
61

Classifying
 with probability

 theory: naïve Bayes

In the first two chapters we asked our classifier to make hard decisions. We asked
for a definite answer for the question “Which class does this data instance belong
to?” Sometimes the classifier got the answer wrong. We could instead ask the classi-
fier to give us a best guess about the class and assign a probability estimate to that
best guess.

 Probability theory forms the basis for many machine-learning algorithms, so it’s
important that you get a good grasp on this topic. We touched on probability a bit
in chapter 3 when we were calculating the probability of a feature taking a given

This chapter covers
! Using probability distributions for classification
! Learning the naïve Bayes classifier
! Parsing data from RSS feeds
! Using naïve Bayes to reveal regional attitudes

Licensed to Brahim Chaibdraa <chaib@iad.ift.ulaval.ca>

62 CHAPTER 4 Classifying with probability theory: naïve Bayes

value. We calculated the probability by counting the number of times the feature
equals that value divided by the total number of instances in the dataset. We’re going
to expand a little from there in this chapter.

 We’ll look at some ways probability theory can help us classify things. We start out
with the simplest probabilistic classifier and then make a few assumptions and learn
the naïve Bayes classifier. It’s called naïve because the formulation makes some naïve
assumptions. Don’t worry; you’ll see these in detail in a bit. We’ll take full advantage of
Python’s text-processing abilities to split up a document into a word vector. This will
be used to classify text. We’ll build another classifier and see how it does on a real-
world spam email dataset. We’ll review conditional probability in case you need a
refresher. Finally, we’ll show how you can put what the classifier has learned into
human-readable terms from a bunch of personal ad postings.

4.1 Classifying with Bayesian decision theory

Naïve Bayes is a subset of Bayesian decision theory, so we need to talk about Bayesian
decision theory quickly before we get to naïve Bayes.

 Assume for a moment that we have a dataset with two classes of data inside. A plot
of this data is shown in figure 4.1.

Naïve Bayes
Pros: Works with a small amount of data, handles multiple classes

Cons: Sensitive to how the input data is prepared

Works with: Nominal values

Figure 4.1 Two proba-
bility distribu-tions with
known parameters de-
scribing the distribu-
tion

Licensed to Brahim Chaibdraa <chaib@iad.ift.ulaval.ca>

63Conditional probability

We have the data shown in figure 4.1 and we have a friend who read this book; she found
the statistical parameters of the two classes of data. (Don’t worry about how to find the
statistical parameters for this type of data now; we’ll get to that in chapter 10.) We have
an equation for the probability of a piece of data belonging to Class 1 (the circles): p1(x,
y), and we have an equation for the class belonging to Class 2 (the triangles): p2(x, y).
To classify a new measurement with features (x, y), we use the following rules:

If p1(x, y) > p2(x, y), then the class is 1.
If p2(x, y) > p1(x, y), then the class is 2.

Put simply, we choose the class with the higher probability. That’s Bayesian decision
theory in a nutshell: choosing the decision with the highest probability. Let’s get back
to the data in figure 4.1. If you can represent the data in six floating-point numbers,
and the code to calculate the probability is two lines in Python, which would you
rather do?

1 Use kNN from chapter 1, and do 1,000 distance calculations.
2 Use decision trees from chapter 2, and make a split of the data once along the

x-axis and once along the y-axis.
3 Compute the probability of each class, and compare them

The decision tree wouldn’t be very successful, and kNN would require a lot of calcula-
tions compared to the simple probability calculation. Given this problem, the best
choice would be the probability comparison we just discussed.

 We’re going to have to expand on the p1 and p1 probability measures I provided
here. In order to be able to calculate p1 and p2, we need to discuss conditional proba-
bility. If you feel that you have a good handle on conditional probability, you can skip
the next section.

4.2 Conditional probability
Let’s spend a few minutes talking about probability and conditional probability. If
you’re comfortable with the p(x,y|c1) symbol, you may want to skip this section.

 Let’s assume for a moment that we have a jar containing seven stones. Three of these
stones are gray and four are black, as shown in figure 4.2. If we stick a hand into this jar
and randomly pull out a stone, what are the chances that the stone will be gray? There
are seven possible stones and three are gray, so the probability is 3/7. What is the

Bayes?
This interpretation of probability that we use belongs to the category called Bayesian
probability; it’s popular and it works well. Bayesian probability is named after Thomas
Bayes, who was an eighteenth-century theologian. Bayesian probability allows prior
knowledge and logic to be applied to uncertain statements. There’s another
interpretation called frequency probability, which only draws conclusions from data
and doesn’t allow for logic and prior knowledge.

Licensed to Brahim Chaibdraa <chaib@iad.ift.ulaval.ca>

64 CHAPTER 4 Classifying with probability theory: naïve Bayes

probability of grabbing a black stone? It’s 4/7. We
write the probability of gray as P(gray). We calcu-
lated the probability of drawing a gray stone
P(gray) by counting the number of gray stones
and dividing this by the total number of stones.

 What if the seven stones were in two buckets?
This is shown in figure 4.3.

 If you want to calculate the P(gray) or
P(black), would knowing the bucket change the
answer? If you wanted to calculate the probabil-
ity of drawing a gray stone from bucket B, you
could probably figure out how do to that. This is known as conditional probability. We’re
calculating the probability of a gray stone, given that the unknown stone comes from
bucket B. We can write this as P(gray|bucketB), and this would be read as “the prob-
ability of gray given bucket B.” It’s not hard to see that P(gray|bucketA) is 2/4 and
P(gray|bucketB) is 1/3.

 To formalize how to calculate the conditional probability, we can say

P(gray|bucketB) = P(gray and bucketB)/P(bucketB)

Let’s see if that makes sense: P(gray and bucketB) = 1/7. This was calculated by taking
the number of gray stones in bucket B and dividing by the total number of stones. Now,
P(bucketB) is 3/7 because there are three stones in bucket B of the total seven stones.
Finally, P(gray|bucketB) = P(gray and bucketB)/P(bucketB) = (1/7) / (3/7) = 1/3.
This formal definition may seem like too much work for this simple example, but it will
be useful when we have more features. It’s also useful to have this formal definition if
we ever need to algebraically manipulate the conditional probability.

 Another useful way to manipulate conditional probabilities is known as Bayes’ rule.
Bayes’ rule tells us how to swap the symbols in a conditional probability statement. If
we have P(x|c) but want to have P(c|x), we can find it with the following:

Figure 4.3 Seven stones sitting in two buckets

p c x� � p x c� �p c� �
p x� �

--------------------------=

Figure 4.2 A collection has seven
stones that are gray or black. If we ran-
domly select a stone from this set, the
probability it will be a gray stone
is 3/7. Similarly, the probability of se-
lecting a black stone is 4/7.

Licensed to Brahim Chaibdraa <chaib@iad.ift.ulaval.ca>

65Document classification with naïve Bayes

Now that we’ve discussed conditional probability, we need to see how to apply this to
our classifier. The next section will discuss how to use conditional probabilities with
Bayesian decision theory.

4.3 Classifying with conditional probabilities
In section 4.1, I said that Bayesian decision theory told us to find the two probabilities:

If p1(x, y) > p2(x, y), then the class is 1.
If p2(x, y) > p1(x, y), then the class is 2.

These two rules don’t tell the whole story. I just left them as p1() and p2() to keep it
as simple as possible. What we really need to compare are p(c1|x,y) and p(c2|x,y).
Let’s read these out to emphasize what they mean. Given a point identified as x,y, what
is the probability it came from class c1? What is the probability it came from class c2?.
The problem is that the equation from our friend is p(x,y|c1), which is not the same.
We can use Bayes’ rule to switch things around. Bayes’ rule is applied to these state-
ments as follows:

With these definitions, we can define the Bayesian classification rule:

If P(c1|x, y) > P(c2|x, y), the class is c1.
If P(c1|x, y) < P(c2|x, y), the class is c2.

Using Bayes’ rule, we can calculate this unknown from three known quantities. We’ll
soon write some code to calculate these probabilities and classify items using Bayes’ rule.
Now that we’ve introduced a bit of probability theory, and you’ve seen how you can
build a classifier with it, we’re going to put this in action. The next section will intro-
duce a simple yet powerful application of the Bayesian classifier.

4.4 Document classification with naïve Bayes
One important application of machine learning is automatic document classification.
In document classification, the whole document such as an individual email is our
instance and the features are things in that email. Email is an example that keeps
coming up, but you could classify news stories, message board discussions, filings with
the government, or any type of text. You can look at the documents by the words used
in them and treat the presence or absence of each word as a feature. This would give
you as many features as there are words in your vocabulary. Naïve Bayes—an extension
of the Bayesian classifier introduced in the last section—is a popular algorithm for the
document-classification problem.

 Earlier I mentioned that we’re going to use individual words as features and look
for the presence or absence of each word. How many features is that? Which (human)
language are we assuming? It may be more than one language. The estimated total

p ci x,y� �
p x,y ci� �p ci� �

p x,y� �
---------------------------------=

Licensed to Brahim Chaibdraa <chaib@iad.ift.ulaval.ca>

66 CHAPTER 4 Classifying with probability theory: naïve Bayes

number of words in the English language is over 500,000.1] To be able to read in Eng-
lish, it’s estimated that you need to understand thousands of words.

 Let’s assume that our vocabulary is 1,000 words long. In order to generate good
probability distributions, we need enough data samples. Let’s call this N samples. In
previous examples in this book, we had 1,000 examples for the dating site, 200 exam-
ples per digit in the handwriting recognition, and 24 examples for our decision tree.
Having 24 examples was a little bit low, 200 samples was better, and 1,000 samples was
great. In the dating example we had three features. Statistics tells us that if we need N
samples for one feature, we need N10 for 10 features and N1000 for our 1,000-feature
vocabulary. The number will get very large very quickly.

 If we assume independence among the features, then our N1000 data points get
reduced to 1000*N. By independence I mean statistical independence; one feature or
word is just as likely by itself as it is next to other words. We’re assuming that the word
bacon is as likely to appear next to unhealthy as it is next to delicious. We know this
assumption isn’t true; bacon almost always appears near delicious but very seldom near
unhealthy. This is what is meant by naïve in the naïve Bayes classifier. The other assump-
tion we make is that every feature is equally important. We know that isn’t true either.
If we were trying to classify a message board posting as inappropriate, we probably
don’t need to look at 1,000 words; maybe 10 or 20 will do. Despite the minor flaws of
these assumptions, naïve Bayes works well in practice.

 At this point you know enough about this topic to get started with some code. If
everything doesn’t make sense right now, it might help to see this in action. In the
next section, we’ll start to implement the naïve Bayes classifier in Python. We’ll go
through everything that’s needed to classify text with Python.

1 http://hypertextbook.com/facts/2001/JohnnyLing.shtml retrieved October 20, 2010.

General approach to naïve Bayes
1. Collect: Any method. We’ll use RSS feeds in this chapter.

2. Prepare: Numeric or Boolean values are needed.

3. Analyze: With many features, plotting features isn’t helpful. Looking at histo-
grams is a better idea.

4. Train: Calculate the conditional probabilities of the independent features.

5. Test: Calculate the error rate.

6. Use: One common application of naïve Bayes is document classification. You
can use naïve Bayes in any classification setting. It doesn’t have to be text.

Licensed to Brahim Chaibdraa <chaib@iad.ift.ulaval.ca>

67Classifying text with Python

4.5 Classifying text with Python
In order to get features from our text, we need to split up the text. But how do we do
that? Our features are going to be tokens we get from the text. A token is any combina-
tion of characters. You can think of tokens as words, but we may use things that aren’t
words such as URLs, IP addresses, or any string of characters. We’ll reduce every piece
of text to a vector of tokens where 1 represents the token existing in the document
and 0 represents that it isn’t present.

 To see this in action, let’s make a quick filter for an online message board that flags
a message as inappropriate if the author uses negative or abusive language. Filtering
out this sort of thing is common because abusive postings make people not come back
and can hurt an online community. We’ll have two categories: abusive and not. We’ll
use 1 to represent abusive and 0 to represent not abusive.

 First, we’re going to show how to transform lists of text into a vector of numbers.
Next, we’ll show how to calculate conditional probabilities from these vectors. Then,
we’ll create a classifier, and finally, we’ll look at some practical considerations for
implementing naïve Bayes in Python.

4.5.1 Prepare: making word vectors from text

We’re going to start looking at text in the form of word vectors or token vectors, that
is, transform a sentence into a vector. We consider all the words in all of our docu-
ments and decide what we’ll use for a vocabulary or set of words we’ll consider. Next,
we need to transform each individual document into a vector from our vocabulary. To
get started, open your text editor, create a new file called bayes.py, and add the code
from the following listing.

def loadDataSet():
 postingList=[['my', 'dog', 'has', 'flea', \
 'problems', 'help', 'please'],
 ['maybe', 'not', 'take', 'him', \
 'to', 'dog', 'park', 'stupid'],
 ['my', 'dalmation', 'is', 'so', 'cute', \
 'I', 'love', 'him'],
 ['stop', 'posting', 'stupid', 'worthless', 'garbage'],
 ['mr', 'licks', 'ate', 'my', 'steak', 'how',\
 'to', 'stop', 'him'],
 ['quit', 'buying', 'worthless', 'dog', 'food', 'stupid']]
 classVec = [0,1,0,1,0,1] #1 is abusive, 0 not
 return postingList,classVec

def createVocabList(dataSet):
 vocabSet = set([])
 for document in dataSet:
 vocabSet = vocabSet | set(document)
 return list(vocabSet)

def setOfWords2Vec(vocabList, inputSet):

Listing 4.1 Word list to vector function

Create an
empty set

B

Create the union
of two setsC

Licensed to Brahim Chaibdraa <chaib@iad.ift.ulaval.ca>

68 CHAPTER 4 Classifying with probability theory: naïve Bayes

 returnVec = [0]*len(vocabList)
 for word in inputSet:
 if word in vocabList:
 returnVec[vocabList.index(word)] = 1
 else: print "the word: %s is not in my Vocabulary!" % word
 return returnVec

The first function creates some example data to experiment with. The first variable
returned from loadDatSet() is a tokenized set of documents from a Dalmatian (spot-
ted breed of dog) lovers message board. The text has been broken up into a set of
tokens. Punctuation has been removed from this text as well. We’ll return to text pro-
cessing later. The second variable of loadDatSet() returns a set of class labels. Here
you have two classes, abusive and not abusive. The text has been labeled by a
human and will be used to train a program to automatically detect abusive posts.

 Next, the function createVocabList() will create a list of all the unique words in all
of our documents. To create this unique list you use the Python set data type. You can
give a list of items to the set constructor, and it will only return a unique list. First, you
create an empty set. B Next, you append the set with a new set from each document.
C The | operator is used for union of two sets; recall that this is the bitwise OR operator
from C. Bitwise OR and set union also use the same symbols in mathematical notation.

 Finally, after you have our vocabulary list, you can use the function
setOfWords2Vec(), which takes the vocabulary list and a document and outputs a vec-
tor of 1s and 0s to represent whether a word from our vocabulary is present or not in
the given document. You then create a vector the same length as the vocabulary list and
fill it up with 0s. D Next, you go through the words in the document, and if the word
is in the vocabulary list, you set its value to 1 in the output vector. If everything goes well,
you shouldn’t need to test if a word is in vocabList, but you may use this later.

 Now let’s look at these functions in action. Save bayes.py, and enter the following
into your Python shell:

>>> import bayes
>>> listOPosts,listClasses = bayes.loadDataSet()
>>> myVocabList = bayes.createVocabList(listOPosts)
>>> myVocabList
['cute', 'love', 'help', 'garbage', 'quit', 'I', 'problems', 'is', 'park',
'stop', 'flea', 'dalmation', 'licks', 'food', 'not', 'him', 'buying',
'posting', 'has', 'worthless', 'ate', 'to', 'maybe', 'please', 'dog',
'how', 'stupid', 'so', 'take', 'mr', 'steak', 'my']

If you examine this list, you’ll see that there are no repeated words. The list is
unsorted, and if you want to sort it, you can do that later.

 Let’s look at the next function setOfWords2Vec():

>>> bayes.setOfWords2Vec(myVocabList, listOPosts[0])
[0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1,
0, 0, 0, 0, 0, 0, 1]
>>> bayes.setOfWords2Vec(myVocabList, listOPosts[3])
[0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0,
0, 1, 0, 0, 0, 0, 0]

Create a vector
of all 0sD

Licensed to Brahim Chaibdraa <chaib@iad.ift.ulaval.ca>

69Classifying text with Python

This has taken our vocabulary list or list of all the words you’d like to examine and cre-
ated a feature for each of them. Now when you apply a given document (a posting to
the Dalmatian site), it will be transformed into a word vector. Check to see if this makes
sense. What’s the word at index 2 in myVocabList? It should be help. This word should
be in our first document. Now check to see that it isn’t in our fourth document.

4.5.2 Train: calculating probabilities from word vectors
Now that you’ve seen how to convert from words to numbers, let’s see how to calculate
the probabilities with these numbers. You know whether a word occurs in a document,
and you know what class the document belongs to. Do you remember Bayes’ rule
from section 3.2? It’s rewritten here, but I’ve changed the x,y to w. The bold type
means that it’s a vector; that is, we have many values, in our case as many values as
words in our vocabulary.

We’re going to use the right side of the formula to get the value on the left. We’ll do
this for each class and compare the two probabilities. How do we get the stuff on the
right? We can calculate p(ci) by adding up how many times we see class i (abusive
posts or non-abusive posts) and then dividing by the total number of posts. How can
we get p(w|ci)? This is where our naïve assumption comes in. If we expand w into
individual features, we could rewrite this as p(w0,w1,w2..wN|ci). Our assumption that
all the words were independently likely, and something called conditional indepen-
dence, says we can calculate this probability as p(w0|ci)p(w1|ci)p(w2|ci)...p(wN|ci).
This makes our calculations a lot easier.

 Pseudocode for this function would look like this:

Count the number of documents in each class
for every training document:

 for each class:
 if a token appears in the document " increment the count for that token
 increment the count for tokens
 for each class:
 for each token:
 divide the token count by the total token count to get conditional probabilities
 return conditional probabilities for each class

The code in the following listing will do these calculations for us. Open your text edi-
tor and insert this code into bayes.py. This function uses some functions from NumPy,
so make sure you add from numpy import * to the top of bayes.py.

def trainNB0(trainMatrix,trainCategory):
 numTrainDocs = len(trainMatrix)
 numWords = len(trainMatrix[0])

Listing 4.2 Naïve Bayes classifier training function

p ci w� �
p w ci� �p ci� �

p w� �
------------------------------=

Licensed to Brahim Chaibdraa <chaib@iad.ift.ulaval.ca>

70 CHAPTER 4 Classifying with probability theory: naïve Bayes

 pAbusive = sum(trainCategory)/float(numTrainDocs)
 p0Num = zeros(numWords); p1Num = zeros(numWords)
 p0Denom = 0.0; p1Denom = 0.0
 for i in range(numTrainDocs):
 if trainCategory[i] == 1:
 p1Num += trainMatrix[i]
 p1Denom += sum(trainMatrix[i])
 else:
 p0Num += trainMatrix[i]
 p0Denom += sum(trainMatrix[i])
 p1Vect = p1Num/p1Denom #change to log()
 p0Vect = p0Num/p0Denom #change to log()
 return p0Vect,p1Vect,pAbusive

The function in listing 4.2 takes a matrix of documents, trainMatrix, and a vector
with the class labels for each of the documents, trainCategory. The first thing you do
is calculate the probability the document is an abusive document (class=1). This is
P(1) from above; because this is a two-class problem, you can get P(0) by 1-P(1). For
more than a two-class problem, you’d need to modify this a little.

 You initialize the numerator and denominator for the p(wi|c1) and p(wi|c0) calcu-
lations. B Since you have so many ws, you’re going to use NumPy arrays to calculate
these values quickly. The numerator is a NumPy array with the same number of ele-
ments as you have words in your vocabulary. In the for loop you loop over all the
documents in trainMatrix, or our training set. Every time a word appears in a docu-
ment, the count for that word (p1Num or p0Num) gets incremented, and the total num-
ber of words for a document gets summed up over all the documents. C You do this
for both classes.

 Finally, you divide every element by the total number of words for that class. D
This is done compactly in NumPy by dividing an array by a float. This can’t be done
with regular Python lists. Try it out to see for yourself. Finally, the two vectors and one
probability are returned.

 Let’s try this out. After you’ve added the code from listing 4.2 to bayes.py, open
your Python shell and enter the following:

>>> from numpy import *
>>> reload(bayes)
<module 'bayes' from 'bayes.py'>
>>> listOPosts,listClasses = bayes.loadDataSet()
This loads the data from preloaded values.
>>> myVocabList = bayes.createVocabList(listOPosts)
You’ve now created a list of all our words in myVocabList.
>>> trainMat=[]
>>> for postinDoc in listOPosts:
... trainMat.append(bayes.setOfWords2Vec(myVocabList, postinDoc))
...

This for loop populates the trainMat list with word vectors. Now let’s get the proba-
bilities of being abusive and the two probability vectors:

>>> p0V,p1V,pAb=bayes.trainNB0(trainMat,listClasses)

Initialize
probabilities

B

Vector
addition

C

Element-wise
divisionD

Licensed to Brahim Chaibdraa <chaib@iad.ift.ulaval.ca>

71Classifying text with Python

Let’s look inside each of these variables:

>>> pAb
0.5
This is just the probability of any document being abusive.
>>> p0V
array([0.04166667, 0.04166667, 0.04166667, 0. , 0. ,
 .
 .
 0.04166667, 0. , 0.04166667, 0. , 0.04166667,
 0.04166667, 0.125])
>>> p1V
array([0. , 0. , 0. , 0.05263158, 0.05263158,
 .
 .
 0. , 0.15789474, 0. , 0.05263158, 0. ,
 0. , 0.])

First, you found the probability that a document was abusive: pAb; this is 0.5, which is
correct. Next, you found the probabilities of the words from our vocabulary given
the document class. Let’s see if this makes sense. The first word in our vocabulary is
cute. This appears once in the 0 class and never in the 1 class. The probabilities
are 0.04166667 and 0.0. This makes sense. Let’s look for the largest probability.
That’s 0.15789474 in the P(1) array at index 21. If you look at the word in myVocabList
at index 26, you’ll see that it’s the word stupid. This tells you that the word stupid is most
indicative of a class 1 (abusive).

 Before we can go on to classification with this, we need to address a few flaws in the
previous function.

4.5.3 Test: modifying the classifier for real-world conditions
When we attempt to classify a document, we multiply a lot of probabilities together to
get the probability that a document belongs to a given class. This will look something
like p(w0|1)p(w1|1)p(w2|1). If any of these numbers are 0, then when we multiply
them together we get 0. To lessen the impact of this, we’ll initialize all of our occur-
rence counts to 1, and we’ll initialize the denominators to 2.

 Open bayes.py in your text editor, and change lines 4 and 5 of trainNB0() to

p0Num = ones(numWords); p1Num = ones(numWords)
p0Denom = 2.0; p1Denom = 2.0

Another problem is underflow: doing too many multiplications of small numbers.
When we go to calculate the product p(w0|ci)p(w1|ci)p(w2|ci)...p(wN|ci) and many
of these numbers are very small, we’ll get underflow, or an incorrect answer. (Try to
multiply many small numbers in Python. Eventually it rounds off to 0.) One solution
to this is to take the natural logarithm of this product. If you recall from algebra,
ln(a*b) = ln(a)+ln(b). Doing this allows us to avoid the underflow or round-off
error problem. Do we lose anything by using the natural log of a number rather than
the number itself? The answer is no. Figure 4.4 plots two functions, f(x) and
ln(f(x)). If you examine both of these plots, you’ll see that they increase and

Licensed to Brahim Chaibdraa <chaib@iad.ift.ulaval.ca>

72 CHAPTER 4 Classifying with probability theory: naïve Bayes

decrease in the same areas, and they have their peaks in the same areas. Their values
are different, but that’s fine. To modify our classifier to account for this, modify the
last two lines before the return to look like this:

p1Vect = log(p1Num/p1Denom)
p0Vect = log(p0Num/p0Denom)

We’re now ready to build the full classifier. It’s quite simple when we’re using vector
math with NumPy. Open your text editor and add the code from the following listing
to bayes.py.

def classifyNB(vec2Classify, p0Vec, p1Vec, pClass1):
 p1 = sum(vec2Classify * p1Vec) + log(pClass1)
 p0 = sum(vec2Classify * p0Vec) + log(1.0 - pClass1)
 if p1 > p0:
 return 1
 else:
 return 0

def testingNB():
 listOPosts,listClasses = loadDataSet()
 myVocabList = createVocabList(listOPosts)
 trainMat=[]
 for postinDoc in listOPosts:
 trainMat.append(setOfWords2Vec(myVocabList, postinDoc))

Listing 4.3 Naïve Bayes classify function

Figure 4.4 Arbitrary functions f(x) and ln(f(x)) increasing together. This shows
that the natural log of a function can be used in place of a function when you’re interested
in finding the maximum value of that function.

Element-wise
multiplicationB

Licensed to Brahim Chaibdraa <chaib@iad.ift.ulaval.ca>

73Classifying text with Python

 p0V,p1V,pAb = trainNB0(array(trainMat),array(listClasses))
 testEntry = ['love', 'my', 'dalmation']
 thisDoc = array(setOfWords2Vec(myVocabList, testEntry))
 print testEntry,'classified as: ',classifyNB(thisDoc,p0V,p1V,pAb)
 testEntry = ['stupid', 'garbage']
 thisDoc = array(setOfWords2Vec(myVocabList, testEntry))
 print testEntry,'classified as: ',classifyNB(thisDoc,p0V,p1V,pAb)

The code in listing 4.3 takes four inputs: a vector to classify called vec2Classify and three
probabilities calculated in the function trainNB0(). You use NumPy arrays to multiply
two vectors. B The multiplication is element–wise; that is, you multiply the first elements
of both vectors, then the second elements, and so on. You next add up the values for all
of the words in our vocabulary and add this to the log probability of the class. Finally,
you see which probability is greater and return the class label. That isn’t too hard, is it?

 The second function in listing 4.3 is a convenience function to wrap up everything
properly and save you some time from typing all the code from section 4.3.1.

 Let’s try it out. After you’ve added the code from listing 4.3, enter the following
into your Python shell:

>>> reload(bayes)
<module 'bayes' from 'bayes.pyc'>
>>>bayes.testingNB()
['love', 'my', 'dalmation'] classified as: 0
['stupid', 'garbage'] classified as: 1

Change the text and see what the classifier spits out. This example is overly simplistic,
but it demonstrates how the naïve Bayes classifier works. We’ll next make a few
changes to it so that it will work even better.

4.5.4 Prepare: the bag-of-words document model
Up until this point we’ve treated the presence or absence of a word as a feature. This
could be described as a set-of-words model. If a word appears more than once in a
document, that might convey some sort of information about the document over just
the word occurring in the document or not. This approach is known as a bag-of-words
model. A bag of words can have multiple occurrences of each word, whereas a set of
words can have only one occurrence of each word. To accommodate for this we need
to slightly change the function setOfWords2Vec() and call it bagOfWords2VecMN().

 The code to use the bag-of-words model is given in the following listing. It’s nearly
identical to the function setOfWords2Vec() listed earlier, except every time it encoun-
ters a word, it increments the word vector rather than setting the word vector to 1 for
a given index.

def bagOfWords2VecMN(vocabList, inputSet):
 returnVec = [0]*len(vocabList)
 for word in inputSet:
 if word in vocabList:
 returnVec[vocabList.index(word)] += 1
 return returnVec

Listing 4.4 Naïve Bayes bag-of-words model

Licensed to Brahim Chaibdraa <chaib@iad.ift.ulaval.ca>

74 CHAPTER 4 Classifying with probability theory: naïve Bayes

Now that we have a classifier built, we should be able to put this into action classifying
spam.

4.6 Example: classifying spam email with naïve Bayes
In the previous simple example we imported a list of strings. To use naïve Bayes on
some real-life problems we’ll need to be able to go from a body of text to a list of
strings and then a word vector. In this example we’re going to visit the famous use of
naïve Bayes: email spam filtering. Let’s first look at how we’d approach this problem
with our general framework.

First, we’ll create some code to parse text into tokens. Next, we’ll write a function that
ties together the parsing and the classification code from earlier in this chapter. This
function will also test the classifier and give us an error rate.

4.6.1 Prepare: tokenizing text

The previous section showed how to create word vectors and use naïve Bayes to classify
with these word vectors. The word vectors in the previous section came premade. Let’s
see how to create your own lists of words from text documents.

 If you have a text string, you can split it using the Python string .split() method.
Let’s see this in action. Enter the following into your Python shell:

>>> mySent='This book is the best book on Python or M.L. I have ever laid
eyes upon.'
>>> mySent.split()
['This', 'book', 'is', 'the', 'best', 'book', 'on', 'Python', 'or', 'M.L.',
 'I', 'have', 'ever', 'laid', 'eyes', 'upon.']

That works well, but the punctuation is considered part of the word. You can use regu-
lar expressions to split up the sentence on anything that isn’t a word or number:

>>> import re
>>> regEx = re.compile('\\W*')
>>> listOfTokens = regEx.split(mySent)

Example: using naïve Bayes to classify email
1. Collect: Text files provided.

2. Prepare: Parse text into token vectors.

3. Analyze: Inspect the tokens to make sure parsing was done correctly.

4. Train: Use trainNB0() that we created earlier.

5. Test: Use classifyNB() and create a new testing function to calculate the error
rate over a set of documents.

6. Use: Build a complete program that will classify a group of documents and print
misclassified documents to the screen.

Licensed to Brahim Chaibdraa <chaib@iad.ift.ulaval.ca>

75Example: classifying spam email with naïve Bayes

>>> listOfTokens
['This', 'book', 'is', 'the', 'best', 'book', 'on', 'Python', 'or', 'M',
'L', '', 'I', 'have', 'ever', 'laid', 'eyes', 'upon', '']

Now you have a list of words. But you have some empty strings you need to get rid of.
You can count the length of each string and return only the items greater than 0.

>>> [tok for tok in listOfTokens if len(tok) > 0]

Finally, the first word in the sentence is capitalized. If you were looking at sentences,
this would be helpful. You’re just looking at a bag of words, so you want all the words
to look the same whether they’re in the middle, end, or beginning of a sentence.
Python has built-in methods for converting strings to all lowercase (.lower()) or all
uppercase (.upper()). This will solve our problem. Let’s change our list comprehen-
sion to the following:

>>> [tok.lower() for tok in listOfTokens if len(tok) > 0]
['this', 'book', 'is', 'the', 'best', 'book', 'on', 'python', 'or', 'm',
'l', 'i', 'have', 'ever', 'laid', 'eyes', 'upon']

Now let’s see this in action with a full email from our email dataset. The email dataset
is in a folder called email, with two subfolders called spam and ham.

>>> emailText = open('email/ham/6.txt').read()
>>> listOfTokens=regEx.split(emailText)

The file named 6.txt in the ham folder is quite long. It’s from a company
telling me that they no longer support something. One thing to notice is that
we now have words like en and py because they were originally part of a URL:
/answer.py?hl=en&answer=174623. When we split the URL we got a lot of words. We’d
like to get rid of these words, so we’ll filter out words with less than three characters.
We used one blanket text-parsing rule for this example. In a real-world parsing pro-
gram, you should have more advanced filters that look for things like HTML and URIs.
Right now, a URI will wind up as one of our words; www.whitehouse.GOV will wind up
as three words. Text parsing can be an involved process. We’ll create a bare-bones
function, and you can modify as you see fit.

4.6.2 Test: cross validation with naïve Bayes

Let’s put this text parser to work with a whole classifier. Open your text editor and add
the code from this listing to bayes.py.

def textParse(bigString):
 import re
 listOfTokens = re.split(r'\W*', bigString)
 return [tok.lower() for tok in listOfTokens if len(tok) > 2]

def spamTest():
 docList=[]; classList = []; fullText =[]
 for i in range(1,26):

Listing 4.5 File parsing and full spam test functions

Licensed to Brahim Chaibdraa <chaib@iad.ift.ulaval.ca>

76 CHAPTER 4 Classifying with probability theory: naïve Bayes

 wordList = textParse(open('email/spam/%d.txt' % i).read())
 docList.append(wordList)
 fullText.extend(wordList)
 classList.append(1)
 wordList = textParse(open('email/ham/%d.txt' % i).read())
 docList.append(wordList)
 fullText.extend(wordList)
 classList.append(0)
 vocabList = createVocabList(docList)
 trainingSet = range(50); testSet=[]
 for i in range(10):
 randIndex = int(random.uniform(0,len(trainingSet)))
 testSet.append(trainingSet[randIndex])
 del(trainingSet[randIndex])
 trainMat=[]; trainClasses = []
 for docIndex in trainingSet:
 trainMat.append(setOfWords2Vec(vocabList, docList[docIndex]))
 trainClasses.append(classList[docIndex])
 p0V,p1V,pSpam = trainNB0(array(trainMat),array(trainClasses))
 errorCount = 0
 for docIndex in testSet:
 wordVector = setOfWords2Vec(vocabList, docList[docIndex])
 if classifyNB(array(wordVector),p0V,p1V,pSpam) !=

classList[docIndex]:
 errorCount += 1
 print 'the error rate is: ',float(errorCount)/len(testSet)

The first function, textParse(), takes a big string and parses out the text into a list of
strings. It eliminates anything under two characters long and converts everything to
lowercase. There’s a lot more parsing you could do in this function, but it’s good
enough for our purposes.

 The second function, spamTest(), automates the naïve Bayes spam classifier. You
load the spam and ham text files into word lists. B Next, you create a test set and a
training set. The emails that go into the test set and the training set will be randomly
selected. In this example, we have 50 emails total (not very many). Ten of the emails
are randomly selected to be used in the test set. The probabilities will be computed
from only the documents in the training set. The Python variable trainingSet is a list
of integers from 0 to 49. Next, you randomly select 10 of those files. C As a number is
selected, it’s added to the test set and removed from the training set. This randomly
selecting a portion of our data for the training set and a portion for the test set is
called hold-out cross validation. You’ve done only one iteration, but to get a good esti-
mate of our classifier’s true error, you should do this multiple times and take the aver-
age error rate.

 The next for loop iterates through all the items in the test set and creates word vec-
tors from the words of each email and the vocabulary using setOfWords2Vec(). These
words are used in traindNB0() to calculate the probabilities needed for classification.
You then iterate through the test set and classify each email in the test set. D If the
email isn’t classified correctly, the error count is incremented, and finally the total
percentage error is reported.

Load and parse
text files

B

Randomly
create the
training set

C

DClassify the
test set

Licensed to Brahim Chaibdraa <chaib@iad.ift.ulaval.ca>

77Example: using naïve Bayes to reveal local attitudes from personal ads

 Give this a try. After you’ve entered the code from listing 4.5, enter the following
into your Python shell:

>>> bayes.spamTest()
the error rate is: 0.0
>>> bayes.spamTest()
classification error ['home', 'based', 'business', 'opportunity',
'knocking', 'your', 'door', 'don', 'rude', 'and', 'let', 'this', 'chance',
'you', 'can', 'earn', 'great', 'income', 'and', 'find', 'your',
'financial', 'life', 'transformed', 'learn', 'more', 'here', 'your',
'success', 'work', 'from', 'home', 'finder', 'experts']
the error rate is: 0.1

The function spamTest() displays the error rate from 10 randomly selected emails.
Since these are randomly selected, the results may be different each time. If there’s an
error, it will display the word list for that document to give you an idea of what was
misclassified. To get a good estimate of the error rate, you should repeat this proce-
dure multiple times, say 10, and average the results. I did that and got an average
error rate of 6%.

 The error that keeps appearing is a piece of spam that was misclassified as ham. It’s
better that a piece of spam sneaks through the filter than a valid email getting shoved
into the spam folder. There are ways to bias the classifier to not make these errors, and
we’ll talk about these in chapter 7.

 Now that we’ve used naïve Bayes to classify documents, we’re going to look at
another use for it. The next example will show how to interpret the knowledge
acquired from training the naïve Bayes classifier.

4.7 Example: using naïve Bayes to reveal local attitudes
from personal ads
Our next and final example is a fun one. We looked at two practical applications of the
naïve Bayes classifier. The first one was to filter out malicious posts on a website, and the
second was to filter out spam in email. There are a number of other uses for classifica-
tion. I’ve seen someone take the naïve Bayes classifier and train it with social network
profiles of women he liked and women he didn’t like and then use the classifier to test
how he would like an unknown person. The range of possibilities is limited only by your
imagination. It’s been shown that the older someone is, the better their vocabulary
becomes. Could we guess a person’s age by the words they use? Could we guess other
factors about the person? Advertisers would love to know specific demographics about
a person to better target the products they promote. Where would you get such training
material? The internet abounds with training material. Almost every imaginable niche
has a dedicated community where people have identified themselves as belonging to
that community. The Dalmatian owners’ site used in section 4.3.1 is a great example.

 In this last example, we’ll take some data from personals ads from multiple people
for two different cities in the United States. We’re going to see if people in different
cities use different words. If they do, what are the words they use? Can the words peo-
ple use give us some idea what’s important to people in different cities?

Licensed to Brahim Chaibdraa <chaib@iad.ift.ulaval.ca>

78 CHAPTER 4 Classifying with probability theory: naïve Bayes

We’re going to use the city that each ad comes from to train a classifier and then see
how well it does. Finally, we’re not going to use this to classify anything. We’re going to
look at the words and conditional probability scores to see if we can learn anything
specific to one city over another.

4.7.1 Collect: importing RSS feeds

The first thing we’re going to need to do is use Python to download the text. Luckily,
the text is readily available in RSS form. Now all we need is an RSS reader. Universal
Feed Parser is the most common RSS library for Python.

 You can view documentation here: http://code.google.com/p/feedparser/. You
should be able to install it like other Python packages, by unzipping the downloaded
package, changing your directory to the unzipped package, and then typing >>python
setup.py install at the command prompt.

 We’re going to use the personal ads from Craigslist, and hopefully we’ll stay Terms
Of Service compliant. To open the RSS feed from Craigslist, enter the following at
your Python shell:

>>> import feedparser
>>>ny=feedparser.parse('http://newyork.craigslist.org/stp/index.rss')

I’ve decided to use the step, or strictly platonic, section from Craigslist because other
sections can get a little lewd. You can play around with the feed and check out the
great documentation at feedparser.org. To access a list of all the entries type

>>> ny['entries']
>>> len(ny['entries'])
100

You can create a function similar to spamTest() to automate your testing. Open your
text editor and enter the code from the following listing.

Example: using naïve Bayes to find locally used words
1. Collect: Collect from RSS feeds. We’ll need to build an interface to the RSS feeds.

2. Prepare: Parse text into token vectors.

3. Analyze: Inspect the tokens to make sure parsing was done correctly.

4. Train: Use trainNB0() that we created earlier.

5. Test: We’ll look at the error rate to make sure this is actually working. We can
make modifications to the tokenizer to improve the error rate and results.

6. Use: We’ll build a complete program to wrap everything together. It will display
the most common words given in two RSS feeds.

Licensed to Brahim Chaibdraa <chaib@iad.ift.ulaval.ca>

79Example: using naïve Bayes to reveal local attitudes from personal ads

def calcMostFreq(vocabList,fullText):
 import operator
 freqDict = {}
 for token in vocabList:
 freqDict[token]=fullText.count(token)
 sortedFreq = sorted(freqDict.iteritems(), key=operator.itemgetter(1),\
 reverse=True)
 return sortedFreq[:30]

def localWords(feed1,feed0):
 import feedparser
 docList=[]; classList = []; fullText =[]
 minLen = min(len(feed1['entries']),len(feed0['entries']))
 for i in range(minLen):
 wordList = textParse(feed1['entries'][i]['summary'])
 docList.append(wordList)
 fullText.extend(wordList)
 classList.append(1)
 wordList = textParse(feed0['entries'][i]['summary'])
 docList.append(wordList)
 fullText.extend(wordList)
 classList.append(0)
 vocabList = createVocabList(docList)
 top30Words = calcMostFreq(vocabList,fullText)
 for pairW in top30Words:
 if pairW[0] in vocabList: vocabList.remove(pairW[0])
 trainingSet = range(2*minLen); testSet=[]
 for i in range(20):
 randIndex = int(random.uniform(0,len(trainingSet)))
 testSet.append(trainingSet[randIndex])
 del(trainingSet[randIndex])
 trainMat=[]; trainClasses = []
 for docIndex in trainingSet:
 trainMat.append(bagOfWords2VecMN(vocabList, docList[docIndex]))
 trainClasses.append(classList[docIndex])
 p0V,p1V,pSpam = trainNB0(array(trainMat),array(trainClasses))
 errorCount = 0
 for docIndex in testSet:
 wordVector = bagOfWords2VecMN(vocabList, docList[docIndex])
 if classifyNB(array(wordVector),p0V,p1V,pSpam) != \
 classList[docIndex]:
 errorCount += 1
 print 'the error rate is: ',float(errorCount)/len(testSet)
 return vocabList,p0V,p1V

The code in listing 4.6 is similar to the spamTest() function in listing 4.5 with some
added features. One helper function is included in listing 4.6; the function is called
calcMostFreq(). B The helper function goes through every word in the vocabulary
and counts how many times it appears in the text. The dictionary is then sorted by fre-
quency from highest to lowest, and the top 100 words are returned. You’ll see why this
is important in a second.

 The next function, localWords(), takes two feeds as arguments. The feeds should
be loaded outside this function. The reason for doing this is that feeds can change

Listing 4.6 RSS feed classifier and frequent word removal functions

Calculates
frequency of
occurrence

B

Accesses
one feed
at a timeC

Removes
most
frequently
occurring
words

D

Licensed to Brahim Chaibdraa <chaib@iad.ift.ulaval.ca>

80 CHAPTER 4 Classifying with probability theory: naïve Bayes

over time, and if you want to make some changes to our code to see how it performs,
you should have the same input data. Reloading the feeds will give you new data, and
you won’t be sure whether our code changed or new data changed our results. The
function localWords() is mostly the same as spamTest() from listing 4.5. The differ-
ences are that you access feeds C instead of files, and you call calcMostFreq() to get
the top 100 words and then remove these words. D The rest of the function is similar
to spamTest(), except the last line returns values that you’ll use later.

 You can comment out the three lines that removed the most frequently used words
and see the performance before and after. D When I did this, I had an error rate of 54%
without these lines and 70% with the lines included. An interesting observation is that
the top 30 words in these posts make up close to 30% of all the words used. The size of
the vocabList was ~3000 words when I was testing this. A small percentage of the total
words makes up a large portion of the text. The reason for this is that a large percentage
of language is redundancy and structural glue. Another common approach is to not just
remove the most common words but to also remove this structural glue from a pre-
defined list. This is known as a stop word list, and there are a number of sources of this
available. (At the time of writing, http://www.ranks.nl/resources/stopwords.html has
a good list of stop words in multiple languages.)

 After you’ve entered the code from listing 4.6 into bayes.py, you can test it in
Python by typing in the following:

>>> reload(bayes)
<module 'bayes' from 'bayes.py'>
>>>ny=feedparser.parse('http://newyork.craigslist.org/stp/index.rss')
>>>sf=feedparser.parse('http://sfbay.craigslist.org/stp/index.rss')
>>> vocabList,pSF,pNY=bayes.localWords(ny,sf)
the error rate is: 0.1
>>> vocabList,pSF,pNY=bayes.localWords(ny,sf)
the error rate is: 0.35

To get a good estimate of the error rate, you should do multiple trials of this and take
the average. The error rate here is much higher than for the spam testing. That is not
a huge problem because we’re interested in the word probabilities, not actually classi-
fying anything. You can play around the number of words removed by caclMostFreq()
and see how the error rate changes.

4.7.2 Analyze: displaying locally used words

You can sort the vectors pSF and pNY and then print out the words from vocabList at
the same index. There’s one last piece of code that does this for you. Open bayes.py
one more time and enter the code from the following listing.

def getTopWords(ny,sf):
 import operator
 vocabList,p0V,p1V=localWords(ny,sf)
 topNY=[]; topSF=[]

Listing 4.7 Most descriptive word display function

Licensed to Brahim Chaibdraa <chaib@iad.ift.ulaval.ca>

81Example: using naïve Bayes to reveal local attitudes from personal ads

 for i in range(len(p0V)):
 if p0V[i] > -6.0 : topSF.append((vocabList[i],p0V[i]))
 if p1V[i] > -6.0 : topNY.append((vocabList[i],p1V[i]))
 sortedSF = sorted(topSF, key=lambda pair: pair[1], reverse=True)
 print "SF**SF**SF**SF**SF**SF**SF**SF**SF**SF**SF**SF**SF**SF**
 for item in sortedSF:
 print item[0]
 sortedNY = sorted(topNY, key=lambda pair: pair[1], reverse=True)
 print "NY**NY**NY**NY**NY**NY**NY**NY**NY**NY**NY**NY**NY**NY **"
 for item in sortedNY:
 print item[0]

The function getTopWords() in listing 4.7 takes the two feeds and first trains and tests
the naïve Bayes classifier. The probabilities used are returned. Next, you create two
lists and store tuples inside the lists. Rather than just return the top X words, you
return all words above a certain threshold. The tuples are then sorted by their condi-
tional probabilities.

 To see this in action, enter the following in your Python shell after you’ve saved
bayes.py.

>>> reload(bayes)
<module 'bayes' from 'bayes.pyc'>
>>> bayes.getTopWords(ny,sf)
the error rate is: 0.2
SF**SF**SF**SF**SF**SF**SF**SF**SF**SF**SF**SF**SF**SF**SF**SF**
love
time
will
there
hit
send
francisco
female
NY**NY**NY**NY**NY**NY**NY**NY**NY**NY**NY**NY**NY**NY**NY**NY**
friend
people
will
single
sex
female
night
420
relationship
play
hope

The words from this output are entertaining. One thing to note: a lot of stop words
appear in the output. It would be interesting to see how things would change if
you removed the fixed stop words. In my experience, the classification error will also
go down.

Licensed to Brahim Chaibdraa <chaib@iad.ift.ulaval.ca>

82 CHAPTER 4 Classifying with probability theory: naïve Bayes

4.8 Summary
Using probabilities can sometimes be more effective than using hard rules for classifi-
cation. Bayesian probability and Bayes’ rule gives us a way to estimate unknown proba-
bilities from known values.

 You can reduce the need for a lot of data by assuming conditional independence
among the features in your data. The assumption we make is that the probability of
one word doesn’t depend on any other words in the document. We know this assump-
tion is a little simple. That’s why it’s known as naïve Bayes. Despite its incorrect
assumptions, naïve Bayes is effective at classification.

 There are a number of practical considerations when implementing naïve Bayes in
a modern programming language. Underflow is one problem that can be addressed
by using the logarithm of probabilities in your calculations. The bag-of-words model is
an improvement on the set-of-words model when approaching document classifica-
tion. There are a number of other improvements, such as removing stop words, and
you can spend a long time optimizing a tokenizer.

 The probability theory you learned in this chapter will be used again later in the
book, and this chapter was a great introduction to the full power of Bayesian probabil-
ity theory. We’re going to take a break from probability theory. You’ll next see a classi-
fication method called logistic regression and some optimization algorithms.

Licensed to Brahim Chaibdraa <chaib@iad.ift.ulaval.ca>

