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TODO: add the nearest neighbor, classify to ei distance. Then relate to similar pairs.

s(x, x′) if d(x, x′) < d0

similarity classification.
Can also do cosine similarity, since for unit vectors x · x′ is related by

(x− x′)2 = x2 − 2xx′ + x′2 = 2(1− xx′)

so

x · z = 1− d(x, z)2/2

1. Nearest Neighbors

Given a labelled dataset,
We are given a dataset (Sm) consisting of m pairs of (xi, yi), i = 1, . . . ,m, of vector data,

xi ∈ Rd and labels, yi ∈ Y ,

(Sm) Sm = {(x1, y1), . . . , (xm, ym)}

Given a new example x, define h(x) by

(1) find the nearest neighbor, xj closest to x by mini ‖xi − x‖2.
(2) Define y(x) = yj to have the same label.

1.1. Nearest neighbor function class. Given k vectors w1, . . . wk, written as the single array
of vectors W = (w1, . . . , wk) define the nearest neighbor (index) function by

(1) h(x,W ) = j∗ = argmin
j∈1,...,k

‖x− wj‖2

which returns the index of the vector closest wi to x.1 Then we can define the nearest neighbor
classifier by

ynn(x,W ) = yj, j = h(x,W )

The function hW (x) is piecewise constant. The pieces are determined by the sets

Vj = {x ∈ Rd | h(x,W ) = j}

which are the Voronoi cells corresponding to the points https://en.wikipedia.org/wiki/

Voronoi_diagram. See Figure 1.

Date: October 5, 2023.
1We leave the function undefined at the points where there is more than one minimizer

1

https://en.wikipedia.org/wiki/Voronoi_diagram


2 ADAM M. OBERMAN

Given a larger dataset S = {x1, . . . , xm} when we clusder the points according to the nearest
neighbor, each cluster

Cj = {x ∈ S | h(x,W ) = j}
partitionts the dataset.

Figure 1. Voronoi diagram illustrating the function

Example 1.1. Consider in d = 2 the points W = {(±1,±1)} (vertices of a square). Find
the Voroinoi cells. Given the dataset S = {(±1,±2), (±2,±1), (±2,±2)}, (points on a larger
square), partition is into clusters according to the nearest neighbors.

2. k means clustering

KNN used the idea of nearest neighbors to give a label. Now use the same idea to cluster
points when we have not labels.

References

• Clustering [SSBD14, Chapter 22]
• Vector Calculus [DFO20, Chapter 5]

2.1. Introduction and problem setup. In k-means clustering, we want to partition the data
into k sets, where each partition contains similar data. In our case we consider vector data and
use distance as measure of similarity.
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Figure 2. Example of a k = 3 cluster, with means in red.

Givens.

• a dataset, S, consisting of m vectors in d-dimensions, Rd (no labels),

S = {x1 . . . , xm}
• k, the number of partitions required. (Note, if we can’t see the data, we may not know
the best k but can try the different values of k).

Goal: We want to partition the data into k clusters (disjoint sets),

S = C1 ∪ C2 ∪ · · · ∪ Ck

in such a way that ‘similar’ points belong to the same partition. Each partition Cj is represented
by a vector, wj, which is called a ‘mean’.

Model: Similarity is a semantic2 relation. It is replaced by the a mathematical relation of distance.
The distance function we use is the usual Euclidean distance, d(x, x′) = ‖x− x′‖, where

‖x− y‖2 = (x1 − y1)
2 + · · ·+ (xd − yd)

2

Formally our model substitutes semantic similarity for geometric similarity via

d(x, x′) small means x and x′ are similar

Method: The k-means algorithm.
Randomly choose initial means W = (w1, . . . , wk) which is a list of k different vectors. Can

be chosen randomly (without replacement) from the vectors themselves.

• Assign each point x in dataset Sm to the cluster Ci corresponding to the closest mean
wi.

• Update the means by setting wi to be the mean of the vectors in the cluster Ci

Repeat until convergence (meaning the w don’t change).

Example 2.1. Do a one dimensional example. Let S = {−3,−2,−1, 2, 34} Perform k means
starting from (−1, 4).

2semantic: relating to meaning
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2.2. Discussion. Clustering is visually simple and the algorithm is also simple to implement and
understand.

In what follows, we will deliberately make things complicated. Why? We are using this example
of k-means clustering to introduce some concepts which will appear later in a more complicated
context.

Analysis:

• We will analyze the problem, using simple examples to show what can happen.
• We will give a variational interpretation of the algorithm, and prove that each step of the
algorithm improves the cluster, until the algorithm terminates at a fixed point.

3. Python code

The main Numpy code for k-means is given here.

# find the squared distance to each of the means

for j in range(k):

# subtract the j-th mean and square each component

Xtemp = (X - means[j,:])**2

# sum the squares of each vector

dist[j,:] = np.sum(Xtemp,axis=1)

# Find the cluster for each data point

labels = np.argmin(dist,axis=0) # returns the index

# Update means

for j in range(k):

# extract the vectors in the jth cluster

Xjj = X[labels==j,:]

# compute their mean

means[j,:] = np.mean(Xjj,axis=0)

4. Analysis via examples

[ Pictures ]

5. Analysis via loss

5.1. Loss functional.

Definition 5.1 (Empirical Loss functional). Given an unlabeled dataset, S, and a function h :
Rd → Rd, define the empirical loss functional to be the average squared distance from a point to
its image under the transformation h(x),

L(h, S) =
1

m

m!

i=1

‖h(xi)− xi‖2

Remark 5.2. It has the form

L(h) =
1

|S|
!

x∈S

ℓ(h(x), x)

in the case of the loss ℓ(x1, x2) = ‖x1 − x2‖2,
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The k-means loss functional comes from minimizing this over functions of the form

(2) h(x,W ) = w∗
j = argmin

j∈1,...,k
‖x− wj‖2

which returns the nearest neighbor (vector) to x in W , where W = (w1, . . . , wk) which leads to

min
W

L(h(x,W ), S)

Now these functions partition the loss as follows.

Lemma 5.3. Given a function hW of the form (2), we can write

L(hW ) =
1

m

k!

j=1

!

x∈Cj

‖x− wj‖2

Proof. Rewrite the loss as

L(hW ) =
1

m

k!

j=1

!

x∈Cj

‖x− hW (x)‖2 since C1, . . . Ck is partition of Sm

=
1

m

k!

j=1

!

x∈Cj

‖x− wj‖2 by definition

□

5.2. Algorithm. Here we rewrite the simple k-means algorithm described above in terms of the
hypothesis.

Given an initial (e.g. random) choice of W 0, for any t, given W t, define

(3) wt+1
j = argmin

w∈Rd

!

x∈Cj

‖x− w‖2, j = 1, . . . , k

thus in each cluster, the wt
j is updates to one which improves the sum of the distances over the

cluster

Remark 5.4. In other parts of the course, we will consider algorithms which update the loss using
a gradient with respect to the weights. However, in this case, gradient based algorithm are not
appropriate because hW is piecewise constant, so not really differentiable in W .

Lemma 5.5. Suppose we update hW according to (3). Then we have

L(ht+1
W , S) ≤ L(ht

W , S)

with a strict inequality, unless W t+1 = W t

But may not reach a global mimimum. See example with rectangle four corners.

Example 5.6. S = {(±2,±1)} Can find two fixed points (by averaging corners horizontal or
vertical).

But, doing a few random initializations is usually good enough to find a better one.
+ heuristic for how many k to choose.
(Homework).
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