
MATH 462 LECTURE NOTES. NEURAL NETWORKS

ADAM M. OBERMAN

1. Resources for learning neural networks

• Read [Mit97, Chapter 4], in particular, parts of section 4.4, 4.5, and 4.6. This is a long
chapter, but the length makes it easier to understand, compared to more concise books.

• For the full code example on multilayer perceptrons, see code provided based on https://
towardsdatascience.com/how-neural-networks-solve-the-xor-problem-59763136bdd7

• Use the !x notation just for introduction then transition to x notation, implicitly vector or
scalar.

2. Neural networks

This material adapted from [Mit97, Chapter 4]

Remark 2.1 (Notation). For now, using the o(x) notation from Mitchell. TODO: make this
consistent, by changing to c(h(x)) = sgn(h(x)) notation.

2.1. About Neural Networks. Neural networks (NNs) provide a general, practical method for
learning real-valued, as well as discrete-valued, and vector-valued functions from examples. Algo-
rithms use stochastic gradient descent to tune network parameters to fit a large training dataset.

Remark 2.2. Some of the simpler examples (eg. decision trees, naive bayes), implemented a
formula / algorithm directly to obtain the model.

For neural networks, need to ”train” (optimize) the parameters, iteratively. Need a stopping
condition.

Overview (details will be filled in progressively).

• In many other learning methods, the data must consist of a small number of semantically
meaningful features.

• However, neural networks can learn from high dimensional data, for example the pixel
values in images.

• A two layer neural network can be thought of as (i) learning features from data (ii) then
classifying using the features.

• The training examples may contain errors. NN learning methods are quite robust to noise
in the training data.

• Long training times are acceptable. Network training algorithms typically require longer
training times. Pass over the entire dataset many times (epochs).

• Although DNN learning times are relatively long, evaluating the learned network, in order
to apply it to a subsequent instance, is typically very fast.

• The ability of humans to understand the learned target function is not important. The
weights learned by neural networks are often difficult for humans to interpret. Learned
neural networks are less easily communicated to humans than learned rules.

Date: August 2023.
1

https://towardsdatascience.com/how-neural-networks-solve-the-xor-problem-59763136bdd7

2 ADAM M. OBERMAN

Figure 1. Perceptron. Inputs x1, . . . , xn multiplied by weights w1, . . . , wn, then
passed through a nonlinearity, in this case, the sgn function.

3. Perceptrons

First consider the case of discrete (binary) input, and discrete (binary) output.
One type of NN system is based on a unit called a perceptron, illustrated in Figure 1.
A perceptron takes a vector of real-valued inputs, calculates a linear combination of these

inputs, then outputs a +1 if the result is greater than some threshold and −1 otherwise.
More precisely, given inputs x1 through xn, the output o (x1, . . . , xn) computed by the percep-

tron is

o (x1, . . . , xn) =

!
1, if w0 + w1x1 + w2x2 + · · ·+ wnxn > 0

−1, otherwise

where each wi is a real-valued constant, or weight, that determines the contribution of input xi to
the perceptron output. Notice the quantity (−w0) is a threshold that the weighted combination
of inputs w1x1 + · · ·+ wnxn must surpass in order for the perceptron to output a 1 .

To simplify notation, we imagine an additional constant input x0 = 1, allowing us to write the
above inequality as

"n
i=0 wixi > 0, or in vector form as !w · !x > 0. For brevity, we will sometimes

write the perceptron function as

o(!x) = sgn(!w · !x)

where

sgn(y) =

!
1 if y > 0

−1 otherwise

Example 3.1. So if !x′ = (x1, x2, x3) and !w = (w0, . . . , wx) = (2.5, .5,−1, 0.2), then given input
(3, 0, 1) we write !x = (1, x′) = (1, 3, 0, 1) and

o(!x) = sgn(!w · !x) = (2.5, .5,−1, 0.2) · (1, 3, 0, 1) = 2.5 + 1.5 + 0 + 0.2 = 4.2

This leads us to the following definition. We remove the vector notation, since it is implied by
the spaces.

Definition 3.2 (The perceptron hypothesis space). The space of candidate hypotheses considered
in perceptron learning is represented parametrically by the set of all possible real-valued weight
vectors.

H = {h : Rn → R | h(x, w) = w · x+ w0, w ∈ Rn, w ∈ R}

with output

c(x, w) = sgn(h(x, w))

MATH 462 LECTURE NOTES. NEURAL NETWORKS 3

3.1. Representational Power of Perceptrons for boolean functions. We can view the per-
ceptron as representing a hyperplane decision surface in the n-dimensional space of instances
(i.e., points). The perceptron outputs a 1 for instances lying on one side of the hyperplane and
outputs a -1 for instances lying on the other side, as illustrated in Figure 2. The equation for this
decision hyperplane is !w · !x = 0. Of course, some sets of positive and negative examples cannot
be separated by any hyperplane. Those that can be separated are called linearly separable sets of
examples.

A single perceptron can be used to represent many boolean functions.

Example 3.3. For example, if we assume boolean values of 1 (true) and -1 (false), then one way
to use a two-input perceptron

h(x, w) = w · x+ w0,

to implement the AND function is to set the weights w0 = −.8, and w1 = w2 = .5.

hAND(x, w) = w · x+ w0, w0 = −0.8, w = (0.5, 0.5)

This perceptron can be made to represent the OR function instead by altering the threshold to
w0 = −.3.

hOR(x, w) = w · x+ w0, w0 = −0.3, w = (0.5, 0.5)

Remark 3.4. In fact, AND and OR can be viewed as special cases of m-of- n functions: that is,
functions where at least m of the n inputs to the perceptron must be true. The OR function
corresponds tom = 1 and the AND function tom = n. Anym-of- n function is easily represented
using a perceptron by setting all input weights to the same value (e.g., 1/n) and then setting the
threshold w0 accordingly.

Perceptrons can represent all of the primitive boolean functions

• AND,
• OR,
• NAND (¬ AND), and
• NOR (¬ OR).

Unfortunately, however, some boolean functions cannot be represented by a single
perceptron, such as the XOR function whose value is 1 if and only if x1 ∕= x2. Note the set
of linearly nonseparable training examples shown in Figure 2 corresponds to this XOR function.
The ability of perceptrons to represent AND, OR, NAND, and NOR is important because every
boolean function can be represented by some network of interconnected units based on these
primitives.

However, every boolean function can be represented by some network of perceptrons only two
levels deep, in which the inputs are fed to multiple units, and the outputs of these units are
then input to a second, final stage. One way is to represent the boolean function in disjunctive
normal form (i.e., as the disjunction (OR) of a set of conjunctions (ANDs) of the inputs and their
negations). Note that the input to an AND perceptron can be negated simply by changing the
sign of the corresponding input weight.

Because networks of threshold units can represent a rich variety of functions and because single
units alone cannot, we will generally be interested in learning multilayer networks of threshold
units.

• Link to Collab Perceptrons Code

https://colab.research.google.com/drive/1pcQCWbzOT5RIANARZmlJBynB6EZMhwnY?usp=sharing

4 ADAM M. OBERMAN

Figure 2. The decision surface represented by a two-input perceptron. (a) A set
of training examples and the decision surface of a perceptron that classifies them
correctly. (b) A set of training examples that is not linearly separable (i.e., that
cannot be correctly classified by any straight line). xl and x2 are the Perceptron
inputs. Positive examples are indicated by ”+”, negative by ”-”.

4. The Perceptron Training Rule

Although we are interested in learning networks of many interconnected units, let us begin by
understanding how to learn the weights for a single perceptron. Here the precise learning problem
is to determine a weight vector that causes the perceptron to produce the correct output for each
of the given training examples.

One way to learn an acceptable weight vector is to begin with random weights, then iteratively
apply the perceptron to each training example, modifying the perceptron weights whenever it
misclassifies an example. This process is repeated, iterating through the training examples as
many times as needed until the perceptron classifies all training examples correctly. Weights
are modified at each step according to the perceptron training rule, which revises the weight wi

associated with input xi according to the rule

wi ← wi +∆wi

where

∆wi = α(y(x)− c(x))xi

Example 4.1. Consider learning the function y(x) = sgn(x) which can be represented as a percep-
tron c(h(x, w)) with h(x, w) = 1x+0. Starting with random initialization, w1 = 0.2, w0 = −0.4.
Let the dataset be S = {(−1,−1), (1, 1)}. Take α = 0.25

When x = −1, h(x, w) = −.2− .4 = −0.6 and c(x) = −1, so ∆wi = 0
When x = 1, we have h(x, w) = −0.2, c(x) = −1. So ∆wi = α2xi = 2α. This will increase

the weights. So now ∆w0 = ∆w1 = .5
Thus w1 = 0.7, w0 = 0.1. Now c(1) = 1 and c(−1) = −1 as desired.

This method can be shown to converge when the training exmaples are linearly separable. But
it may not converge in general.

4.1. Perceptron Loss. This method goes as follows.

• First, we consider a loss based on h(x, w), without thresholding
• We consider the loss, L(w) = 1

m

"m
i=1 ℓ(h(xi, w), yi) averaged over the dataset

• We adjust the weight vector by using gradient descent.
• First we can simply use a regression loss, treating y as a number, ℓ2(h, y) = (h− y)2

• Later we can use a classification loss.

MATH 462 LECTURE NOTES. NEURAL NETWORKS 5

• Note, if h(x, w) is close enough to y, then thresholding c(h) = sgn(h) should also be
correct.

• This method should converge to something, even if the data is not linearly separable.

TODO: 2d example, linearly separable with a couple errors

Definition 4.2 (Perceptron training loss). Given the dataset S = {(x1, y1), . . . (xm, ym)} with
binary vector data x ∈ [−1, 1]n and binary y. Consider the perceptron hypothesis class defined
above. Define the training loss

L(w) =
1

m

m#

i=1

1

2
(h(xi, w)− yi)

2

4.2. Derivation of steepend descent. How can we calculate the direction of steepest descent
along the error surface? This direction can be found by computing the derivative of L with respect
to each component of the vector !w. This vector derivative is called the gradient of L with respect
to !w, written ∇L.

∇L(!w) ≡
$
∂L

∂w0

,
∂L

∂w1

, · · · , ∂L

∂wn

%

Notice ∇L(!w) is itself a vector, whose components are the partial derivatives of E with respect to
each of the wi. When interpreted as a vector in weight space, the gradient specifies the direction
that produces the steepest increase in E. The negative of this vector therefore gives the direction
of steepest decrease.

TODO Show figure with level sets: For example, the arrow in Figure 4.4 shows the
negated gradient −∇E(!w) for a particular point in the w0, w1 plane.

Since the gradient specifies the direction of steepest increase of E, the training rule for gradient
descent is

!w ← !w +∆!w

∆!w = −η∇E(!w)

Here η is a positive constant called the learning rate, which determines the step size in the gradient
descent search. The negative sign is present because we want to move the weight vector in the
direction that decreases E. This training rule can also be written in its component form

wi ← wi +∆wi

∆wi = −η
∂E

∂wi

which makes it clear that steepest descent is achieved by altering each component wi of !w in
proportion to ∂E

∂wi
.

To construct a practical algorithm for iteratively updating weights, we need an efficient way
of calculating the gradient at each step. Fortunately, this is not difficult. The vector of ∂E

∂wi

derivatives that form the gradient can be obtained by differentiating L.
First notice that, for the inner term

∂

∂wi

(h(x, w)− y)2/2 = (h(x, w)− y)
∂

∂wi

h(x, w)

and
∂

∂wi

h(x, w) =
∂

∂wi

#

j

wjxj = xi

6 ADAM M. OBERMAN

(keeping track of the fact that x0 = 1 as per our convention).
Thus

∂L

∂wi

=
∂

∂wi

#

j

(h(xj, w)− yj)
2/2

=
#

j

∂

∂wi

(h(xj, w)− yj)
2/2

=
#

j

(h(xj, w)− y)(xj)i

where (xj)i denotes the single input component xi for training example j.
We now have an equation that gives ∂L

∂wi
in terms of the inputs xij, outputs h(xj, w), and

target values yj associated with the training examples.
Substituting yields the weight update rule for gradient descent

∆wi = η
#

j∈S

(h(xj, w)− y)(xj)i

To summarize, the gradient descent algorithm for training linear units is as follows: Pick an initial
random weight vector. Apply the linear unit to all training examples, then compute ∆wi for each
weight according to Equation (4.7). Update each weight wi by adding ∆wi, then repeat this
process.

Because the error surface contains only a single global minimum, this algorithm will converge
to a weight vector with minimum error, regardless of whether the training examples are linearly
separable, given a sufficiently small learning rate η is used. If η is too large, the gradient descent
search runs the risk of overstepping the minimum in the error surface rather than settling into it.
For this reason, one common modification to the algorithm is to gradually reduce the value of η
as the number of gradient descent steps grows.

5. Vector calculus review

For more vector calc review, more details to come
Now consider a function of d variables, L : Rd → R. The gradient of the function is a vector

defined at each w,
g(w) = ∇L(w) = [g1(w), . . . gd(w)]

T

where each component is partial derivative

gj(w) =
∂

∂wj

L(w)

• The gradient vector g(w) = ∇L(w) points in the direction of greatest increase of the
function L at w.

• A critical point w is a point where g(w) = 0.
• As in the one variable case, every local minimum is a critical point. A critical point can
be a local minimum, local maximum, or saddle point.

• As in the one variable case, there is a condition for a critical point to be a local minimum:
the Hessian matrix H(w) is positive-definite. Here H(w)ij =

∂2

∂i∂j
L. (This condition can

be difficult to check).
• As in the one variable case, if the function is convex, then every critical point global
minimum.

MATH 462 LECTURE NOTES. NEURAL NETWORKS 7

Figure 3. Illustration of the gradient of the loss

6. Gradient Descent and SGD

For more details: Refer to separate notes on GD and SGD
Short version for intuition:
Starting from the definition of the empirical loss.

(EL) L(w) =
1

m

m#

i=1

ℓ(h(xi, w), yi)

Then define the gradient vector using the following notation

(G) g(w) = ∇wL(w) =
1

m

m#

i=1

∂hℓ(hw(xi), yi)∇whw(xi) by the chain rule

Note, we still need to compute ∇whw(xi), which may use chain rule more times.

Remark 6.1. Note, by the chain rule, above, the gradient of the loss is the weighted sum of the
model gradients, with weights given by the loss derivative. So points where the loss is larger have
a larger (in magnitude) weight.

Then the gradient descent algorithm is given by the following.

Definition 6.2. Gradient descent with learning rate α > 0 for (EL) is given by

wt+1 = wt − αg(wt),

where g(wt) = ∇wL(wt) given by (G)

TO BE EDITED

8 ADAM M. OBERMAN

7. Backpropagation: Chain rule

We are combining the ideas of

• Gradient descent to decrease the loss wn+1 = wn − α∇wL(w)
• backpropagation (the chain rule) to find the gradient g = ∇wh(x, w) of the model.

8. Multilayer networks and backpropagation algorithm

This section discusses how to learn such multilayer networks using a gradient descent algorithm
similar to that discussed in the previous section.

8.1. A Differentiable Threshold Unit. What type of unit shall we use as the basis for con-
structing multilayer networks? At first we might be tempted to choose the linear units discussed
in the previous section, for which we have already derived a gradient descent learning rule. How-
ever, multiple layers of cascaded linear units still produce only linear functions, and we prefer net-
works capable of representing highly nonlinear functions. The perceptron unit is another possible
choice, but its discontinuous threshold makes it undifferentiable and hence unsuitable for gradient
descent. What we need is a unit whose output is a nonlinear function of its inputs, but whose
output is also a differentiable function of its inputs. One solution is the sigmoid unit-a unit very
much like a perceptron, but based on a smoothed, differentiable threshold function.

Like the perceptron, the sigmoid unit first computes a linear combination of its inputs, then
applies a threshold to the result. In the case of the sigmoid unit, however, the threshold output
is a continuous function of its input. More precisely, the sigmoid unit computes its output o as

o = σ(!w · !x)

where

σ(y) =
1

1 + e−y

σ is often called the sigmoid function or, alternatively, the logistic function. Note its output
ranges between 0 and 1 , increasing monotonically with its input (see the threshold function plot
in Figure 4.6.). Because it maps a very large input domain to a small range of outputs, it is often
referred to as the squashing function of the unit. The sigmoid function has the useful property
that its derivative is easily expressed in terms of its output

dσ(y)

dy
= σ(y) · (1− σ(y))

As we shall see, the gradient descent learning rule makes use of this derivative. Other differen-
tiable functions with easily calculated derivatives are sometimes used in place of σ.

Example 8.1 (temperature scaling). For example, the term e−y in the sigmoid function definition
is sometimes replaced by e−t·y where t is some positive constant that determines the steepness of
the threshold.

Example 8.2 (other nonlinearities). The function tanh is also sometimes used in place of the
sigmoid function. Also ReLU (rectified linear unit)

σReLU(t) = max(t, 0)

which is piecewise linear.

MATH 462 LECTURE NOTES. NEURAL NETWORKS 9

Figure 4. dd

9. (Skip for now) Representational Power of Feedforward Networks

As noted above, single perceptrons can only express linear decision surfaces. In contrast, the
kind of multilayer networks are capable of expressing a rich variety of nonlinear decision surfaces.
For example, a typical multilayer network and decision surface is depicted in Figure 4.

As shown in the figure, it is possible for the multilayer network to represent highly nonlinear
decision surfaces that are much more expressive than the linear decision surfaces of single units.

What set of functions can be represented by feedforward networks? Of course the answer
depends on the width and depth of the networks. Although much is still unknown about which
function classes can be described by which types of networks, three quite general results are
known: - Boolean functions. Every boolean function can be represented exactly by some network
with two layers of units, although the number of hidden units required grows exponentially in
the worst case with the number of network inputs. To see how this can be done, consider the
following general scheme for representing an arbitrary boolean function: For each possible input
vector, create a distinct hidden unit and set its weights so that it activates if and only if this
specific vector is input to the network. This produces a hidden layer that will always have exactly
one unit active. Now implement the output unit as an OR gate that activates just for the desired
input patterns. - Continuous functions. Every bounded continuous function can be approximated
with arbitrarily small error (under a finite norm) by a network with two layers of units (Cybenko
1989; Hornik et al. 1989). The theorem in this case applies to networks that use sigmoid units at
the hidden layer and (unthresholded) linear units at the output layer. The number of hidden units
required depends on the function to be approximated. - Arbitrary functions. Any function can
be approximated to arbitrary accuracy by a network with three layers of units (Cybenko 1988).
Again, the output layer uses linear units, the two hidden layers use sigmoid units, and the number
of units required at each layer is not known in general. The proof of this involves showing that
any function can be approximated by a linear combination of many localized functions that have
value 0 everywhere except for some small region, and then showing that two layers of sigmoid
units are sufficient to produce good local approximations.

10 ADAM M. OBERMAN

These results show that limited depth feedforward networks provide a very expressive hypothesis
space for BACKPROPAGATION. However, it is important to keep in mind that the network weight
vectors reachable by gradient descent from the initial weight values may not include all possible
weight vectors. Hertz et al. (1991) provide a more detailed discussion of the above results.

Remark 9.1. Existence results just say can fit the data. But do not give a method to fit. Back-
propagation algorithm gives a method to fit data. But does not show that will fit the function on
unseen data (generalization).

9.1. Hidden Layer Representations. One intriguing property of BACKPROPAGATION is its
ability to discover useful intermediate representations at the hidden unit layers inside the network.
Because training examples constrain only the network inputs and outputs, the weight-tuning
procedure is free to set weights that define whatever hidden unit representation is most effective
at minimizing the squared error E. This can lead BACKPROPAGATION to define new hidden
layer features that are not explicit in the input representation, but which capture properties of the
input instances that are most relevant to learning the target function.

Consider, for example, the network shown in Figure 4.7. Here, the eight network inputs are
connected to three hidden units, which are in turn connected to the eight output units. Because
of this structure, the three hidden units will be forced to re-represent the eight input values in
some way that captures their relevant features, so that this hidden layer representation can be
used by the output units to compute the correct target values.

Consider training the network shown in Figure 4.7 to learn the simple target function f(!x) = !x,
where !x is a vector containing seven 0 ’s and a single 1 . The network must learn to reproduce
the eight inputs at the corresponding eight output units. Although this is a simple function,
the network in this case is constrained to use only three hidden units. Therefore, the essential
information from all eight input units must be captured by the three learned hidden units.

When BACKPROPAGATION is applied to this task, using each of the eight possible vectors as
training examples, it successfully learns the target function. What hidden layer representation is
created by the gradient descent BACKPROPAGATION algorithm? By examining the hidden unit
values generated by the learned network for each of the eight possible input vectors, it is easy to
see that the learned encoding is similar to the familiar standard binary encoding of eight values
using three bits (e.g., 000, 001, 010, . . . , 111). The exact values of the hidden units for one typical
run of BACKPROPAGATION are shown in Figure 5.

This ability of multilayer networks to automatically discover useful representations at the hidden
layers is a key feature of ANN learning. In contrast to learning methods that are constrained to
use only predefined features provided by the human designer, this provides an important degree
of flexibility that allows the learner to invent features not explicitly introduced by the human
designer. Of course these invented features must still be computable as sigmoid unit functions
of the provided network inputs. Note when more layers of units are used in the network, more
complex features can be invented. Another example of hidden layer features is provided in the
face recognition application discussed in Section 4.7.

9.2. Classification Loss. Minimizing the cross entropy of the network with respect to the target
values. Consider learning a probabilistic function, such as predicting whether a loan applicant will
pay back a loan based on attributes such as the applicant’s age and bank balance. Although the
training examples exhibit only boolean target values (either a 1 or 0 , depending on whether this
applicant paid back the loan), the underlying target function might be best modeled by outputting
the probability that the given applicant will repay the loan, rather than attempting to output the

MATH 462 LECTURE NOTES. NEURAL NETWORKS 11

Figure 5. Hidden Layers

actual 1 and 0 value for each input instance. Given such situations in which we wish for the
network to output probability estimates, it can be shown that the best (i.e., maximum likelihood)
probability estimates are given by the network that minimizes the cross entropy, defined as

−
#

d∈D

td log od + (1− td) log (1− od)

Here od is the probability estimate output by the network for training example d, and td is the 1
or 0 target value for training example d. Chapter 6 discusses when and why the most probable
network hypothesis is the one that minimizes this cross entropy and derives the corresponding
gradient descent weight-tuning rule for sigmoid units. That chapter also describes other conditions
under which the most probable hypothesis is the one that minimizes the sum of squared errors.

References

[Mit97] Tom M Mitchell. Machine Learning. McGraw Hill, 1997.

