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Convex Learning Problems

In this chapter we introduce convex learning problems. Convex learning comprises
an important family of learning problems, mainly because most of what we can
learn efficiently falls into it. We have already encountered linear regression with
the squared loss and logistic regression, which are convex problems, and indeed
they can be learned efficiently. We have also seen nonconvex problems, such as
halfspaces with the 0-1 loss, which is known to be computationally hard to learn in
the unrealizable case.

In general, a convex learning problem is a problem whose hypothesis class is a
convex set, and whose loss function is a convex function for each example. We begin
the chapter with some required definitions of convexity. Besides convexity, we will
define Lipschitzness and smoothness, which are additional properties of the loss
function that facilitate successful learning. We next turn to defining convex learning
problems and demonstrate the necessity for further constraints such as Bounded-
ness and Lipschitzness or Smoothness. We define these more restricted families of
learning problems and claim that Convex-Smooth/Lipschitz-Bounded problems are
learnable. These claims will be proven in the next two chapters, in which we will
present two learning paradigms that successfully learn all problems that are either
convex-Lipschitz-bounded or convex-smooth-bounded.

Finally, in Section 12.3, we show how one can handle some nonconvex problems
by minimizing “surrogate” loss functions that are convex (instead of the original
nonconvex loss function). Surrogate convex loss functions give rise to efficient
solutions but might increase the risk of the learned predictor.

12.1 CONVEXITY, LIPSCHITZNESS, AND SMOOTHNESS

12.1.1 Convexity

Definition 12.1 (Convex Set). A set C in a vector space is convex if for any two
vectors u,v in C , the line segment between u and v is contained in C . That is, for any
α ∈ [0,1] we have that αu + (1 −α)v ∈ C .
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Examples of convex and nonconvex sets in R2 are given in the following. For the
nonconvex sets, we depict two points in the set such that the line between the two
points is not contained in the set.

ConvexNonconvex

Given α ∈ [0,1], the combination, αu + (1 − α)v of the points u,v is called a
convex combination.

Definition 12.2 (Convex Function). Let C be a convex set. A function f : C → R is
convex if for every u,v ∈ C and α ∈ [0,1],

f (αu + (1 −α)v) ≤ α f (u) + (1 −α) f (v).

In words, f is convex if for any u,v, the graph of f between u and v lies below the
line segment joining f (u) and f (v). An illustration of a convex function, f : R→R,
is depicted in the following.

f (u)

f (v)

u
α u + (1 − α)v

v

α f (u) + (1 − α) f (v)

f (α u + (1 − α)v)

The epigraph of a function f is the set

epigraph(f) = {(x,β) : f (x) ≤ β}. (12.1)

It is easy to verify that a function f is convex if and only if its epigraph is a convex
set. An illustration of a nonconvex function f : R → R, along with its epigraph, is
given in the following.
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x

f (x)

An important property of convex functions is that every local minimum of the
function is also a global minimum. Formally, let B(u,r) = {v : ‖v − u‖ ≤ r} be a
ball of radius r centered around u. We say that f (u) is a local minimum of f at
u if there exists some r > 0 such that for all v ∈ B(u,r) we have f (v) ≥ f (u). It
follows that for any v (not necessarily in B), there is a small enough α > 0 such that
u +α(v − u) ∈ B(u,r) and therefore

f (u) ≤ f (u +α(v − u)). (12.2)

If f is convex, we also have that

f (u +α(v − u)) = f (αv + (1 −α)u) ≤ (1 −α) f (u) +α f (v). (12.3)

Combining these two equations and rearranging terms, we conclude that f (u) ≤
f (v). Since this holds for every v, it follows that f (u) is also a global minimum of f .

Another important property of convex functions is that for every w we can
construct a tangent to f at w that lies below f everywhere. If f is differen-
tiable, this tangent is the linear function l(u) = f (w) + 〈∇ f (w),u − w〉, where
∇ f (w) is the gradient of f at w, namely, the vector of partial derivatives of f ,
∇ f (w) =

(
∂ f (w)
∂w1

, . . . ,
∂ f (w)
∂wd

)
. That is, for convex differentiable functions,

∀u, f (u) ≥ f (w) + 〈∇ f (w),u − w〉. (12.4)

In Chapter 14 we will generalize this inequality to nondifferentiable functions. An
illustration of Equation (12.4) is given in the following.

w u

f (w)

f (u)

f (w
) +

 〈u
 − w

, ∇
f (w

)〉

If f is a scalar differentiable function, there is an easy way to check whether it is
convex.

Lemma 12.3. Let f : R→ R be a scalar twice differential function, and let f ′, f ′′ be
its first and second derivatives, respectively. Then, the following are equivalent:
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1. f is convex
2. f ′ is monotonically nondecreasing
3. f ′′ is nonnegative

Example 12.1.

! The scalar function f (x) = x2 is convex. To see this, note that f ′(x) = 2x and
f ′′(x) = 2 > 0.

! The scalar function f (x) = log(1 + exp(x)) is convex. To see this, observe that
f ′(x) = exp(x)

1+exp(x) = 1
exp(−x)+1 . This is a monotonically increasing function since

the exponent function is a monotonically increasing function.

The following claim shows that the composition of a convex scalar function with
a linear function yields a convex vector-valued function.

Claim 12.4. Assume that f : Rd →R can be written as f (w) = g(〈w,x〉+ y), for some
x ∈Rd , y ∈ R, and g : R→R. Then, convexity of g implies the convexity of f .

Proof. Let w1,w2 ∈Rd and α ∈ [0,1]. We have

f (αw1 + (1 −α)w2) = g(〈αw1 + (1 −α)w2,x〉+ y)

= g(α〈w1,x〉+ (1 −α)〈w2,x〉+ y)

= g(α(〈w1,x〉+ y) + (1 −α)(〈w2,x〉+ y))

≤ αg(〈w1,x〉+ y) + (1 −α)g(〈w2,x〉+ y),

where the last inequality follows from the convexity of g.

Example 12.2.

! Given some x ∈ Rd and y ∈ R, let f : Rd →R be defined as f (w) = (〈w,x〉− y)2.
Then, f is a composition of the function g(a) = a2 onto a linear function, and
hence f is a convex function.

! Given some x ∈ Rd and y ∈ {±1}, let f : Rd → R be defined as f (w) = log(1 +
exp(− y〈w,x〉)). Then, f is a composition of the function g(a) = log(1+exp(a))
onto a linear function, and hence f is a convex function.

Finally, the following lemma shows that the maximum of convex functions is
convex and that a weighted sum of convex functions, with nonnegative weights, is
also convex.

Claim 12.5. For i = 1, . . . ,r , let fi : Rd → R be a convex function. The following
functions from Rd to R are also convex.

! g(x) = maxi∈[r] fi (x)
! g(x) =

∑r
i=1wi fi (x), where for all i , wi ≥ 0.
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Proof. The first claim follows by

g(αu + (1 −α)v) = max
i

fi (αu + (1 −α)v)

≤ max
i

[α fi (u) + (1 −α) fi (v)]

≤ α max
i

fi (u) + (1 −α)max
i

fi (v)

= αg(u) + (1 −α)g(v).

For the second claim

g(αu + (1 −α)v) =
∑

i

wi fi (αu + (1 −α)v)

≤
∑

i

wi [α fi (u) + (1 −α) fi (v)]

= α
∑

i

wi fi (u) + (1 −α)
∑

i

wi fi (v)

= αg(u) + (1 −α)g(v).

Example 12.3. The function g(x) = |x | is convex. To see this, note that g(x) =
max{x,−x} and that both the function f1(x) = x and f2(x) = −x are convex.

12.1.2 Lipschitzness

The definition of Lipschitzness that follows is with respect to the Euclidean norm
over Rd . However, it is possible to define Lipschitzness with respect to any norm.

Definition 12.6 (Lipschitzness). Let C ⊂ Rd . A function f : Rd → Rk is ρ-Lipschitz
over C if for every w1,w2 ∈ C we have that ‖ f (w1) − f (w2)‖ ≤ ρ ‖w1 − w2‖.

Intuitively, a Lipschitz function cannot change too fast. Note that if f : R→R is
differentiable, then by the mean value theorem we have

f (w1) − f (w2) = f ′(u)(w1 −w2),

where u is some point between w1 and w2. It follows that if the derivative of f is
everywhere bounded (in absolute value) by ρ, then the function is ρ-Lipschitz.

Example 12.4.

! The function f (x) = |x | is 1-Lipschitz over R. This follows from the triangle
inequality: For every x1,x2,

|x1|− |x2| = |x1 − x2 + x2|− |x2| ≤ |x1 − x2|+ |x2|− |x2| = |x1 − x2|.

Since this holds for both x1,x2 and x2,x1, we obtain that ||x1|− |x2|| ≤ |x1 − x2|.
! The function f (x) = log(1 + exp(x)) is 1-Lipschitz over R. To see this, observe

that

| f ′(x)| =
∣∣∣∣

exp(x)
1 + exp(x)

∣∣∣∣ =
∣∣∣∣

1
exp( − x) + 1

∣∣∣∣ ≤ 1.
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! The function f (x) = x2 is not ρ-Lipschitz over R for any ρ. To see this, take
x1 = 0 and x2 = 1 +ρ, then

f (x2) − f (x1) = (1 +ρ)2 > ρ(1 +ρ) = ρ|x2 − x1|.

However, this function is ρ-Lipschitz over the set C = {x : |x | ≤ ρ/2}. Indeed, for
any x1,x2 ∈ C we have

|x2
1 − x2

2 | = |x1 + x2| |x1 − x2| ≤ 2(ρ/2) |x1 − x2| = ρ|x1 − x2|.

! The linear function f : Rd → R defined by f (w) = 〈v,w〉 + b where v ∈ Rd is
‖v‖-Lipschitz. Indeed, using Cauchy-Schwartz inequality,

| f (w1) − f (w2)| = |〈v,w1 − w2〉| ≤ ‖v‖‖w1 − w2‖.

The following claim shows that composition of Lipschitz functions preserves
Lipschitzness.

Claim 12.7. Let f (x) = g1(g2(x)), where g1 is ρ1-Lipschitz and g2 is ρ2-Lipschitz.
Then, f is (ρ1ρ2)-Lipschitz. In particular, if g2 is the linear function, g2(x) = 〈v,x〉+b,
for some v ∈Rd ,b ∈ R, then f is (ρ1 ‖v‖)-Lipschitz.

Proof.

| f (w1) − f (w2)| = |g1(g2(w1)) − g1(g2(w2))|
≤ ρ1‖g2(w1) − g2(w2)‖
≤ ρ1 ρ2 ‖w1 − w2‖.

12.1.3 Smoothness

The definition of a smooth function relies on the notion of gradient. Recall that the
gradient of a differentiable function f : Rd → R at w, denoted ∇ f (w), is the vector
of partial derivatives of f , namely, ∇ f (w) =

(
∂ f (w)
∂w1

, . . . ,
∂ f (w)
∂wd

)
.

Definition 12.8 (Smoothness). A differentiable function f : Rd → R is β-smooth if
its gradient is β-Lipschitz; namely, for all v,w we have ‖∇ f (v)−∇ f (w)‖≤β‖v−w‖.

It is possible to show that smoothness implies that for all v,w we have

f (v) ≤ f (w) + 〈∇ f (w),v − w〉+
β

2
‖v − w‖2. (12.5)

Recall that convexity of f implies that f (v) ≥ f (w) + 〈∇ f (w),v − w〉. Therefore,
when a function is both convex and smooth, we have both upper and lower bounds
on the difference between the function and its first order approximation.

Setting v = w − 1
β
∇ f (w) in the right-hand side of Equation (12.5) and rearrang-

ing terms, we obtain
1

2β
‖∇ f (w)‖2 ≤ f (w) − f (v).
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If we further assume that f (v) ≥ 0 for all v we conclude that smoothness implies the
following:

‖∇ f (w)‖2 ≤ 2β f (w). (12.6)

A function that satisfies this property is also called a self-bounded function.

Example 12.5.

! The function f (x) = x2 is 2-smooth. This follows directly from the fact
that f ′(x) = 2x . Note that for this particular function Equation (12.5) and
Equation (12.6) hold with equality.

! The function f (x) = log(1 + exp(x)) is (1/4)-smooth. Indeed, since f ′(x) =
1

1+exp(−x) we have that

| f ′′(x)| = exp( − x)
(1 + exp( − x))2 = 1

(1 + exp( − x))(1 + exp(x))
≤ 1/4.

Hence, f ′ is (1/4)-Lipschitz. Since this function is nonnegative, Equation (12.6)
holds as well.

The following claim shows that a composition of a smooth scalar function over a
linear function preserves smoothness.

Claim 12.9. Let f (w) = g(〈w,x〉+b), where g :R→R is a β-smooth function, x ∈Rd ,
and b ∈R. Then, f is (β ‖x‖2)-smooth.

Proof. By the chain rule we have that ∇ f (w) = g′(〈w,x〉 + b)x, where g′ is the
derivative of g. Using the smoothness of g and the Cauchy-Schwartz inequality we
therefore obtain

f (v) = g(〈v,x〉+ b)

≤ g(〈w,x〉+ b) + g′(〈w,x〉+ b)〈v − w,x〉+ β

2
(〈v − w,x〉)2

≤ g(〈w,x〉+ b) + g′(〈w,x〉+ b)〈v − w,x〉+
β

2
(‖v − w‖‖x‖)2

= f (w) + 〈∇ f (w),v − w〉+ β‖x‖2

2
‖v − w‖2.

Example 12.6.

! For any x ∈Rd and y ∈R, let f (w) = (〈w,x〉− y)2. Then, f is (2‖x‖2)-smooth.
! For any x ∈ Rd and y ∈ {±1}, let f (w) = log(1 + exp( − y〈w,x〉)). Then, f is

(‖x‖2/4)-smooth.

12.2 CONVEX LEARNING PROBLEMS

Recall that in our general definition of learning (Definition 3.4 in Chapter 3), we
have a hypothesis class H, a set of examples Z , and a loss function % : H× Z → R+.
So far in the book we have mainly thought of Z as being the product of an instance
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space and a target space, Z = X × Y , and H being a set of functions from X to
Y . However, H can be an arbitrary set. Indeed, throughout this chapter, we con-
sider hypothesis classes H that are subsets of the Euclidean space Rd . That is, every
hypothesis is some real-valued vector. We shall, therefore, denote a hypothesis in H
by w. Now we can finally define convex learning problems:

Definition 12.10 (Convex Learning Problem). A learning problem, (H, Z ,%), is
called convex if the hypothesis class H is a convex set and for all z ∈ Z , the loss
function, %(·,z), is a convex function (where, for any z, %(·,z) denotes the function
f : H → R defined by f (w) = %(w,z)).

Example 12.7 (Linear Regression with the Squared Loss). Recall that linear regres-
sion is a tool for modeling the relationship between some “explanatory” variables
and some real valued outcome (see Chapter 9). The domain set X is a subset of
Rd , for some d , and the label set Y is the set of real numbers. We would like to
learn a linear function h : Rd → R that best approximates the relationship between
our variables. In Chapter 9 we defined the hypothesis class as the set of homoge-
nous linear functions, H = {x .→ 〈w,x〉 : w ∈Rd}, and used the squared loss function,
%(h,(x, y)) = (h(x)− y)2. However, we can equivalently model the learning problem
as a convex learning problem as follows. Each linear function is parameterized by a
vector w ∈Rd . Hence, we can define H to be the set of all such parameters, namely,
H = Rd . The set of examples is Z = X ×Y = Rd ×R = Rd+1, and the loss function
is %(w,(x, y)) = (〈w,x〉 − y)2. Clearly, the set H is a convex set. The loss function is
also convex with respect to its first argument (see Example 12.2).

Lemma 12.11. If % is a convex loss function and the class H is convex, then the
ERMH problem, of minimizing the empirical loss over H, is a convex optimization
problem (that is, a problem of minimizing a convex function over a convex set).

Proof. Recall that the ERMH problem is defined by

ERMH(S) = argmin
w∈H

LS(w).

Since, for a sample S = z1, . . . ,zm , for every w, LS(w) = 1
m

∑m
i=1 %(w,zi ), Claim 12.5

implies that LS(w) is a convex function. Therefore, the ERM rule is a problem of
minimizing a convex function subject to the constraint that the solution should be in
a convex set.

Under mild conditions, such problems can be solved efficiently using generic
optimization algorithms. In particular, in Chapter 14 we will present a very simple
algorithm for minimizing convex functions.

12.2.1 Learnability of Convex Learning Problems

We have argued that for many cases, implementing the ERM rule for convex learn-
ing problems can be done efficiently. But is convexity a sufficient condition for the
learnability of a problem?

To make the quesion more specific: In VC theory, we saw that halfspaces in d-
dimension are learnable (perhaps inefficiently). We also argued in Chapter 9 using
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the “discretization trick” that if the problem is of d parameters, it is learnable with
a sample complexity being a function of d . That is, for a constant d , the problem
should be learnable. So, maybe all convex learning problems overRd , are learnable?

Example 12.8 later shows that the answer is negative, even when d is low. Not
all convex learning problems over Rd are learnable. There is no contradiction to
VC theory since VC theory only deals with binary classification while here we con-
sider a wide family of problems. There is also no contradiction to the “discretization
trick” as there we assumed that the loss function is bounded and also assumed that
a representation of each parameter using a finite number of bits suffices. As we will
show later, under some additional restricting conditions that hold in many practical
scenarios, convex problems are learnable.

Example 12.8 (Nonlearnability of Linear Regression Even If d = 1). Let H=R, and
the loss be the squared loss: %(w,(x, y)) = (wx − y)2 (we’re referring to the homoge-
nous case). Let A be any deterministic algorithm.1 Assume, by way of contradiction,
that A is a successful PAC learner for this problem. That is, there exists a function
m(·, ·), such that for every distribution D and for every ε,δ if A receives a training set
of size m ≥ m(ε,δ), it should output, with probability of at least 1 − δ, a hypothesis
ŵ = A(S), such that LD(ŵ) − minw LD(w) ≤ ε.

Choose ε = 1/100,δ = 1/2, let m ≥ m(ε,δ), and set µ = log(100/99)
2m . We will define

two distributions, and will show that A is likely to fail on at least one of them. The
first distribution, D1, is supported on two examples, z1 = (1,0) and z2 = (µ,−1),
where the probability mass of the first example is µ while the probability mass of the
second example is 1 −µ. The second distribution, D2, is supported entirely on z2.

Observe that for both distributions, the probability that all examples of the train-
ing set will be of the second type is at least 99%. This is trivially true for D2, whereas
for D1, the probability of this event is

(1 −µ)m ≥ e−2µm = 0.99.

Since we assume that A is a deterministic algorithm, upon receiving a training
set of m examples, each of which is (µ,−1), the algorithm will output some ŵ. Now,
if ŵ < −1/(2µ), we will set the distribution to be D1. Hence,

LD1 (ŵ) ≥ µ(ŵ)2 ≥ 1/(4µ).

However,
min
w

LD1(w) ≤ LD1(0) = (1 −µ).

It follows that
LD1(ŵ) − min

w
LD1(w) ≥ 1

4µ
− (1 −µ) > ε.

Therefore, such algorithm A fails on D1. On the other hand, if ŵ ≥ −1/(2µ)
then we’ll set the distribution to be D2. Then we have that LD2(ŵ) ≥ 1/4 while
minw LD2(w) = 0, so A fails on D2. In summary, we have shown that for every A
there exists a distribution on which A fails, which implies that the problem is not
PAC learnable.

1 Namely, given S the output of A is determined. This requirement is for the sake of simplicity. A slightly
more involved argument will show that nondeterministic algorithms will also fail to learn the problem.
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A possible solution to this problem is to add another constraint on the hypothesis
class. In addition to the convexity requirement, we require that H will be bounded;
namely, we assume that for some predefined scalar B , every hypothesis w ∈ H
satisfies ‖w‖ ≤ B .

Boundedness and convexity alone are still not sufficient for ensuring that the
problem is learnable, as the following example demonstrates.

Example 12.9. As in Example 12.8, consider a regression problem with the squared
loss. However, this time let H= {w : |w| ≤ 1} ⊂R be a bounded hypothesis class. It is
easy to verify that H is convex. The argument will be the same as in Example 12.8,
except that now the two distributions, D1,D2 will be supported on z1 = (1/µ,0) and
z2 = (1,−1). If the algorithm A returns ŵ < −1/2 upon receiving m examples of the
second type, then we will set the distribution to be D1 and have that

LD1(ŵ) − min
w

LD1(w) ≥ µ(ŵ/µ)2 − LD1(0) ≥ 1/(4µ) − (1 −µ) > ε.

Similarly, if ŵ ≥ −1/2 we will set the distribution to be D2 and have that

LD2(ŵ) − min
w

LD2(w) ≥ ( − 1/2 + 1)2 − 0 > ε.

This example shows that we need additional assumptions on the learning prob-
lem, and this time the solution is in Lipschitzness or smoothness of the loss function.
This motivates a definition of two families of learning problems, convex-Lipschitz-
bounded and convex-smooth-bounded, which are defined later.

12.2.2 Convex-Lipschitz/Smooth-Bounded Learning Problems

Definition 12.12 (Convex-Lipschitz-Bounded Learning Problem). A learning prob-
lem, (H, Z ,%), is called Convex-Lipschitz-Bounded, with parameters ρ, B if the
following holds:

! The hypothesis class H is a convex set and for all w ∈ H we have ‖w‖ ≤ B .
! For all z ∈ Z , the loss function, %(·,z), is a convex and ρ-Lipschitz function.

Example 12.10. Let X = {x ∈ Rd : ‖x‖ ≤ ρ} and Y = R. Let H = {w ∈ Rd : ‖w‖ ≤ B}
and let the loss function be %(w,(x, y)) =|〈w,x〉− y|. This corresponds to a regression
problem with the absolute-value loss, where we assume that the instances are in a
ball of radius ρ and we restrict the hypotheses to be homogenous linear functions
defined by a vector w whose norm is bounded by B . Then, the resulting problem is
Convex-Lipschitz-Bounded with parameters ρ, B .

Definition 12.13 (Convex-Smooth-Bounded Learning Problem). A learning prob-
lem, (H, Z ,%), is called Convex-Smooth-Bounded, with parameters β, B if the
following holds:

! The hypothesis class H is a convex set and for all w ∈ H we have ‖w‖ ≤ B .
! For all z ∈ Z , the loss function, %(·,z), is a convex, nonnegative, and β-smooth

function.
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Note that we also required that the loss function is nonnegative. This is needed
to ensure that the loss function is self-bounded, as described in the previous section.

Example�12.11.� Let X�= {x ∈�Rd� : ‖x‖ ≤ β/2} and Y =�R. Let H= {w ∈�Rd� : ‖w‖ ≤ �B}
and let the loss function be %(w,(x,�y)) = (〈w,�x〉− �y)2. This corresponds to a regres-
sion problem with the squared loss, where we assume that the instances are in a
ball of radius β/2 and we restrict the hypotheses to be homogenous linear functions
defined by a vector w�whose norm is bounded by B . Then, the resulting problem is
Convex-Smooth-Bounded with parameters β,�B .

We claim that these two families of learning problems are learnable. That is, the
properties of convexity, boundedness, and Lipschitzness or smoothness of the loss
function are sufficient for learnability. We will prove this claim in the next chapters
by introducing algorithms that learn these problems successfully.

12.3� SU�RROG�A�TE�LOSS�FU�N�C�TION�S

As mentioned, and as we will see in the next chapters, convex problems can be
learned effficiently. However, in many cases, the natural loss function is not convex
and, in particular, implementing the ERM rule is hard.

As an example, consider the problem of learning the hypothesis class of
halfspaces with respect to the 0−1 loss. That is,

%0−1(w,(x,�y)) = � 1[y /=sign(〈w,x〉)] = 1[y〈w,x〉≤0].

This loss function is not convex with respect to w and indeed, when trying to min-
imize the empirical risk with respect to this loss function we might encounter local
minima (see Exercise 12.1). Furthermore, as discussed in Chapter 8, solving the
ERM problem with respect to the 0−1 loss in the unrealizable case is known to be
NP-hard.

To circumvent the hardness result, one popular approach is to upper bound the
nonconvex loss function by a convex surrogate loss function. As its name indicates,
the requirements from a convex surrogate loss are as follows:

1. It should be convex.
2. It should upper bound the original loss.

For example, in the context of learning halfspaces, we can define the so-called hinge
loss as a convex surrogate for the 0−1 loss, as follows:

%hinge(w,(x, y)) def= max{0,1 − y〈w,x〉}.

Clearly, for all w and all (x, y), %0−1(w,(x, y)) ≤ %hinge(w,(x, y)). In addition, the
convexity of the hinge loss follows directly from Claim 12.5. Hence, the hinge loss
satisfies the requirements of a convex surrogate loss function for the zero-one loss.
An illustration of the functions %0−1 and %hinge is given in the following.
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y 〈w, x〉

!0 − 1

!hinge

1

1

Once we have defined the surrogate convex loss, we can learn the problem with
respect to it. The generalization requirement from a hinge loss learner will have the
form

Lhinge
D (A(S)) ≤ min

w∈H
Lhinge
D (w) + ε,

where Lhinge
D (w) = E(x,y)∼D [%hinge(w,(x, y))]. Using the surrogate property, we can

lower bound the left-hand side by L0−1
D (A(S)), which yields

L0−1
D (A(S)) ≤ min

w∈H
Lhinge
D (w) + ε.

We can further rewrite the upper bound as follows:

L0−1
D (A(S)) ≤ min

w∈H
L0−1
D (w) +

(
min
w∈H

Lhinge
D (w) − min

w∈H
L0−1
D (w)

)
+ ε.

That is, the 0−1 error of the learned predictor is upper bounded by three terms:

! Approximation error: This is the term minw∈H L0−1
D (w), which measures how

well the hypothesis class performs on the distribution. We already elaborated
on this error term in Chapter 5.

! Estimation error: This is the error that results from the fact that we only receive
a training set and do not observe the distribution D. We already elaborated on
this error term in Chapter 5.

! Optimization error: This is the term
(

minw∈H Lhinge
D (w) − minw∈H L0−1

D (w)
)

that
measures the difference between the approximation error with respect to the
surrogate loss and the approximation error with respect to the original loss.
The optimization error is a result of our inability to minimize the training loss
with respect to the original loss. The size of this error depends on the specific
distribution of the data and on the specific surrogate loss we are using.

12.4 SUMMARY

We introduced two families of learning problems: convex-Lipschitz-bounded and
convex-smooth-bounded. In the next two chapters we will describe two generic
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learning algorithms for these families. We also introduced the notion of convex
surrogate loss function, which enables us also to utilize the convex machinery for
nonconvex problems.

12.5 BIBLIOGRAPHIC REMARKS

There are several excellent books on convex analysis and optimization (Boyd &
Vandenberghe 2004, Borwein & Lewis 2006, Bertsekas 1999, Hiriart-Urruty &
Lemaréchal 1993). Regarding learning problems, the family of convex-Lipschitz-
bounded problems was first studied by Zinkevich (2003) in the context of online
learning and by Shalev-Shwartz, Shamir, Sridharan, and Srebro ((2009)) in the
context of PAC learning.

12.6 EXERCISES

12.1 Construct an example showing that the 0−1 loss function may suffer from local
minima; namely, construct a training sample S ∈ (X × {±1})m (say, for X =R2), for
which there exist a vector w and some ε > 0 such that
1. For any w′ such that ‖w−w′‖ ≤ ε we have L S(w) ≤ L S(w′) (where the loss here

is the 0−1 loss). This means that w is a local minimum of L S .
2. There exists some w∗ such that L S(w∗) < L S(w). This means that w is not a

global minimum of L S .
12.2 Consider the learning problem of logistic regression: Let H=X ={x∈Rd : ‖x‖≤ B},

for some scalar B > 0, let Y = {±1}, and let the loss function % be defined as
%(w,(x, y)) = log(1 + exp ( − y〈w,x〉)). Show that the resulting learning prob-
lem is both convex-Lipschitz-bounded and convex-smooth-bounded. Specify the
parameters of Lipschitzness and smoothness.

12.3 Consider the problem of learning halfspaces with the hinge loss. We limit our
domain to the Euclidean ball with radius R. That is, X = {x : ‖x‖2 ≤ R}. The label set
is Y = {±1} and the loss function % is defined by %(w,(x, y)) = max{0,1 − y〈w,x〉}.
We already know that the loss function is convex. Show that it is R-Lipschitz.

12.4 (*) Convex-Lipschitz-Boundedness Is Not Sufficient for Computational Efficiency:
In the next chapter we show that from the statistical perspective, all convex-
Lipschitz-bounded problems are learnable (in the agnostic PAC model). However,
our main motivation to learn such problems resulted from the computational per-
spective – convex optimization is often efficiently solvable. Yet the goal of this
exercise is to show that convexity alone is not sufficient for efficiency. We show
that even for the case d = 1, there is a convex-Lipschitz-bounded problem which
cannot be learned by any computable learner.

Let the hypothesis class be H= [0,1] and let the example domain, Z , be the set of
all Turing machines. Define the loss function as follows. For every Turing machine
T ∈ Z , let %(0,T ) = 1 if T halts on the input 0 and %(0,T ) = 0 if T doesn’t halt on the
input 0. Similarly, let %(1,T ) = 0 if T halts on the input 0 and %(1,T ) = 1 if T doesn’t
halt on the input 0. Finally, for h ∈ (0,1), let %(h,T ) = h%(0,T ) + (1 − h)%(1,T ).
1. Show that the resulting learning problem is convex-Lipschitz-bounded.
2. Show that no computable algorithm can learn the problem.


