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1. Review of vector calculus

We reviewed [DFO20, Chapter 5]

• §5.1 Difference Quotient, definition of the derivative as a limit, Taylor polynomial, differ-
entiation rules

• Example: use order 1 Taylor approximation near x = 9 to estimate
√
9.1.

• §5.2 Partial differentiation.
• §5.3 Jacobian, §5.4 gradient of Matrix.
• To know: when f = Mx, ∇xf = Jf = M .
• Product rule f = g⊤h, Then ∇xf = Jgh+Jhg (can apply this to regression loss below).

Critical points for a function of one variable L(w), w ∈ R,
• a critical point is when L′(w) = 0
• Every local minimum is a critical point. A critical point can be a local minimum, local
maximum, or saddle point.

• If the second order condition holds L′′(w) > 0, then the critical point is also a local
minimum

• If the function is convex (for example when L′′(w) ≥ 0 at all w), then every critical point
is a global minimum.

1.1. Vector Calc for ML: losses.

Example 1.1 (one dimensional MSE loss). Consider a typical Mean Squared Error (MSE) loss.
Let w, xi ∈ R, define

!L(w) = f(w, x1, . . . , xm) =
1

m

m"

i=1

(w − xi)
2

We showed that

∂

∂w
f(w, x1, . . . , xm) = 2w − 2x̄, x̄ =

1

m

m"

i=1

xi

and

w∗ = argmin
w

!L(w) = x̄, !L(w∗) =
m"

i=1

(x̄− xi)
2

We interpreted the second equation as the variance of the dataset. We also showed

∂

∂x1

f(w, x1, . . . , xm) =
2

m
(x1 − w)
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1.2. Vector calculus facts. Now consider a function of d variables, L : Rd → R. The gradient
of the function is a vector defined at each w,

g(w) = ∇L(w) = [g1(w), . . . gd(w)]
T

where each component is partial derivative

gj(w) =
∂

∂wj

L(w)

Figure 1. Illustration of the gradient of the loss

• The gradient vector g(w) = ∇L(w) points in the direction of greatest increase of the
function L at w.

• A critical point w is a point where g(w) = 0.
• As in the one variable case, every local minimum is a critical point. A critical point can
be a local minimum, local maximum, or saddle point.

• As in the one variable case, there is a condition for a critical point to be a local minimum:
the Hessian matrix H(w) is positive-definite. Here H(w)ij =

∂2

∂i∂j
L. (This condition can

be difficult to check).
• As in the one variable case, if the function is convex, then every critical point global
minimum.

2. Linear Regression

We are given the dataset

(Sm) Sm = {(x1, y1), . . . , (xm, ym)}

Consisting of pairs of vectors xi ∈ Rd and values yi ∈ R, for i = 1, . . . ,m.
Our goal is to fit the dataset using linear models h : Rd → R,

H = {hw(x) : Rd → R | w ∈ Rd}



MATH 462 LECTURE NOTES 3

hw(x) = wTx =
d"

i=1

wixi

The error of the model, hw on data (x, y), is defined to be

e = hw(x)− y

We measure the error with the squared loss,

ℓ2(e) = e2

Definition 2.1 (General Empirical Loss). Given

(1) the dataset Sm, as in (Sm),
(2) a model h : Rd → R,
(3) the non-negative loss, ℓ : R → R

The empirical loss of the model h, on the dataset Sm, is given by

L(h) = L(h, Sm) =
1

m

m"

i=1

ℓ(h(xi)− yi)

Given the hypothesis class H, the empirical loss minimizer is given by

(ELM-h) h∗ = argmin
h∈H

L(h)

Note (ELM-h) is a minimization over functions. However, when the functions are parameterized
by w, we can reduce this to a minimization over the parameters as given by (ELM-w)

(ELM-w) w∗ = argmin
w

L(hw)

We can apply the chain rule to (ELM-w) to find a critical point

(grad L) ∇wL(hw) =
1

m

m"

i=1

ℓ′(hw(xi)− yi)∇whw(xi)

So we can interpret each conmponent of the loss gradient as the function gradient multiplied by
the loss derivative

2.1. Gradient of a Least Squares Loss with Linear Model. In this case of the least squares
loss,

L(w) =
1

m

m"

i=1

(hw(xi)− yi)
2

Since

ℓ2(e) = e2, ℓ′2(e) = 2e

and with a linear model

hw(x) = wTx, ∇whw(xi) = xT
i
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(note the transpose). So (grad L) becomes

∇wL(w) =
1

m

m"

i=1

(hw(xi)− yi)∇whw(xi).

Which we can rewrite as

∇wL(w) =
1

m

m"

i=1

(wTxi − yi)x
T
i =

1

m
wT

m"

i=1

xix
T
i − 1

m

m"

i=1

yix
T
i

3. Vector calculus

Recall from vector calculus, https://en.wikipedia.org/wiki/Gradient.

(1) x is a d-dimensional column vector,
(2) f : Rd → R, Then ∇f : Rd → Rd, ∇f(x) is also a column vector. The reason for this is

we want to generalize the derivative: f(x+ h) ≈ f(x) + hf ′(x) becomes:

f(x+ hv) ≈ f(x) + h∇f(x) · v
For the equation above to make sense, we need ∇f to be a column vector. (The total
derivative df = ∇f⊤ is a row vector, see, https://en.wikipedia.org/wiki/Gradient
total derivative.)

(3) If g : Rd → Rn (the function is a column vector), then the jacobian, Jg : Rd → Rn, is
the matrix of partial derivatives,

(Jg)ij =
∂gi
∂xj

Each row of the jacobian, Jg, is the gradient transpose (∇gi)
⊤ of gi.

(4) In particular, g(x) = Mx, then Jg = M . (Exercies: Verify the last statement)
(5) The dot product rule: for vector-valued functions g(x), h(x) : Rd → Rn,

∇(g(x)⊤h(x)) = (Jg)⊤h+ (Jh)⊤g

(6) Using these rules allows us to differentiate f(x) = ‖Mx− b‖2 = (Mx− b) · (Mx− b).

∇f = 2M⊤(Mx− b)

3.1. Matrix vector notation. We can simplify this expression using matrix vector notation. This
notation is also more compatible with vector programming languages. See also [DFO20, Example
5.11]

Given the dataset Sm, with each component (xi, yi) consisting of a row vector and a real, we
want to extract matrices and vectors from it as follows.

X = X(Sm) = [x1, . . . , xm]
⊤ =

#

$$%

x⊤
1

x⊤
2
...
x⊤
m

&

''( , X ∈ Rm×d

and

y = [y1, . . . , ym]
T =

#

$$%

y1
y2
...
ym

&

''( , y ∈ Rm×1

https://en.wikipedia.org/wiki/Gradient
https://en.wikipedia.org/wiki/Gradient
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Here X has m rows, and each row is a vector in Rd and y is a column vector.

3.2. Matrix vector notation for quadratic regression. For the linear function hw(x) = w ·x,
writing hw(x) = x⊤w, then the function values can be written as the matrix vector product,

h = h(X) = Xw.

With quadratic loss, we write

L(w) =
1

m
‖Xw − y‖2

Then we have

∇wL(w) =
2

m
(X⊤Xw −X⊤y)

so the minimizer satisfies the linear equation

X⊤Xw = X⊤y

or w = (X⊤X)−1X⊤y. Then the function values are

h = Xw = X(X⊤X)−1X⊤y

Remark 3.1. The formulas above looks complicated at first glance. However, there is a geometrical
interpretation in terms of projection. https://en.wikipedia.org/wiki/Projection_matrix

• When there is a solution Xw = y, this corresponds to writing y as a linear combination
of the xi vectors, so h = y.

• When there is no solution Xw = y, then h = Xw corresponds to the projection of the
values y onto the span of the xi.

3.3. Gradient of general loss with Linear Model. The gradient of a general loss (grad L) can
also be written in matrix-vector notation.

Define the column vector

(ℓh)i =
∂

∂h
ℓ(hi, yi), i = 1, . . . ,m.

and recall that ∇wh = X, which corresponds to (∇wh)i = x⊤
i .

Then (grad L) becomes

(1) ∇wL(w) =
1

m
Xℓh

So we can interpret each conmponent of the loss gradient as the function gradient multiplied by
the loss derivative

Remark 3.2. Note that for the least squares loss, (1) corresponds to ∇wL(w) = 2
m
Xe, where

ei = hi − yi.

References

[DFO20] Marc Peter Deisenroth, A Aldo Faisal, and Cheng Soon Ong. Mathematics for machine learning. Cam-
bridge University Press, 2020.

https://en.wikipedia.org/wiki/Projection_matrix

