
MATH 462 LECTURE NOTES
INNER PRODUCTS AND PROJECTIONS

ADAM M. OBERMAN

1. Inner Products

1.1. Review of analytic geometry. Review [DFO20, Chapter 3], sections 3.1-3.6

• Definition of norms (normed vector space), 1-norm, 2-norm
• Definition of inner products (inner product space)
• Definition of PSD (symmetric, positive definite) matrix
• Definition of a metric
• Cauchy Schwartz inequality
• Angle between two vectors: cos θ = x⊤y/‖x‖‖y‖ .

1.2. Inner Products. Given two vectors, x, z ∈ Rd, the inner product is

x · z = x⊤z =
d!

i=1

xizi

Definition 1.1. Let V be a vector space and let B : V × V → R be a bilinear mapping that
takes two vectors and maps them onto a real number. Then

• B is called symmetric if B(x, y) = B(y, x) for all x,y ∈ V ,
• B is called non-negative definite if

B(x, x) ≥ 0, ∀x ∈ V,

• B is called positive definite, if it is non-negative definite, and if, in addition,

B(x, x) = 0 ⇐⇒ x = 0

A positive definite, symmetric bilinear mapping B : V × V → R is called an inner product on V .
We typically write 〈x, y〉 instead of B(x, y). The pair (V, 〈·, ·〉) is called an inner product space.

Example 1.2. Given two vectors, x, z ∈ Rd, we can define a different inner product than the usual
one. For example, if we have positive vector a = (a1, . . . , ad) and rescale the variables,

x̃ = (a1x1, . . . , adxd)

then we can define an inner product

〈x, z〉a = x̃ · z̃ = (Mx) · (Mx), M = diag(a)

More generally, given any full rank matrix, M , we can define

〈x, z〉M = (Mx) · (Mz),

Exercise 1.1. Prove that if M is full rank, then 〈x, z〉M = (Mx) · (Mx) is an inner product. Why
does M have to be full rank? Hint: show that if Mx = 0 for some nonzero x, then the positive
definite requirement fails.
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Example 1.3. Let λ ∈ Rd. Define B(x, z) = x⊤diag(λ)z Then B is bilinear. Note if any
component of λ is negative, say λj, then B(ej, ej) = λj < 0.

Exercise 1.2. Let λ ∈ Rd, and letM be a full rank d×dmatrix. DefineB(x, z) = (Mx)⊤diag(λ)Mz.
Show that B is a symmetric bilinear form. Show that B is non-negative definite if and only if
each component λ is non-negative. Likewise, show that B is positive definite if and only if each
component of λ is positive.

1.3. Symmetric PSD matrices.

Definition 1.4. A symmetric matrix, P , is called non-negative definite if xTPx ≥ 0 for all x. A
non-negative definite matrix is called positive definite if xTPx = 0 only when x = 0.

Example 1.5. Let M be an d× d matrix.
Define P = M⊤M .
Then P is non-negative definite. If, in addition, M is full rank, then P is positive definite.

Example 1.6. For example, set M =

"
2 1
0 3

#
Then P =

"
2 0
1 3

# "
2 1
0 3

#
=

"
4 2
2 9

#
. The matrix P

is non-negative definite. Note x⊤Px = (Mx)⊤(Mx) which is non-negative, since it is ‖v‖2 for
v = Mx. An additional argument shows P is positive definite.

Example 1.7 (from textbook). Consider the matrices

A1 =

"
9 6
6 5

#
, A2 =

"
9 6
6 3

#
.

A1 is positive definite because it is symmetric and

x⊤A1x =
$
x1 x2

% " 9 6
6 5

# "
x1

x2

#

= 9x2
1 + 12x1x2 + 5x2

2 = (3x1 + 2x2)
2 + x2

2 > 0

for all x ∈ V \{0}. In contrast, A2 is symmetric but not positive definite because x⊤A2x =
9x2

1 + 12x1x2 + 3x2
2 = (3x1 + 2x2)

2 − x2
2 can be less than 0, e.g., for x = [2,−3]⊤.

Remark 1.8. In the two dimensional example above, the proof was done by completing the square.
This is possible in two dimensions. However, the more general higher dimensional case is not so
easy. Instead, we have to rely on advanced linear algebra techniques.

1.4. Orthogonal Matrices and Matrix Factorizations. In order to determined if a matrix
is positive definite, we need to use advanced linear algebra techniques, in particular, matrix
factorizations. https://en.wikipedia.org/wiki/Matrix_decomposition

Two vectors v, z are called orthogonal if

v · z = 0

The vector v is a unit vector if
‖v‖2 = v · v = 1

A square matrix O is called orthonomal if each row of the matrix consists of unit vectors, which
are orthogonal. So the rows form an orthogonal basis of the V = Rd.

For every d × d real symmetric matrix, the eigenvalues are real and the eigenvectors can be
chosen real and orthonormal. Thus a real symmetric matrix A can be decomposed as

A = O⊤ΛO

https://en.wikipedia.org/wiki/Matrix_decomposition


MATH 462 LECTURE NOTES INNER PRODUCTS AND PROJECTIONS 3

where Q is an orthogonal matrix whose columns are the real, orthonormal eigenvectors of A,
and Λ is a diagonal matrix whose entries are the eigenvalues of A[7]

For example, if a matrix is PSD, then it can be factored as P = O⊤ΛO, where O orthogonal
and Λ is diagonal with positive numbers on the diagonal.

More generally, any real symmetric matrix, A, can be decomposed as

A = O⊤ΛO

where Λ is diagonal, but can have zero or negative values on the diagonal.

1.5. Matrix Factorizations and Outer product. Note when we write

A = O⊤ΛO

Let the row (column?) vectors of O be denotes v1, . . . , vd.
We can also write A as

A =
d!

i=1

λiviv
⊤
i

so that

Ax =
d!

i=1

λi(vi · x)vi

Example 1.9. if x = [1, 2, 3] then

x⊤x = 12 + 22 + 32 = 14

but

xx⊤ =

&

'
1 2 3
2 4 6
3 6 9

(

)

Exercise 1.3. TODO: two dimensional example of this factorization.

2. Orthogonal Projections

Review [DFO20, Chapter 3], Section 3.8

• orthogonal vectors
• orthogonal projections
• projections onto line
• projections onto subspace
• projection matrices
• PSD Matrix factorization, P = O⊤ΛO, where O orthogonal and Λ is diagonal.

The projection onto a set S is defined to be

P (x) = argmin
s∈S

‖x− s‖2

(when it is unique).
The projection is unique for any convex set, including linear and affine subspaces.
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2.1. Projection onto a line. A line in Rd, in the direction b ∈ Rd, is determined by the
parametric equation

L = {bt | t ∈ R}
The projection onto the line is defined by

P (x) = argmin
t

‖x− bt‖2

Minimizing this leads to
b⊤(bt− x) = 0

or

t =
b · x
‖b‖2 , P (x) = bt =

b · x
‖b‖2 b

We can write the projection as the linear operator

P =
1

‖b‖2 bb
⊤

We can write the matrix representation as of the projection as

M = Projb =
1

‖b‖2 bb
⊤

Example 2.1. Example 3.10 (Projection onto a Line) Find the projection matrix P π onto the

line through the origin spanned by b =
$
1 2 2

%⊤
. Here b is a direction and a basis of the

one-dimensional subspace (line through origin). We obtain

P π =
bb⊤

b⊤b
=

1

9

&

'
1
2
2

(

) $
1 2 2

%
=

1

9

&

'
1 2 2
2 4 4
2 4 4

(

) .

Let us now choose a particular x and see whether it lies in the subspace spanned by b. For

x =
$
1 1 1

%⊤
, the projection is

πU(x) = P πx =
1

9

&

'
1 2 2
2 4 4
2 4 4

(

)

&

'
1
1
1

(

) =
1

9

&

'
5
10
10

(

) ∈ span

&

'

&

'
1
2
2

(

)

(

) .

Note that the application of P π to πU(x) does not change anything, i.e., P ππU(x) = πU(x).
This is expected because according to Definition 3.10, we know that a projection matrix P π

satisfies P 2
πx = P πx for all x.

Remark 2.2. We can show that πU(x) is an eigenvector of P π, and the corresponding eigenvalue
is 1 .

Definition 2.3. Given x ∈ Rn and a linear subspace U , we define the projection

(V) ProjU(x) = argmin
y∈U

‖x− y‖2

This is the variational definition of the projection, as the closest point.
When U has a basis b1, . . . , bp, we can write the projection in the parametric form. Since any

vector y ∈ U can be written as

y =

p!

i=1

λibi = Bλ, B = [b1, . . . , bp], λ ∈ Rp
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Then (V) is equivalent to

(P) ProjU(x) = argmin
λ∈Rp

‖Bλ− x‖2

which we refer to as the parametric representation.
Reviewing vector calculus rules as above (which use math notation). Now returning to ML

notation, define f(λ) = ‖Bλ− x‖2, then
∇λf(λ) = 2B⊤(Bλ− x)

so the minimizer, λ, of (P) solves

(1) B⊤Bλ = B⊤x

Here (1) is called the normal equation. Then y = Bλ gives

(L) ProjU(x) = B(B⊤B)−1B⊤x

We refer to (L) as the matrix representation of the projection. In particular,

ProjU = B(B⊤B)−1B⊤

2.2. Orthogonal Basis. If we use an orthonormal basis v1, . . . , vp, and write

O = [v1, . . . , vp]
⊤, p× n matrix

Then OTO = I is the p dimensional identity matrix, and (L) becomes

ProjU(x) = OO⊤x

Remark 2.4. See examples in class or from [DFO20] of orthogonal projection matrices.

Here we see that

M = ProjU =

p!

i=1

Projvi =

p!

i=1

vivi
⊤

which represents the projection matrix as a sum of one dimensional projections.

Example 2.5. Let U be the span of two vectors, b1 = [1, 1, 1]⊤, b2 = [0, 1, 2]⊤ in R3. Then . . . ,
the projection matrix is given in notes.

Form, using Gram-Schmidt, the orthonormal basis v1 =
1√
3
[1, 1, 1]⊤, v2 =

1√
2
[−1, 0, 1]⊤. Then

the projection matrix can be written as

M = ProjU = v1v
⊤
1 + v2v

⊤
2 =

1

3

&

'
1 1 1
1 1 1
1 1 1

(

)+
1

2

&

'
1 0 1
0 0 0
1 0 1

(

)

3. Principal components analysis

Refer to [DFO20] Chapter 10. Refer to [SSBD14], Chapter 23 for proofs.
Given Sm = {x1, . . . xm} with xi ∈ Rn.

Definition 3.1. The covariance matrix of Sn is given by

C =
1

m

m!

i=1

xix
⊤
i
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Recall that M = xx⊤ is the rank 1 n× n matrix

Mij = xixj.

The vector representation. Given Sm as above, form the m× d matrix

X = [x1, . . . , xm]
⊤ ∈ Rm×d

and write
X⊤ = [x⊤

1 , . . . , x
⊤
m] ∈ Rd×m

Then the covariance matrix is given by the d× d matrix

C = X⊤X ∈ Rd×d

Where

C =
m!

i=1

xix
⊤
i

(which follows from the matrix representations above).

Definition 3.2. Given Sm with covariance matrix C. Let λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0 be the
non-negative eigenvalues of C and let v1, . . . , vn be the corresponding eigenvectors. Then the
first p principal components are given by v1, . . . , vp. Given a data point x, the PCA representation
of x is given by the projection onto the span of v1, . . . , vp

ProjV (x) =

p!

i=1

Projvi(x) =

p!

i=1

(v⊤i x)vi

We have the following variational interpretation of PCA.

Definition 3.3. (Compression and recovery matrix) Let W be a compression matrix mapping the
data, vectors in Rn to Rp, for p < n. Let U be a recovery matrix, mapping Rp to Rn. For a
given dataset Sm, with mean zero, define

(2) L(W,U, Sm) =
1

m

m!

i=1

‖xi − UWxi‖2

Theorem 3.4. Given Sm, then the Compression-Recovery loss (2) is minimized by W = V and
U = V ⊤, where V is the matrix of the first p eigenvectors of the covariance matrix of the data.

Proof. This theorem is proved in [SSBD14], Chapter 23. See also Calder notes. □
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