
MATH 462 NOTES
NEAREST NEIGHBORS AND K-MEANS CLUSTERING

ADAM M. OBERMAN

TODO: add the nearest neighbor, classify to ei distance. Then relate to similar pairs.

s(x, x′) if d(x, x′) < d0

similarity classification.
Can also do cosine similarity, since for unit vectors x · x′ is related by

(x− x′)2 = x2 − 2xx′ + x′2 = 2(1− xx′)

so

x · z = 1− d(x, z)2/2

1. Nearest Neighbors

Given a labelled dataset,
We are given a dataset (Sm) consisting of m pairs of (xi, yi), i = 1, . . . ,m, of vector data,

xi ∈ Rd and labels, yi ∈ Y ,

(Sm) Sm = {(x1, y1), . . . , (xm, ym)}

Given a new example x, define h(x) by

(1) find the nearest neighbor, xj closest to x by mini ‖xi − x‖2.
(2) Define y(x) = yj to have the same label.

1.1. Nearest neighbor function class. Given k vectors w1, . . . wk, written as the single array
of vectors W = (w1, . . . , wk) define the nearest neighbor (index) function by

(1) h(x,W) = j∗ = argmin
j∈1,...,k

‖x− wj‖2

which returns the index of the vector closest wi to x.1 Then we can define the nearest neighbor
classifier by

ynn(x,W) = yj, j = h(x,W)

The function hW (x) is piecewise constant. The pieces are determined by the sets

Vj = {x ∈ Rd | h(x,W) = j}

which are the Voronoi cells corresponding to the points https://en.wikipedia.org/wiki/

Voronoi_diagram. See Figure 1.

Date: October 5, 2023.
1We leave the function undefined at the points where there is more than one minimizer

1

https://en.wikipedia.org/wiki/Voronoi_diagram

2 ADAM M. OBERMAN

Given a larger dataset S = {x1, . . . , xm} when we clusder the points according to the nearest
neighbor, each cluster

Cj = {x ∈ S | h(x,W) = j}
partitionts the dataset.

Figure 1. Voronoi diagram illustrating the function

Example 1.1. Consider in d = 2 the points W = {(±1,±1)} (vertices of a square). Find
the Voroinoi cells. Given the dataset S = {(±1,±2), (±2,±1), (±2,±2)}, (points on a larger
square), partition is into clusters according to the nearest neighbors.

2. k means clustering

KNN used the idea of nearest neighbors to give a label. Now use the same idea to cluster
points when we have not labels.

References

• Clustering [SSBD14, Chapter 22]
• Vector Calculus [DFO20, Chapter 5]

2.1. Introduction and problem setup. In k-means clustering, we want to partition the data
into k sets, where each partition contains similar data. In our case we consider vector data and
use distance as measure of similarity.

MATH 462 NOTES NEAREST NEIGHBORS AND K-MEANS CLUSTERING 3

Figure 2. Example of a k = 3 cluster, with means in red.

Givens.

• a dataset, S, consisting of m vectors in d-dimensions, Rd (no labels),

S = {x1 . . . , xm}
• k, the number of partitions required. (Note, if we can’t see the data, we may not know
the best k but can try the different values of k).

Goal: We want to partition the data into k clusters (disjoint sets),

S = C1 ∪ C2 ∪ · · · ∪ Ck

in such a way that ‘similar’ points belong to the same partition. Each partition Cj is represented
by a vector, wj, which is called a ‘mean’.

Model: Similarity is a semantic2 relation. It is replaced by the a mathematical relation of distance.
The distance function we use is the usual Euclidean distance, d(x, x′) = ‖x− x′‖, where

‖x− y‖2 = (x1 − y1)
2 + · · ·+ (xd − yd)

2

Formally our model substitutes semantic similarity for geometric similarity via

d(x, x′) small means x and x′ are similar

Method: The k-means algorithm.
Randomly choose initial means W = (w1, . . . , wk) which is a list of k different vectors. Can

be chosen randomly (without replacement) from the vectors themselves.

• Assign each point x in dataset Sm to the cluster Ci corresponding to the closest mean
wi.

• Update the means by setting wi to be the mean of the vectors in the cluster Ci

Repeat until convergence (meaning the w don’t change).

Example 2.1. Do a one dimensional example. Let S = {−3,−2,−1, 2, 34} Perform k means
starting from (−1, 4).

2semantic: relating to meaning

4 ADAM M. OBERMAN

2.2. Discussion. Clustering is visually simple and the algorithm is also simple to implement and
understand.

In what follows, we will deliberately make things complicated. Why? We are using this example
of k-means clustering to introduce some concepts which will appear later in a more complicated
context.

Analysis:

• We will analyze the problem, using simple examples to show what can happen.
• We will give a variational interpretation of the algorithm, and prove that each step of the
algorithm improves the cluster, until the algorithm terminates at a fixed point.

3. Python code

The main Numpy code for k-means is given here.

find the squared distance to each of the means

for j in range(k):

subtract the j-th mean and square each component

Xtemp = (X - means[j,:])**2

sum the squares of each vector

dist[j,:] = np.sum(Xtemp,axis=1)

Find the cluster for each data point

labels = np.argmin(dist,axis=0) # returns the index

Update means

for j in range(k):

extract the vectors in the jth cluster

Xjj = X[labels==j,:]

compute their mean

means[j,:] = np.mean(Xjj,axis=0)

4. Analysis via examples

[Pictures]

5. Analysis via loss

5.1. Loss functional.

Definition 5.1 (Empirical Loss functional). Given an unlabeled dataset, S, and a function h :
Rd → Rd, define the empirical loss functional to be the average squared distance from a point to
its image under the transformation h(x),

L(h, S) =
1

m

m!

i=1

‖h(xi)− xi‖2

Remark 5.2. It has the form

L(h) =
1

|S|
!

x∈S

ℓ(h(x), x)

in the case of the loss ℓ(x1, x2) = ‖x1 − x2‖2,

MATH 462 NOTES NEAREST NEIGHBORS AND K-MEANS CLUSTERING 5

The k-means loss functional comes from minimizing this over functions of the form

(2) h(x,W) = w∗
j = argmin

j∈1,...,k
‖x− wj‖2

which returns the nearest neighbor (vector) to x in W , where W = (w1, . . . , wk) which leads to

min
W

L(h(x,W), S)

Now these functions partition the loss as follows.

Lemma 5.3. Given a function hW of the form (2), we can write

L(hW) =
1

m

k!

j=1

!

x∈Cj

‖x− wj‖2

Proof. Rewrite the loss as

L(hW) =
1

m

k!

j=1

!

x∈Cj

‖x− hW (x)‖2 since C1, . . . Ck is partition of Sm

=
1

m

k!

j=1

!

x∈Cj

‖x− wj‖2 by definition

□

5.2. Algorithm. Here we rewrite the simple k-means algorithm described above in terms of the
hypothesis.

Given an initial (e.g. random) choice of W 0, for any t, given W t, define

(3) wt+1
j = argmin

w∈Rd

!

x∈Cj

‖x− w‖2, j = 1, . . . , k

thus in each cluster, the wt
j is updates to one which improves the sum of the distances over the

cluster

Remark 5.4. In other parts of the course, we will consider algorithms which update the loss using
a gradient with respect to the weights. However, in this case, gradient based algorithm are not
appropriate because hW is piecewise constant, so not really differentiable in W .

Lemma 5.5. Suppose we update hW according to (3). Then we have

L(ht+1
W , S) ≤ L(ht

W , S)

with a strict inequality, unless W t+1 = W t

But may not reach a global mimimum. See example with rectangle four corners.

Example 5.6. S = {(±2,±1)} Can find two fixed points (by averaging corners horizontal or
vertical).

But, doing a few random initializations is usually good enough to find a better one.
+ heuristic for how many k to choose.
(Homework).

6 ADAM M. OBERMAN

References

[DFO20] Marc Peter Deisenroth, A Aldo Faisal, and Cheng Soon Ong. Mathematics for machine learning. Cam-
bridge University Press, 2020.

[SSBD14] Shai Shalev-Shwartz and Shai Ben-David. Understanding Machine Learning: From Theory to Algo-
rithms. Cambridge University Press, 2014.

