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1. Setup for multi class, score based

Let K ≥ 2 be the number of classes.
Dataset

(S) S = {(x1, y1), . . . , (xm, ym)}
The roadmap for K-classification, and this section, is as follows:

• But now we have y ∈ YK = {1, 2, . . . , K}, corresponding to K classes
• We now have a vector of scores, s(x) ∈ RK , one score for each class.
• The important qualities of a loss are still important: it should be a convex, differentiable
upper bound for the error (the zero-one loss).

Our classification map c : RK → YK is defined as

c(s) = argmax
i

si

As before, on a dataset (S), given a score based loss, ℓ and function h : X → R, the average
loss of h on S is given by

L(h, S) =
1

m

m∑
i=1

ℓ(h(xi), yi)

Definition 1.1 (Error). The error, or zero-one loss, is given by ℓ : Y × Y → [0, 1],

ℓ0,1(y1, y2) =

{
0 y1 = y2
1 otherwise

Given a function c : X → Y and the dataset (S), the error of the model on the dataset is given
by

L0−1(c, S) =
1

m

m∑
i=1

ℓ0−1(c(xi), yi)

2. Multi class Losses

Warning: confusing notation for losses

Concise but confusing notation. s = (s1, . . . , sK) is a vector. Usually we use i, j, k for the
components. When we write sy this is the yth component of s.
E.g. s = (1, 3, 4, 7, 8), y = 2, so sy = s2 = 3
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2.1. Log-loss. Next consider the K class case with the log loss.
Given s ∈ RK , define the softmax function https://en.wikipedia.org/wiki/Softmax_

function, σ : RK → [0, 1]K , by

σ(s)j =
esj∑K
i=1 e

si

Note this maps a vector to a probability vector: the sum of the components is one.
∑

i σ(s)i =
1, ∀s ∈ RK .

Then define the loss

(1) ℓlog−K(s, y) = − log(σ(s)y)

Here σ(s) plays the role of the probability of each class, and we have the multiclass version of the
log loss.

Example 2.1. Notice in (1), y has the role of the index. So for example, if K = 3, and σ(s) =
(.2, .7, .1), then ℓlog−K(s, 2) = − log(.7) and ℓlog−K(s, 3) = − log(.1) = log(10)

This loss is convex, but it takes a bit of work to show it. First, we can rewrite the loss as
follows, For s ∈ RK , y ∈ YK , define the shifted vector

m(s, y)i = si − sy

Then

ℓlog−K(s, y) = LSE(m(s, y)) = log(exp(m1(s, y)) + . . . exp(mK(s, y)))

Example 2.2. Next, consider s = (0.5, 4.5, 0.5), and y = 1. For this score we have a margin of
m(s, y) = (0, 4, 0). Here, the loss is log(2e+ e4) > log(3), so w are incorrect (and sure!)
When y = 2, we have m(s, 2) = (−4, 0,−4). Here the loss is log(1 + 2 exp(−4)) which is

small.
Fix y = 1. For our first score, take s = (2/3, 2/3, 2/3). This has associated margin m(s, y) =

(0, 0, 0). For this the loss is log 3. It’s not clear if the classification is correct. Perturbing the
scores by a small amount leads to a similar loss value.

The convexity of the loss follows from general properties of convex functions (since convex in
m and m linear in s means convex in s). The convexity of log-sum-exp is shown in page 72 of
Boyd, [BV04].

What about upper bound for the zero one loss?
One can check this is an upper bound for the zero-one loss in the sense that

ℓ0−1(c(s), y) ≤
1

log 2
ℓlog−K(s, y), ∀s, y

However, there is one property we lose: a one-to-one correspondence between the loss value and
the classification. Namely we have

c(s) = y =⇒ ℓlog−K(s, y) ≤ logK

c(s) ̸= y =⇒ ℓlog−K(s, y) ≥ log 2.

Or in words, when ℓ ∈ [log 2, logK] the classification may be correct, or incorrect.

https://en.wikipedia.org/wiki/Softmax_function
https://en.wikipedia.org/wiki/Softmax_function
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2.2. Margin loss. Now, we generalize the margin loss from the binary case. We wish to do so
in a way that preserves the desirable properties of the margin loss: upper bounding the zero-one
loss, convexity, and the interpretability of the loss value. We also point out that the shortcomings
of the margin loss should still be the same when working with k-classes: non-differentiability at
zero.

Definition 2.3 (Margin Loss for K classes). For s ∈ RK , y ∈ YK , define the margin

δ(s, y) = sy −max
j ̸=y

sj

and the loss

ℓmargin−K(s, y) = max(0, 1− δ(s, y)).

Example 2.4. For example, δ((5.2, 3, .5), 1) = 2.2 and δ((5.2, 3, .5), 3) = .5 − 5.2 = −4.7. and
ℓmargin−K(s, y) = 0 in the first case, and 5.7 in the second case.

Example 2.5. Note that when the two (or more) of largest scores are the same, e.g. s = (5, 6, 6)
then m(s) = 0 and the ℓ(s, 2) = ℓ(s, 3) = 1. So the loss is one on the classification boundary.

Helpfully, we have the same one-to-one correspondence between loss values and classification.
That is, we still have that a loss less than one implies we have correctly classified, and that a loss
greater than one means we have incorrectly classified. Precisely:

ℓmargin−K(s(x), y) ≤ 1 ⇐⇒ c(s(x)) = y

2.3. Loss design. We want a loss that encourages more confident (correct) classifications. This
leads to the following loss design principle.

The approach to (supervised) binary classification we take is score based, differentiable loss.
The main advantage of this approach is that a differentiable loss is amenable to optimization

Definition 2.6 (Loss design principle). We still want the loss to be an upper bound for the error

(2) ℓ(s, y) ≥ ℓ0−1(c(s), y), ∀s, y
We say the loss is:

(1) Balanced, if permuting labels and scores doesn’t change the loss.
(2) An upper bound for the error, if (2) holds.
(3) Normalized if ℓ(s, y) = 1 for some s on the classification boundary.
(4) monotone if ℓ(s, y) is increasing in sy and descreasing in sj for j ̸= y.
(5) convex if ℓ(s, y) as a function of s.
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