Shannon entropy calculation and the splitDataSet()
function to cycle through the dataset and decide which feature is the best to split on.
Using the entropy calculation tells you which split best organizes your data.

 Open your text editor and add the code from the following listing to trees.py.

def chooseBestFeatureToSplit(dataSet):
 numFeatures = len(dataSet[0]) - 1
 baseEntropy = calcShannonEnt(dataSet)
 bestInfoGain = 0.0; bestFeature = -1
 for i in range(numFeatures):
 featList = [example[i] for example in dataSet]
 uniqueVals = set(featList)
 newEntropy = 0.0
 for value in uniqueVals:
 subDataSet = splitDataSet(dataSet, i, value)
 prob = len(subDataSet)/float(len(dataSet))
 newEntropy += prob * calcShannonEnt(subDataSet)
 infoGain = baseEntropy - newEntropy
 if (infoGain > bestInfoGain):
 bestInfoGain = infoGain
 bestFeature = I
 return bestFeature

The code in listing 3.3 is the function chooseBestFeatureToSplit(). As you can guess,
it chooses the feature that, when split on, best organizes your data. The functions from

Listing 3.3 Choosing the best feature to split on

Create unique list
of class labels

B

Calculate
entropy for
each split

C

Find the best
information gain

D

Licensed to Brahim Chaibdraa <chaib@iad.ift.ulaval.ca>

45Tree construction

listing 3.2 and listing 3.1 are used in this function. We’ve made a few assumptions about
the data. The first assumption is that it comes in the form of a list of lists, and all these
lists are of equal size. The next assumption is that the last column in the data or the last
item in each instance is the class label of that instance. You use these assumptions in the
first line of the function to find out how many features you have available in the given
dataset. We didn’t make any assumption on the type of data in the lists. It could be a num-
ber or a string; it doesn’t matter.

 The next part of the code in listing 3.3 calculates the Shannon entropy of the
whole dataset before any splitting has occurred. This gives you the base disorder,
which you’ll later compare to the post split disorder measurements. The first for loop
loops over all the features in our dataset. You use list comprehensions to create a list
of all the ith entries in our dataset, or all the possible values present in the data. B
Next, you use the Python native set data type. Sets are like lists, but a value can occur
only once. Creating a new set from a list is one of the fastest ways of getting the unique
values out of list in Python.

 Next, you go through all the unique values of this feature and split the data for
each feature. C The new entropy is calculated and summed up for all the unique val-
ues of that feature. The information gain is the reduction in entropy or the reduction
in messiness. I hope entropy makes sense when put in terms of reduction of disorder.
Finally, you compare the information gain among all the features and return the
index of the best feature to split on. D

 Now let’s see this in action. After you enter the code from listing 3.3 into trees.py,
type the following at your Python shell:

>>> reload(trees)
<module 'trees' from 'trees.py'>
>>> myDat,labels=trees.createDataSet()
>>> trees.chooseBestFeatureToSplit(myDat)
0
>>> myDat
[[1, 1, 'yes'], [1, 1, 'yes'], [1, 0, 'no'], [0, 1, 'no'], [0, 1, 'no']]

What just happened? The code told you that the 0th feature was the best feature to
split on. Is that right? Does that make any sense? It’s the same data from table 3.1, so
let’s look at table 3.1, or the data from the variable myDat. If you split on the first fea-
ture, that is, put everything where the first feature is 1 in one group and everything
where the first feature is 0 in another group, how consistent is the data? If you do that,
the group where the first feature is 1 will have two yeses and one no. The other group
will have zero yeses and two nos. What if you split on the second feature? The first
group will have two yeses and two nos. The second group will have zero yeses and one
no. The first split does a better job of organizing the data. If you’re not convinced, you
can use the calcShannonEntropy() function from listing 3.1 to test it.

 Now that you can measure how organized a dataset is and you can split the data,
it’s time to put all of this together and build the decision tree.

Licensed to Brahim Chaibdraa <chaib@iad.ift.ulaval.ca>

46 CHAPTER 3 Splitting datasets one feature at a time: decision trees

3.1.3 Recursively building the tree

You now have all the components you need to create an algorithm that makes deci-
sion trees from a dataset. It works like this: you start with our dataset and split it based
on the best attribute to split. These aren’t binary trees, so you can handle more than
two-way splits. Once split, the data will traverse down the branches of the tree to
another node. This node will then split the data again. You’re going to use the princi-
ple of recursion to handle this.

 You’ll stop under the following conditions: you run out of attributes on which to
split or all the instances in a branch are the same class. If all instances have the same
class, then you’ll create a leaf node, or terminating block. Any data that reaches this
leaf node is deemed to belong to the class of that leaf node. This process can be seen
in figure 3.2.

 The first stopping condition makes this algorithm tractable, and you can even set
a bound on the maximum number of splits you can have. You’ll encounter other
decision-tree algorithms later, such as C4.5 and CART. These do not “consume” the
features at each split. This creates a problem for these algorithms because they split

Figure 3.2 Data paths while splitting

Licensed to Brahim Chaibdraa <chaib@iad.ift.ulaval.ca>

47Tree construction

the data, but the number of features doesn’t decrease at each split. Don’t worry about
that for now. You can simply count the number of columns in our dataset to see if
you’ve run out of attributes. If our dataset has run out of attributes but the class labels
are not all the same, you must decide what to call that leaf node. In this situation,
you’ll take a majority vote.

 Open your editor of choice. Before you add the next function, you need to add the
following line to the top of trees.py: import operator. Now, add the following func-
tion to trees.py:

def majorityCnt(classList):
 classCount={}
 for vote in classList:
 if vote not in classCount.keys(): classCount[vote] = 0
 classCount[vote] += 1
 sortedClassCount = sorted(classCount.iteritems(),

key=operator.itemgetter(1), reverse=True)
 return sortedClassCount[0][0]

This function may look familiar; it’s similar to the voting portion of classify0 from
chapter 2. This function takes a list of class names and then creates a dictionary
whose keys are the unique values in classList, and the object of the dictionary is the
frequency of occurrence of each class label from classList. Finally, you use the
operator to sort the dictionary by the keys and return the class that occurs with the
greatest frequency.

 Open trees.py in your editor and add the code from the following listing.

def createTree(dataSet,labels):
 classList = [example[-1] for example in dataSet]
 if classList.count(classList[0]) == len(classList):
 return classList[0]
 if len(dataSet[0]) == 1:
 return majorityCnt(classList)
 bestFeat = chooseBestFeatureToSplit(dataSet)
 bestFeatLabel = labels[bestFeat]
 myTree = {bestFeatLabel:{}}
 del(labels[bestFeat])
 featValues = [example[bestFeat] for example in dataSet]
 uniqueVals = set(featValues)
 for value in uniqueVals:
 subLabels = labels[:]
 myTree[bestFeatLabel][value] = createTree(splitDataSet\
 (dataSet, bestFeat, value),subLabels)
 return myTree

The code in listing 3.4 takes two inputs: the dataset and a list of labels. The list of
labels contains a label for each of the features in the dataset. The algorithm could
function without this, but it would be difficult to make any sense of the data. All of the
previous assumptions about the dataset still hold. You first create a list of all the class
labels in our dataset and call this classList. The first stopping condition is that if all the

Listing 3.4 Tree-building code

Stop when all
classes are equal

B

When no more features,
return majority

C

Get list of
unique values

D

Licensed to Brahim Chaibdraa <chaib@iad.ift.ulaval.ca>

48 CHAPTER 3 Splitting datasets one feature at a time: decision trees

class labels are the same, then you return this label. B The second stopping condition
is the case when there are no more features to split. C If you don’t meet the stopping
conditions, then you use the function created in listing 3.3 to choose the best feature.
Next, you create your tree.

 You’ll use the Python dictionary to store the tree. You could have created a special
data type, but it’s not necessary. The myTree dictionary will be used to store the tree,
and you’ll see how that works soon. You get all the unique values from the dataset for
our chosen feature: bestFeat. D The unique value code uses sets and is similar to a
few lines in listing 3.3.

 Finally, you iterate over all the unique values from our chosen feature and recur-
sively call createTree() for each split of the dataset. This value is inserted into our
myTree dictionary, so you end up with a lot of nested dictionaries representing our
tree. Before we get into the nesting, note that the subLabels = labels[:] line makes
a copy of labels and places it in a new list called subLabels. You do this because Python
passes lists by reference and you’d like the original list to be the same every time you
call createTree().

 Let’s try out this code. After you add the code from listing 3.4 to trees.py, enter the
following in your Python shell:

>>> reload(trees)
<module 'trees' from 'trees.pyc'>
>>> myDat,labels=trees.createDataSet()
>>> myTree = trees.createTree(myDat,labels)
>>> myTree
{'no surfacing': {0: 'no', 1: {'flippers': {0: 'no', 1: 'yes'}}}}

The variable myTree contains the nested dictionaries, which you’re using to represent
our tree structure. Reading left to right, the first key, 'no surfacing', is the name of
the first feature that was split by the create tree. The value of this key is another dic-
tionary. This second dictionary’s keys are the splits of the 'no surfacing' feature. The
values of these keys are the children of the 'no surfacing' node. The values are
either a class label or another dictionary. If the value is a class label, then that child is
a leaf node. If the value is another dictionary, then that child node is a decision node
and the format repeats itself. In our example, we have three leaf nodes and two deci-
sion nodes.

 Now that you’ve properly constructed the tree, you need to display it so that
humans can properly understand the information.

3.2 Plotting trees in Python with Matplotlib annotations
The tree you made in the previous section is great, but it’s a little difficult to visualize.
In this section, we’ll use Matplotlib to create a tree you can look at. One of the great-
est strengths of decision trees is that humans can easily understand them. The plot-
ting library we used in the previous chapter is extremely powerful. Unfortunately,
Python doesn’t include a good tool for plotting trees, so we’ll make our own. We’ll
write a program to draw a decision tree like the one in figure 3.3.

Licensed to Brahim Chaibdraa <chaib@iad.ift.ulaval.ca>

49Plotting trees in Python with Matplotlib annotations

3.2.1 Matplotlib annotations

Matplotlib has a great tool, called annotations, that can add text near data in a plot.
Annotations are usually used to explain some part of the data. But having the text on
top of the data looks ugly, so the tool has a built-in arrow that allows you to draw the text
a safe distance away from the data yet show what data you’re talking about. Figure 3.4
shows this in action. We have a point at (0.2, 0.1), and we placed some text at (0.35, 0.3)
and an arrow pointing to the point at (0.2, 0.1).

We’re going to hijack the annotations and use them for our tree plotting. You can
color in the box of the text and give it a shape you like. Next, you can flip the arrow
and have it point from the data point to the text box. Open your text editor and cre-
ate a new file called treePlotter.py. Add the code from the following listing.

Figure 3.3 Sample decision tree

Plot or graph?
Why use the word plot? Why not use the word graph for talking about showing data
in an image? In some disciplines, the word graph has a different meaning. In applied
mathematics, it’s a representation of a set of objects (vertices) connected by edges.
Any combination of the vertices can be connected by edges. In computer science, a
graph is a data structure that’s used to represent the concept from mathematics.

Licensed to Brahim Chaibdraa <chaib@iad.ift.ulaval.ca>

50 CHAPTER 3 Splitting datasets one feature at a time: decision trees

import matplotlib.pyplot as plt

decisionNode = dict(boxstyle="sawtooth", fc="0.8")
leafNode = dict(boxstyle="round4", fc="0.8")
arrow_args = dict(arrowstyle="<-")

def plotNode(nodeTxt, centerPt, parentPt, nodeType):
 createPlot.ax1.annotate(nodeTxt, xy=parentPt,
xycoords='axes fraction',
 xytext=centerPt, textcoords='axes fraction',
 va="center", ha="center", bbox=nodeType, arrowprops=arrow_args)

def createPlot():
 fig = plt.figure(1, facecolor='white')
 fig.clf()
 createPlot.ax1 = plt.subplot(111, frameon=False)
 plotNode('a decision node', (0.5, 0.1), (0.1, 0.5), decisionNode)
 plotNode('a leaf node', (0.8, 0.1), (0.3, 0.8), leafNode)
 plt.show()

If createPlot() doesn’t look like createPlot() in the example text file, don’t worry.
You’ll change it later. The code in the listing begins by defining some constants that
you’ll use for formatting the nodes. B Next, you create the plotNode() function, which
actually does the drawing. It needs a plot to draw these on, and the plot is the global vari-
able createPlot.ax1. In Python, all variables are global by default, and if you know what
you’re doing, this won’t get you into trouble. Lastly, you have the createPlot() func-
tion, which is the master. Here, you create a new figure, clear it, and then draw on two
nodes to demonstrate the different types of nodes you’ll use in plotting your tree.

 To give this code a try, open your Python shell and import the treePlotter file.

>>> import treePlotter
>>> treePlotter.createPlot()

Listing 3.5 Plotting tree nodes with text annotations

Figure 3.4
Matplotlib annotations
demonstration

Define box and
arrow formatting

B

Draws annotations
with arrows

C

Licensed to Brahim Chaibdraa <chaib@iad.ift.ulaval.ca>

51Plotting trees in Python with Matplotlib annotations

You should see something that looks like figure 3.5. You can alter the points in
plotNode() C to see how the X,Y position changes.

 Now that you can plot the nodes, you’re ready to combine more of these to plot a
whole tree.

3.2.2 Constructing a tree of annotations

You need a strategy for plotting this tree. You have X and Y coordinates. Now, where
do you place all the nodes? You need to know how many leaf nodes you have so that
you can properly size things in the X direction, and you need to know how many levels
you have so you can properly size the Y direction. You’re going to create two new
functions to get the two items you’re looking for. The next listing has the functions
getNumLeafs() and getTreeDepth(). Add these two functions to treePlotter.py.

def getNumLeafs(myTree):
 numLeafs = 0
 firstStr = myTree.keys()[0]
 secondDict = myTree[firstStr]
 for key in secondDict.keys():
 if type(secondDict[key]).__name__=='dict':
 numLeafs += getNumLeafs(secondDict[key])
 else: numLeafs +=1
 return numLeafs

def getTreeDepth(myTree):
 maxDepth = 0
 firstStr = myTree.keys()[0]
 secondDict = myTree[firstStr]
 for key in secondDict.keys():
 if type(secondDict[key]).__name__=='dict':

Listing 3.6 Identifying the number of leaves in a tree and the depth

Figure 3.5 Example of
the plotNode function

Test if node is
dictionary

B

Licensed to Brahim Chaibdraa <chaib@iad.ift.ulaval.ca>

52 CHAPTER 3 Splitting datasets one feature at a time: decision trees

 thisDepth = 1 + getTreeDepth(secondDict[key])
 else: thisDepth = 1
 if thisDepth > maxDepth: maxDepth = thisDepth
 return maxDepth

The two functions in listing 3.6 have the same structure, which you’ll use again later.
The structure is built around how you store the tree in a Python dictionary. The first
key is the label of the first split, and the values associated with that key are the children
of the first node. You get out the first key and value, and then you iterate over all of
the child nodes. You test to see if the child nodes are dictionaries by using the Python
type() method. B If the child node is of type dict, then it is another decision node
and you must recursively call your function. The getNumLeafs() function traverses
the entire tree and counts only the leaf nodes; then it returns this number. The sec-
ond function, getTreeDepth(), counts the number of times you hit a decision node.
The stopping condition is a leaf node, and once this is reached you back out of your
recursive calls and increment the count. To save you some time, I added a simple func-
tion to output premade trees. This will save you the trouble of making a tree from
data every time during testing.

 Enter the following into treePlotter.py:

def retrieveTree(i):
 listOfTrees =[{'no surfacing': {0: 'no', 1: {'flippers': \
 {0: 'no', 1: 'yes'}}}},
 {'no surfacing': {0: 'no', 1: {'flippers': \
 {0: {'head': {0: 'no', 1: 'yes'}}, 1: 'no'}}}}
]
 return listOfTrees[i]

Save treePlotter.py and enter the following into your Python shell:

>>> reload(treePlotter)
<module 'treePlotter' from 'treePlotter.py'>
>>> treePlotter.retrieveTree (1)
{'no surfacing': {0: 'no', 1: {'surfacing': {0: {'head': {0: 'no', 1:

'yes'}}, 1: 'no'}}}}
>>> myTree = treePlotter.retrieveTree (0)
>>> treePlotter.getNumLeafs(myTree)
3
>>> treePlotter.getTreeDepth(myTree)
2

The retrieveTree() function pulls out a predefined tree for testing. You can see that
getNumLeafs() returns three leaves, which is what tree 0 has. The function
getTreeDepth() also returns the proper number levels.

 Now you can put all of these elements together and plot the whole tree. When
you’re finished, the tree will look something like the one in figure 3.6 but without the
labels on the X and Y axes.

 Open your text editor and enter the code from the following listing into
treePlotter.py. Note that you probably already have a version of treePlotter().
Please change it to look like the following code.

Licensed to Brahim Chaibdraa <chaib@iad.ift.ulaval.ca>

53Plotting trees in Python with Matplotlib annotations

def plotMidText(cntrPt, parentPt, txtString):
 xMid = (parentPt[0]-cntrPt[0])/2.0 + cntrPt[0]
 yMid = (parentPt[1]-cntrPt[1])/2.0 + cntrPt[1]
 createPlot.ax1.text(xMid, yMid, txtString)

def plotTree(myTree, parentPt, nodeTxt):
 numLeafs = getNumLeafs(myTree)
 getTreeDepth(myTree)
 firstStr = myTree.keys()[0]
 cntrPt = (plotTree.xOff + (1.0 + float(numLeafs))/2.0/plotTree.totalW,\
 plotTree.yOff)
 plotMidText(cntrPt, parentPt, nodeTxt)
 plotNode(firstStr, cntrPt, parentPt, decisionNode)
 secondDict = myTree[firstStr]
 plotTree.yOff = plotTree.yOff - 1.0/plotTree.totalD
 for key in secondDict.keys():
 if type(secondDict[key]).__name__=='dict':
 plotTree(secondDict[key],cntrPt,str(key))
 else:
 plotTree.xOff = plotTree.xOff + 1.0/plotTree.totalW
 plotNode(secondDict[key], (plotTree.xOff, plotTree.yOff),
 cntrPt, leafNode)
 plotMidText((plotTree.xOff, plotTree.yOff), cntrPt, str(key))
 plotTree.yOff = plotTree.yOff + 1.0/plotTree.totalD

def createPlot(inTree):
 fig = plt.figure(1, facecolor='white')
 fig.clf()
 axprops = dict(xticks=[], yticks=[])
 createPlot.ax1 = plt.subplot(111, frameon=False, **axprops)
 plotTree.totalW = float(getNumLeafs(inTree))
 plotTree.totalD = float(getTreeDepth(inTree))
 plotTree.xOff = -0.5/plotTree.totalW; plotTree.yOff = 1.0;
 plotTree(inTree, (0.5,1.0), '')
 plt.show()

The createPlot() function is the main function you’ll use, and it calls plotTree(),
which in turns calls many of the previous functions and plotMidText(). The function
plotTree() does the majority of the work. The first thing that happens in plotTree()
is the calculation of width and height of the tree. C Two global variables are set up to
store the width (plotTree.totalW) and depth of the tree (plotTree.totalD). These
variables are used in centering the tree nodes vertically and horizontally. The
plotTree() function gets called recursively like getNumLeafs() and getTreeDepth()
from listing 3.6. The width of the tree is used to calculate where to place the decision
node. The idea is to place this in the middle of all the leaf nodes below it, not place it
in the middle of its children. Also note that you use two global variables to keep track
of what has already been plotted and the appropriate coordinate to place the next
node. These values are stored in plotTree.xOff and plotTree.yOff. Another thing
to point out is that you’re plotting everything on the x-axis from 0.0 to 1.0 and on the
y-axis from 0.0 to 1.0. Figure 3.6 has these values labeled for your convenience. The

Listing 3.7 The plotTree function

Plots text
between child
and parent

B

Get the width
and height

C

Plot child
valueD

Decrement
Y offset

E

Licensed to Brahim Chaibdraa <chaib@iad.ift.ulaval.ca>

54 CHAPTER 3 Splitting datasets one feature at a time: decision trees

center point for the current node is plotted with its total width split by the total num-
ber of leafs in the global tree. This allows you to split the x-axis into as many segments
as you have leaves. The beautiful thing about plotting everything in terms of the
image width is that you can resize the image, and the node will be redrawn in its
proper place. If this was drawn in terms of pixels, that wouldn’t be the case. You
couldn’t resize the image as easily.

 Next, you plot the child value or the value for the feature for the split going down
that branch. D The code in plotMidText() calculates the midpoint between the par-
ent and child nodes and puts a simple text label in the middle. B

 Next, you decrement the global variable plotTree.yOff to make a note that you’re
about to draw children nodes. E These nodes could be leaf nodes or other decision
nodes, but you need to keep track of this. You decrement rather than increment
because you start drawing from the top of the image and draw downward. You next
recursively go through the tree in a similar fashion as the getNumLeafs() and
getTreeDepth() functions. If a node is a leaf node, you draw a leaf node. If not, you
recursively call plotTree() again. Finally, after you finish plotting the child nodes,
you increment the global Y offset.

Figure 3.6 Tree plotting of simple dataset showing figure position axes

Licensed to Brahim Chaibdraa <chaib@iad.ift.ulaval.ca>

55Plotting trees in Python with Matplotlib annotations

The last function in listing 3.7 is createPlot(), which handles setting up the image,
calculating the global tree size, and kicking off the recursive plotTree() function.

 Let’s see this in action. After you add the function to treePlotter.py, type the follow-
ing in your Python shell:

>>> reload(treePlotter)
<module 'treePlotter' from 'treePlotter.pyc'>
>>> myTree=treePlotter.retrieveTree (0)
>>> treePlotter.createPlot(myTree)

You should see something like figure 3.6 without the axis labels. Now let’s alter the
dictionary and plot it again.

>>> myTree['no surfacing'][3]='maybe'
>>> myTree
{'no surfacing ': {0: 'no', 1: {'flippers': {0: 'no', 1: 'yes'}}, 3:

'maybe'}}
>>> treePlotter.createPlot(myTree)

You should see something that looks like figure 3.7 (and a lot like a headless stick fig-
ure.) Feel free to play around with the tree data structures and plot them out.

 Now that you can build a decision tree and plot out the tree, you can to put it to
use and see what you can learn from some data and this algorithm.

Figure 3.7 Tree plotting
with more than two splits

Licensed to Brahim Chaibdraa <chaib@iad.ift.ulaval.ca>

56 CHAPTER 3 Splitting datasets one feature at a time: decision trees

3.3 Testing and storing the classifier
The main focus of the first section of this book is on classification. We’ve done a lot of
work in this chapter so far building the tree from data and plotting the tree so a
human can make some sense of the data, but we haven’t yet done any classification.

 In this section, you’ll build a classifier that uses our tree, and then you’ll see how to
persist that classifier on disk for longer storage in a real application. Finally, you’ll put
our decision tree code to use on some real data to see if you can predict what type of
contact lenses a person should use.

3.3.1 Test: using the tree for classification

You want to put our tree to use doing some classification after you’ve learned the tree
from our training data, but how do you do that? You need our tree and the label vec-
tor that you used in creating the tree. The code will then take the data under test and
compare it against the values in the decision tree. It will do this recursively until it hits
a leaf node; then it will stop because it has arrived at a conclusion.

 To see this in action, open your text editor and add the code in the following list-
ing to trees.py.

def classify(inputTree,featLabels,testVec):
 firstStr = inputTree.keys()[0]
 secondDict = inputTree[firstStr]
 featIndex = featLabels.index(firstStr)
 for key in secondDict.keys():
 if testVec[featIndex] == key:
 if type(secondDict[key]).__name__=='dict':
 classLabel = classify(secondDict[key],featLabels,testVec)
 else: classLabel = secondDict[key]
 return classLabel

The code in listing 3.8 follows the same format as the other recursive functions in this
chapter. A problem with storing your data with the label as the feature’s identifier is
that you don’t know where this feature is in the dataset. To clear this up, you first split
on the “no surfacing” attribute, but where is that in the dataset? Is it first or second?
The Labels list will tell you this. You use the index method to find out the first item in
this list that matches firstStr. B With that in mind, you can recursively travel the
tree, comparing the values in testVec to the values in the tree. If you reach a leaf
node, you’ve made your classification and it’s time to exit.

 After you’ve added the code in listing 3.8 to your trees.py file, enter the following
in your Python shell:

>>> myDat,labels=trees.createDataSet()
>>> labels
['no surfacing', 'flippers']
>>> myTree=treePlotter.retrieveTree (0)
>>> myTree
{'no surfacing': {0: 'no', 1: {'flippers': {0: 'no', 1: 'yes'}}}}

Listing 3.8 Classification function for an existing decision tree

Translate label
string to index

B

Licensed to Brahim Chaibdraa <chaib@iad.ift.ulaval.ca>

57Example: using decision trees to predict contact lens type

>>> trees.classify(myTree,labels,[1,0])
'no'
>>> trees.classify(myTree,labels,[1,1])
'yes'

Compare these results to figure 3.6. You have a first node called “no surfacing” that
has two children, one called 0, which has a label of “no”, and one that’s another deci-
sion node called “flippers”. This checks out. The “flippers” node had two children. Is
this the same as between the tree you plotted and the tree data structure? Yes.

 Now that you’ve built a classifier, it would be nice to be able to store this so you
don’t have to rebuild the tree every time you want to do classification.

3.3.2 Use: persisting the decision tree

Building the tree is the majority of the work. It may take a few seconds with our small
datasets, but, with large datasets, this can take a long time. When it’s time to classify
items with a tree, you can do it quickly. It would be a waste of time to build the tree
every time you wanted to make a classification. To get around this, you’re going to use
a Python module, which is properly named pickle, to serialize objects, as shown in the
following listing. Serializing objects allows you to store them for later use. Serializing
can be done with any object, and dictionaries work as well.

def storeTree(in
putTree,filename):
 import pickle
 fw = open(filename,'w')
 pickle.dump(inputTree,fw)
 fw.close()

def grabTree(filename):
 import pickle
 fr = open(filename)
 return pickle.load(fr)

You can experiment with this in your Python shell by typing in the following:

>>> trees.storeTree(myTree,'classifierStorage.txt')
>>> trees.grabTree('classifierStorage.txt')
{'no surfacing': {0: 'no', 1: {'flippers': {0: 'no', 1: 'yes'}}}}

Now you have a way of persisting your classifier so that you don’t have to relearn it
every time you want to classify something. This is another advantage of decision trees
over another machine learning algorithm like kNN from chapter 2; you can distill the
dataset into some knowledge, and you use that knowledge only when you want to clas-
sify something. Let’s use the tools you’ve learned thus far on the Lenses dataset.

3.4 Example: using decision trees to predict contact lens type
In this section, we’ll go through an example that predicts the contacts lens type that
should be prescribed. You’ll take a small dataset and see if you can learn anything

Listing 3.9 Methods for persisting the decision tree with pickle

Licensed to Brahim Chaibdraa <chaib@iad.ift.ulaval.ca>

58 CHAPTER 3 Splitting datasets one feature at a time: decision trees

from it. You’ll see if a decision tree can give you any insight as to how the eye doctor
prescribes contact lenses. You can predict the type of lenses people will use and under-
stand the underlying processes with a decision tree.

The Lenses dataset3 is one of the more famous datasets. It’s a number of observations
based on patients’ eye conditions and the type of contact lenses the doctor prescribed.
The classes are hard, soft, and no contact lenses. The data is from the UCI database
repository and is modified slightly so that it can be displayed easier. The data is stored
in a text file with the source code download.

 You can load the data by typing the following into your Python shell:

>>> fr=open('lenses.txt’)
>>> lenses=[inst.strip().split('\t') for inst in fr.readlines()]
>>> lensesLabels=['age', 'prescript', 'astigmatic', 'tearRate']
>>> lensesTree = trees.createTree(lenses,lensesLabels)
>>> lensesTree
{'tearRate': {'reduced': 'no lenses', 'normal': {'astigmatic': {'yes':
{'prescript': {'hyper': {'age': {'pre': 'no lenses', 'presbyopic':
'no lenses', 'young':'hard'}}, 'myope': 'hard'}}, 'no': {'age': {'pre':
'soft', 'presbyopic': {'prescript': {'hyper': 'soft', 'myope':
'no lenses'}}, 'young': 'soft'}}}}}}
>>> treePlotter.createPlot(lensesTree)

That tree looks difficult to read as a line of text; it’s a good thing you have a way to plot
it. The tree plotted using our createPlot() function is shown in figure 3.8. If you fol-
low the different branches of the tree, you can see what contact lenses should be pre-
scribed to a given individual. One other conclusion you can draw from figure 3.8 is
that a doctor has to ask at most four questions to determine what type of lenses a
patient will need.

3 The dataset is a modified version of the Lenses dataset retrieved from the UCI Machine Learning Repository
November 3, 2010 [http://archive.ics.uci.edu/ml/machine-learning-databases/lenses/]. The source of the
data is Jadzia Cendrowska and was originally published in “PRISM: An algorithm for inducing modular rules,”
in International Journal of Man-Machine Studies (1987), 27, 349–70.

Example: using decision trees to predict contact lens type
1. Collect: Text file provided.

2. Prepare: Parse tab-delimited lines.

3. Analyze: Quickly review data visually to make sure it was parsed properly. The fi-
nal tree will be plotted with createPlot().

4. Train: Use createTree() from section 3.1.

5. Test: Write a function to descend the tree for a given instance.

6. Use: Persist the tree data structure so it can be recalled without building the
tree; then use it in any application.

Licensed to Brahim Chaibdraa <chaib@iad.ift.ulaval.ca>

59Summary

The tree in figure 3.8 matches our data well; however, it probably matches our data
too well. This problem is known as overfitting. In order to reduce the problem of over-
fitting, we can prune the tree. This will go through and remove some leaves. If a leaf
node adds only a little information, it will be cut off and merged with another leaf.
We’ll investigate this further when we revisit decision trees in chapter 9.

 In chapter 9 we’ll also investigate another decision tree algorithm called CART.
The algorithm we used in this chapter, ID3, is good but not the best. ID3 can’t handle
numeric values. We could use continuous values by quantizing them into discrete
bins, but ID3 suffers from other problems if we have too many splits.

3.5 Summary
A decision tree classifier is just like a work-flow diagram with the terminating blocks
representing classification decisions. Starting with a dataset, you can measure the
inconsistency of a set or the entropy to find a way to split the set until all the data
belongs to the same class. The ID3 algorithm can split nominal-valued datasets. Recur-
sion is used in tree-building algorithms to turn a dataset into a decision tree. The tree
is easily represented in a Python dictionary rather than a special data structure.

 Cleverly applying Matplotlib’s annotations, you can turn our tree data into an eas-
ily understood chart. The Python Pickle module can be used for persisting our tree.
The contact lens data showed that decision trees can try too hard and overfit a dataset.
This overfitting can be removed by pruning the decision tree, combining adjacent
leaf nodes that don’t provide a large amount of information gain.

 There are other decision tree–generating algorithms. The most popular are C4.5
and CART. CART will be addressed in chapter 9 when we use it for regression.

Figure 3.8 Decision
tree generated by the
ID3 algorithm

Licensed to Brahim Chaibdraa <chaib@iad.ift.ulaval.ca>

60 CHAPTER 3 Splitting datasets one feature at a time: decision trees

 The first two chapters in this book have drawn hard conclusions about data such as
“This data instance is in this class!” What if we take a softer approach, such as “Well,
I’m not quite sure where that data should go. Maybe here? Maybe there?” What if we
assign a probability to a data instance belonging to a given class? This will be the focus
of the next chapter.

Licensed to Brahim Chaibdraa <chaib@iad.ift.ulaval.ca>

61

Classifying
 with probability

 theory: naïve Bayes

In the first two chapters we asked our classifier to make hard decisions. We asked
for a definite answer for the question “Which class does this data instance belong
to?” Sometimes the classifier got the answer wrong. We could instead ask the classi-
fier to give us a best guess about the class and assign a probability estimate to that
best guess.

 Probability theory forms the basis for many machine-learning algorithms, so it’s
important that you get a good grasp on this topic. We touched on probability a bit
in chapter 3 when we were calculating the probability of a feature taking a given

This chapter covers
! Using probability distributions for classification
! Learning the naïve Bayes classifier
! Parsing data from RSS feeds
! Using naïve Bayes to reveal regional attitudes

Licensed to Brahim Chaibdraa <chaib@iad.ift.ulaval.ca>

