MATH 462 LECTURE NOTES

ADAM M. OBERMAN

1. Review of vector calculus

We reviewed [DFO20, Chapter 5]

- $\S 5.1$ Difference Quotient, definition of the derivative as a limit, Taylor polynomial, differentiation rules
- Example: use order 1 Taylor approximation near $x=9$ to estimate $\sqrt{9.1}$.
- §5.2 Partial differentiation.
- $\S 5.3$ Jacobian, $\S 5.4$ gradient of Matrix.
- To know: when $f=M x, \nabla_{x} f=J f=M$.
- Product rule $f=g^{\top} h$, Then $\nabla_{x} f=J g h+J h g$ (can apply this to regression loss below).

Critical points for a function of one variable $L(w), w \in \mathbb{R}$,

- a critical point is when $L^{\prime}(w)=0$
- Every local minimum is a critical point. A critical point can be a local minimum, local maximum, or saddle point.
- If the second order condition holds $L^{\prime \prime}(w)>0$, then the critical point is also a local minimum
- If the function is convex (for example when $L^{\prime \prime}(w) \geq 0$ at all w), then every critical point is a global minimum.

1.1. Vector Calc for ML: losses.

Example 1.1 (one dimensional MSE loss). Consider a typical Mean Squared Error (MSE) loss. Let $w, x_{i} \in \mathbb{R}$, define

$$
\widehat{L}(w)=f\left(w, x_{1}, \ldots, x_{m}\right)=\frac{1}{m} \sum_{i=1}^{m}\left(w-x_{i}\right)^{2}
$$

We showed that

$$
\frac{\partial}{\partial w} f\left(w, x_{1}, \ldots, x_{m}\right)=2 w-2 \bar{x}, \quad \bar{x}=\frac{1}{m} \sum_{i=1}^{m} x_{i}
$$

and

$$
w^{*}=\underset{w}{\arg \min } \widehat{L}(w)=\bar{x}, \quad \widehat{L}\left(w^{*}\right)=\sum_{i=1}^{m}\left(\bar{x}-x_{i}\right)^{2}
$$

We interpreted the second equation as the variance of the dataset. We also showed

$$
\frac{\partial}{\partial x_{1}} f\left(w, x_{1}, \ldots, x_{m}\right)=\frac{2}{m}\left(x_{1}-w\right)
$$

Date: September 26, 2023.
1.2. Vector calculus facts. Now consider a function of d variables, $L: \mathbb{R}^{d} \rightarrow \mathbb{R}$. The gradient of the function is a vector defined at each w,

$$
g(w)=\nabla L(w)=\left[g_{1}(w), \ldots g_{d}(w)\right]^{T}
$$

where each component is partial derivative

$$
g_{j}(w)=\frac{\partial}{\partial w_{j}} L(w)
$$

Figure 1. Illustration of the gradient of the loss

- The gradient vector $g(w)=\nabla L(w)$ points in the direction of greatest increase of the function L at w.
- A critical point w is a point where $g(w)=0$.
- As in the one variable case, every local minimum is a critical point. A critical point can be a local minimum, local maximum, or saddle point.
- As in the one variable case, there is a condition for a critical point to be a local minimum: the Hessian matrix $H(w)$ is positive-definite. Here $H(w)_{i j}=\frac{\partial^{2}}{\partial_{i} \partial_{j}} L$. (This condition can be difficult to check).
- As in the one variable case, if the function is convex, then every critical point global minimum.

2. Linear Regression

We are given the dataset
$\left(S_{m}\right)$

$$
S_{m}=\left\{\left(x_{1}, y_{1}\right), \ldots,\left(x_{m}, y_{m}\right)\right\}
$$

Consisting of pairs of vectors $x_{i} \in \mathbb{R}^{d}$ and values $y_{i} \in \mathbb{R}$, for $i=1, \ldots, m$.
Our goal is to fit the dataset using linear models $h: \mathbb{R}^{d} \rightarrow \mathbb{R}$,

$$
\mathcal{H}=\left\{h_{w}(x): \mathbb{R}^{d} \rightarrow \mathbb{R} \mid w \in \mathbb{R}^{d}\right\}
$$

$$
h_{w}(x)=w^{T} x=\sum_{i=1}^{d} w_{i} x_{i}
$$

The error of the model, h_{w} on data (x, y), is defined to be

$$
e=h_{w}(x)-y
$$

We measure the error with the squared loss,

$$
\ell_{2}(e)=e^{2}
$$

Definition 2.1 (General Empirical Loss). Given
(1) the dataset S_{m}, as in $\left(S_{m}\right)$,
(2) a model $h: \mathbb{R}^{d} \rightarrow \mathbb{R}$,
(3) the non-negative loss, $\ell: \mathbb{R} \rightarrow \mathbb{R}$

The empirical loss of the model h, on the dataset S_{m}, is given by

$$
L(h)=L\left(h, S^{m}\right)=\frac{1}{m} \sum_{i=1}^{m} \ell\left(h\left(x_{i}\right)-y_{i}\right)
$$

Given the hypothesis class \mathcal{H}, the empirical loss minimizer is given by

$$
\begin{equation*}
h^{*}=\underset{h \in \mathcal{H}}{\arg \min } L(h) \tag{ELM-h}
\end{equation*}
$$

Note (ELM-h) is a minimization over functions. However, when the functions are parameterized by w, we can reduce this to a minimization over the parameters as given by (ELM-w)

$$
\begin{equation*}
w^{*}=\underset{w}{\arg \min } L\left(h_{w}\right) \tag{ELM-w}
\end{equation*}
$$

We can apply the chain rule to (ELM-w) to find a critical point

$$
\begin{equation*}
\nabla_{w} L\left(h_{w}\right)=\frac{1}{m} \sum_{i=1}^{m} \ell^{\prime}\left(h_{w}\left(x_{i}\right)-y_{i}\right) \nabla_{w} h_{w}\left(x_{i}\right) \tag{grad}
\end{equation*}
$$

So we can interpret each conmponent of the loss gradient as the function gradient multiplied by the loss derivative
2.1. Gradient of a Least Squares Loss with Linear Model. In this case of the least squares loss,

$$
L(w)=\frac{1}{m} \sum_{i=1}^{m}\left(h_{w}\left(x_{i}\right)-y_{i}\right)^{2}
$$

Since

$$
\ell_{2}(e)=e^{2}, \quad \ell_{2}^{\prime}(e)=2 e
$$

and with a linear model

$$
h_{w}(x)=w^{T} x, \quad \nabla_{w} h_{w}\left(x_{i}\right)=x_{i}^{T}
$$

(note the transpose). So (grad L) becomes

$$
\nabla_{w} L(w)=\frac{1}{m} \sum_{i=1}^{m}\left(h_{w}\left(x_{i}\right)-y_{i}\right) \nabla_{w} h_{w}\left(x_{i}\right) .
$$

Which we can rewrite as

$$
\nabla_{w} L(w)=\frac{1}{m} \sum_{i=1}^{m}\left(w^{T} x_{i}-y_{i}\right) x_{i}^{T}=\frac{1}{m} w^{T} \sum_{i=1}^{m} x_{i} x_{i}^{T}-\frac{1}{m} \sum_{i=1}^{m} y_{i} x_{i}^{T}
$$

3. Vector calculus

Recall from vector calculus, https://en.wikipedia.org/wiki/Gradient.
(1) x is a d-dimensional column vector,
(2) $f: \mathbb{R}^{d} \rightarrow R$, Then $\nabla f: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}, \nabla f(x)$ is also a column vector. The reason for this is we want to generalize the derivative: $f(x+h) \approx f(x)+h f^{\prime}(x)$ becomes:

$$
f(x+h v) \approx f(x)+h \nabla f(x) \cdot v
$$

For the equation above to make sense, we need ∇f to be a column vector. (The total derivative $d f=\nabla f^{\top}$ is a row vector, see, https://en.wikipedia.org/wiki/Gradient total derivative.)
(3) If $g: \mathbb{R}^{d} \rightarrow \mathbb{R}^{n}$ (the function is a column vector), then the jacobian, $J g: \mathbb{R}^{d} \rightarrow \mathbb{R}^{n}$, is the matrix of partial derivatives,

$$
(J g)_{i j}=\frac{\partial g_{i}}{\partial x_{j}}
$$

Each row of the jacobian, $J g$, is the gradient transpose $\left(\nabla g_{i}\right)^{\top}$ of g_{i}.
(4) In particular, $g(x)=M x$, then $J g=M$. (Exercies: Verify the last statement)
(5) The dot product rule: for vector-valued functions $g(x), h(x): \mathbb{R}^{d} \rightarrow \mathbb{R}^{n}$,

$$
\nabla\left(g(x)^{\top} h(x)\right)=(J g)^{\top} h+(J h)^{\top} g
$$

(6) Using these rules allows us to differentiate $f(x)=\|M x-b\|^{2}=(M x-b) \cdot(M x-b)$.

$$
\nabla f=2 M^{\top}(M x-b)
$$

3.1. Matrix vector notation. We can simplify this expression using matrix vector notation. This notation is also more compatible with vector programming languages. See also [DFO20, Example 5.11]

Given the dataset S^{m}, with each component $\left(x_{i}, y_{i}\right)$ consisting of a row vector and a real, we want to extract matrices and vectors from it as follows.

$$
X=X\left(S^{m}\right)=\left[x_{1}, \ldots, x_{m}\right]^{\top}=\left[\begin{array}{c}
x_{1}^{\top} \\
x_{2}^{\top} \\
\vdots \\
x_{m}^{\top}
\end{array}\right], \quad X \in \mathbb{R}^{m \times d}
$$

and

$$
y=\left[y_{1}, \ldots, y_{m}\right]^{T}=\left[\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{m}
\end{array}\right], \quad y \in \mathbb{R}^{m \times 1}
$$

Here X has m rows, and each row is a vector in \mathbb{R}^{d} and y is a column vector.
3.2. Matrix vector notation for quadratic regression. For the linear function $h_{w}(x)=w \cdot x$, writing $h_{w}(x)=x^{\top} w$, then the function values can be written as the matrix vector product,

$$
h=h(X)=X w .
$$

With quadratic loss, we write

$$
L(w)=\frac{1}{m}\|X w-y\|^{2}
$$

Then we have

$$
\nabla_{w} L(w)=\frac{2}{m}\left(X^{\top} X w-X^{\top} y\right)
$$

so the minimizer satisfies the linear equation

$$
X^{\top} X w=X^{\top} y
$$

or $w=\left(X^{\top} X\right)^{-1} X^{\top} y$. Then the function values are

$$
h=X w=X\left(X^{\top} X\right)^{-1} X^{\top} y
$$

Remark 3.1. The formulas above looks complicated at first glance. However, there is a geometrical interpretation in terms of projection. https://en.wikipedia.org/wiki/Projection_matrix

- When there is a solution $X w=y$, this corresponds to writing y as a linear combination of the x_{i} vectors, so $h=y$.
- When there is no solution $X w=y$, then $h=X w$ corresponds to the projection of the values y onto the span of the x_{i}.
3.3. Gradient of general loss with Linear Model. The gradient of a general loss (grad L) can also be written in matrix-vector notation.

Define the column vector

$$
\left(\ell_{h}\right)_{i}=\frac{\partial}{\partial h} \ell\left(h_{i}, y_{i}\right), \quad i=1, \ldots, m .
$$

and recall that $\nabla_{w} h=X$, which corresponds to $\left(\nabla_{w} h\right)_{i}=x_{i}^{\top}$.
Then (grad L) becomes

$$
\begin{equation*}
\nabla_{w} L(w)=\frac{1}{m} X \ell_{h} \tag{1}
\end{equation*}
$$

So we can interpret each conmponent of the loss gradient as the function gradient multiplied by the loss derivative
Remark 3.2. Note that for the least squares loss, (1) corresponds to $\nabla_{w} L(w)=\frac{2}{m} X e$, where $e_{i}=h_{i}-y_{i}$.

References

[DFO20] Marc Peter Deisenroth, A Aldo Faisal, and Cheng Soon Ong. Mathematics for machine learning. Cambridge University Press, 2020.

