
C H A P T E R

8 Approximation Theory

Introduction
Hooke’s law states that when a force is applied to a spring constructed of uniform material,
the length of the spring is a linear function of that force. We can write the linear function
as F(l) = k(l − E), where F(l) represents the force required to stretch the spring l units,
the constant E represents the length of the spring with no force applied, and the constant k
is the spring constant.
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Suppose we want to determine the spring constant for a spring that has initial length
5.3 in. We apply forces of 2, 4, and 6 lb to the spring and find that its length increases to 7.0,
9.4, and 12.3 in., respectively. A quick examination shows that the points (0, 5.3), (2, 7.0),
(4, 9.4), and (6, 12.3) do not quite lie in a straight line. Although we could use a random
pair of these data points to approximate the spring constant, it would seem more reasonable
to find the line that best approximates all the data points to determine the constant. This
type of approximation will be considered in this chapter, and this spring application can be
found in Exercise 7 of Section 8.1.

Approximation theory involves two general types of problems. One problem arises
when a function is given explicitly, but we wish to find a “simpler” type of function,
such as a polynomial, to approximate values of the given function. The other problem in
approximation theory is concerned with fitting functions to given data and finding the “best”
function in a certain class to represent the data.

Both problems have been touched upon in Chapter 3. The nth Taylor polynomial about
the number x0 is an excellent approximation to an (n + 1)-times differentiable function f

in a small neighborhood of x0. The Lagrange interpolating polynomials, or, more generally,
osculatory polynomials, were discussed both as approximating polynomials and as poly-
nomials to fit certain data. Cubic splines were also discussed in that chapter. In this chapter,
limitations to these techniques are considered, and other avenues of approach are discussed.
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498 C H A P T E R 8 Approximation Theory

8.1 Discrete Least Squares Approximation

Consider the problem of estimating the values of a function at nontabulated points, given
the experimental data in Table 8.1.

Table 8.1
xi yi xi yi

1 1.3 6 8.8
2 3.5 7 10.1
3 4.2 8 12.5
4 5.0 9 13.0
5 7.0 10 15.6

Figure 8.1 shows a graph of the values in Table 8.1. From this graph, it appears that the
actual relationship between x and y is linear. The likely reason that no line precisely fits the
data is because of errors in the data. So it is unreasonable to require that the approximating
function agree exactly with the data. In fact, such a function would introduce oscillations
that were not originally present. For example, the graph of the ninth-degree interpolating
polynomial shown in unconstrained mode for the data in Table 8.1 is obtained in Maple
using the commands

p := interp([1, 2, 3, 4, 5, 6, 7, 8, 9, 10], [1.3, 3.5, 4.2, 5.0, 7.0, 8.8, 10.1, 12.5, 13.0, 15.6], x):
plot(p, x = 1..10)

Figure 8.1
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The plot obtained (with the data points added) is shown in Figure 8.2.

Figure 8.2
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8.1 Discrete Least Squares Approximation 499

This polynomial is clearly a poor predictor of information between a number of the
data points. A better approach would be to find the “best” (in some sense) approximating
line, even if it does not agree precisely with the data at any point.

Let a1xi + a0 denote the ith value on the approximating line and yi be the ith given
y-value. We assume throughout that the independent variables, the xi, are exact, it is the
dependent variables, the yi, that are suspect. This is a reasonable assumption in most exper-
imental situations.

The problem of finding the equation of the best linear approximation in the absolute
sense requires that values of a0 and a1 be found to minimize

E∞(a0, a1) = max
1≤i≤10

{|yi − (a1xi + a0)|}.

This is commonly called a minimax problem and cannot be handled by elementary tech-
niques.

Another approach to determining the best linear approximation involves finding values
of a0 and a1 to minimize

E1(a0, a1) =
10∑

i=1

|yi − (a1xi + a0)|.

This quantity is called the absolute deviation. To minimize a function of two variables, we
need to set its partial derivatives to zero and simultaneously solve the resulting equations.
In the case of the absolute deviation, we need to find a0 and a1 with

0 = ∂

∂a0

10∑

i=1

|yi − (a1xi + a0)| and 0 = ∂

∂a1

10∑

i=1

|yi − (a1xi + a0)|.

The problem is that the absolute-value function is not differentiable at zero, and we might
not be able to find solutions to this pair of equations.

Linear Least Squares

The least squares approach to this problem involves determining the best approximating
line when the error involved is the sum of the squares of the differences between the y-values
on the approximating line and the given y-values. Hence, constants a0 and a1 must be found
that minimize the least squares error:

E2(a0, a1) =
10∑

i=1

[
yi − (a1xi + a0)

]2 .

The least squares method is the most convenient procedure for determining best linear
approximations, but there are also important theoretical considerations that favor it. The
minimax approach generally assigns too much weight to a bit of data that is badly in
error, whereas the absolute deviation method does not give sufficient weight to a point
that is considerably out of line with the approximation. The least squares approach puts
substantially more weight on a point that is out of line with the rest of the data, but will
not permit that point to completely dominate the approximation. An additional reason for
considering the least squares approach involves the study of the statistical distribution of
error. (See [Lar], pp. 463–481.)

The general problem of fitting the best least squares line to a collection of data
{(xi, yi)}m

i=1 involves minimizing the total error,

E ≡ E2(a0, a1) =
m∑

i=1

[
yi − (a1xi + a0)

]2 ,
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500 C H A P T E R 8 Approximation Theory

with respect to the parameters a0 and a1. For a minimum to occur, we need both

∂E
∂a0

= 0 and
∂E
∂a1

= 0,

that is,

0 = ∂

∂a0

m∑

i=1

[
(yi − (a1xi − a0)

]2 = 2
m∑

i=1

(yi − a1xi − a0)(−1)

and

0 = ∂

∂a1

m∑

i=1

[
yi − (a1xi + a0)

]2 = 2
m∑

i=1

(yi − a1xi − a0)(−xi).

The word normal as used here
implies perpendicular. The
normal equations are obtained by
finding perpendicular directions
to a multidimensional surface.

These equations simplify to the normal equations:

a0 · m + a1

m∑

i=1

xi =
m∑

i=1

yi and a0

m∑

i=1

xi + a1

m∑

i=1

x2
i =

m∑

i=1

xiyi.

The solution to this system of equations is

a0 =

m∑

i=1

x2
i

m∑

i=1

yi −
m∑

i=1

xiyi

m∑

i=1

xi

m

(
m∑

i=1

x2
i

)

−
(

m∑

i=1

xi

)2 (8.1)

and

a1 =
m

m∑

i=1

xiyi −
m∑

i=1

xi

m∑

i=1

yi

m

(
m∑

i=1

x2
i

)

−
(

m∑

i=1

xi

)2 . (8.2)

Example 1 Find the least squares line approximating the data in Table 8.1.

Solution We first extend the table to include x2
i and xiyi and sum the columns. This is shown

in Table 8.2.

Table 8.2 xi yi x2
i xiyi P(xi) = 1.538xi − 0.360

1 1.3 1 1.3 1.18
2 3.5 4 7.0 2.72
3 4.2 9 12.6 4.25
4 5.0 16 20.0 5.79
5 7.0 25 35.0 7.33
6 8.8 36 52.8 8.87
7 10.1 49 70.7 10.41
8 12.5 64 100.0 11.94
9 13.0 81 117.0 13.48

10 15.6 100 156.0 15.02

55 81.0 385 572.4 E = ∑10
i=1(yi − P(xi))

2 ≈ 2.34
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8.1 Discrete Least Squares Approximation 501

The normal equations (8.1) and (8.2) imply that

a0 = 385(81)− 55(572.4)

10(385)− (55)2
= −0.360

and

a1 = 10(572.4)− 55(81)

10(385)− (55)2
= 1.538,

so P(x) = 1.538x − 0.360. The graph of this line and the data points are shown in Fig-
ure 8.3. The approximate values given by the least squares technique at the data points are
in Table 8.2.

Figure 8.3
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Polynomial Least Squares

The general problem of approximating a set of data, {(xi, yi) | i = 1, 2, . . . , m}, with an
algebraic polynomial

Pn(x) = anxn + an−1xn−1 + · · · + a1x + a0,

of degree n < m− 1, using the least squares procedure is handled similarly. We choose the
constants a0, a1, . . ., an to minimize the least squares error E = E2(a0, a1, . . . , an), where

E =
m∑

i=1

(yi − Pn(xi))
2

=
m∑

i=1

y2
i − 2

m∑

i=1

Pn(xi)yi +
m∑

i=1

(Pn(xi))
2
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502 C H A P T E R 8 Approximation Theory

=
m∑

i=1

y2
i − 2

m∑

i=1




n∑

j=0

ajx
j
i



 yi +
m∑

i=1




n∑

j=0

ajx
j
i




2

=
m∑

i=1

y2
i − 2

n∑

j=0

aj

(
m∑

i=1

yix
j
i

)

+
n∑

j=0

n∑

k=0

ajak

(
m∑

i=1

xj+k
i

)

.

As in the linear case, for E to be minimized it is necessary that ∂E/∂aj = 0, for each
j = 0, 1, . . . , n. Thus, for each j, we must have

0 = ∂E
∂aj

= −2
m∑

i=1

yix
j
i + 2

n∑

k=0

ak

m∑

i=1

xj+k
i .

This gives n + 1 normal equations in the n + 1 unknowns aj. These are

n∑

k=0

ak

m∑

i=1

xj+k
i =

m∑

i=1

yix
j
i , for each j = 0, 1, . . . , n. (8.3)

It is helpful to write the equations as follows:

a0

m∑

i=1

x0
i + a1

m∑

i=1

x1
i + a2

m∑

i=1

x2
i + · · · + an

m∑

i=1

xn
i =

m∑

i=1

yix0
i ,

a0

m∑

i=1

x1
i + a1

m∑

i=1

x2
i + a2

m∑

i=1

x3
i + · · · + an

m∑

i=1

xn+1
i =

m∑

i=1

yix1
i ,

...

a0

m∑

i=1

xn
i + a1

m∑

i=1

xn+1
i + a2

m∑

i=1

xn+2
i + · · · + an

m∑

i=1

x2n
i =

m∑

i=1

yixn
i .

These normal equations have a unique solution provided that the xi are distinct (see
Exercise 14).

Example 2 Fit the data in Table 8.3 with the discrete least squares polynomial of degree at most 2.

Solution For this problem, n = 2, m = 5, and the three normal equations are

5a0 + 2.5a1 + 1.875a2 = 8.7680,

2.5a0 + 1.875a1 + 1.5625a2 = 5.4514,

1.875a0 + 1.5625a1 + 1.3828a2 = 4.4015.

Table 8.3
i xi yi

1 0 1.0000
2 0.25 1.2840
3 0.50 1.6487
4 0.75 2.1170
5 1.00 2.7183

To solve this system using Maple, we first define the equations

eq1 := 5a0 + 2.5a1 + 1.875a2 = 8.7680:
eq2 := 2.5a0 + 1.875a1 + 1.5625a2 = 5.4514 :
eq3 := 1.875a0 + 1.5625a1 + 1.3828a2 = 4.4015

and then solve the system with

solve({eq1, eq2, eq3}, {a0, a1, a2})
This gives

{a0 = 1.005075519, a1 = 0.8646758482, a2 = .8431641518}
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8.1 Discrete Least Squares Approximation 503

Thus the least squares polynomial of degree 2 fitting the data in Table 8.3 is

P2(x) = 1.0051 + 0.86468x + 0.84316x2,

whose graph is shown in Figure 8.4. At the given values of xi we have the approximations
shown in Table 8.4.

Figure 8.4
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Table 8.4 i 1 2 3 4 5

xi 0 0.25 0.50 0.75 1.00
yi 1.0000 1.2840 1.6487 2.1170 2.7183

P(xi) 1.0051 1.2740 1.6482 2.1279 2.7129
yi − P(xi) −0.0051 0.0100 0.0004 −0.0109 0.0054

The total error,

E =
5∑

i=1

(yi − P(xi))
2 = 2.74× 10−4,

is the least that can be obtained by using a polynomial of degree at most 2.

Maple has a function called LinearFit within the Statistics package which can be used
to compute the discrete least squares approximations. To compute the approximation in
Example 2 we first load the package and define the data

with(Statistics): xvals := Vector([0, 0.25, 0.5, 0.75, 1]): yvals := Vector([1, 1.284, 1.6487,
2.117, 2.7183]):
To define the least squares polynomial for this data we enter the command

P := x→ LinearFit([1, x, x2], xvals, yvals, x): P(x)
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504 C H A P T E R 8 Approximation Theory

Maple returns a result which rounded to 5 decimal places is

1.00514 + 0.86418x + 0.84366x2

The approximation at a specific value, for example at x = 1.7, is found with P(1.7)

4.91242

At times it is appropriate to assume that the data are exponentially related. This requires
the approximating function to be of the form

y = beax (8.4)

or

y = bxa, (8.5)

for some constants a and b. The difficulty with applying the least squares procedure in a
situation of this type comes from attempting to minimize

E =
m∑

i=1

(yi − beaxi)2, in the case of Eq. (8.4),

or

E =
m∑

i=1

(yi − bxa
i )

2, in the case of Eq. (8.5).

The normal equations associated with these procedures are obtained from either

0 = ∂E
∂b

= 2
m∑

i=1

(yi − beaxi)(−eaxi)

and

0 = ∂E
∂a

= 2
m∑

i=1

(yi − beaxi)(−bxieaxi), in the case of Eq. (8.4);

or

0 = ∂E
∂b

= 2
m∑

i=1

(yi − bxa
i )(−xa

i )

and

0 = ∂E
∂a

= 2
m∑

i=1

(yi − bxa
i )(−b(ln xi)xa

i ), in the case of Eq. (8.5).

No exact solution to either of these systems in a and b can generally be found.
The method that is commonly used when the data are suspected to be exponentially

related is to consider the logarithm of the approximating equation:

ln y = ln b + ax, in the case of Eq. (8.4),

and

ln y = ln b + a ln x, in the case of Eq. (8.5).
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8.1 Discrete Least Squares Approximation 505

In either case, a linear problem now appears, and solutions for ln b and a can be obtained
by appropriately modifying the normal equations (8.1) and (8.2).

However, the approximation obtained in this manner is not the least squares approxima-
tion for the original problem, and this approximation can in some cases differ significantly
from the least squares approximation to the original problem. The application in Exer-
cise 13 describes such a problem. This application will be reconsidered as Exercise 11 in
Section 10.3, where the exact solution to the exponential least squares problem is approxi-
mated by using methods suitable for solving nonlinear systems of equations.

Illustration Consider the collection of data in the first three columns of Table 8.5.

Table 8.5 i xi yi ln yi x2
i xi ln yi

1 1.00 5.10 1.629 1.0000 1.629
2 1.25 5.79 1.756 1.5625 2.195
3 1.50 6.53 1.876 2.2500 2.814
4 1.75 7.45 2.008 3.0625 3.514
5 2.00 8.46 2.135 4.0000 4.270

7.50 9.404 11.875 14.422

If xi is graphed with ln yi, the data appear to have a linear relation, so it is reasonable to
assume an approximation of the form

y = beax, which implies that ln y = ln b + ax.

Extending the table and summing the appropriate columns gives the remaining data in
Table 8.5.

Using the normal equations (8.1) and (8.2),

a = (5)(14.422)− (7.5)(9.404)

(5)(11.875)− (7.5)2
= 0.5056

and

ln b = (11.875)(9.404)− (14.422)(7.5)

(5)(11.875)− (7.5)2
= 1.122.

With ln b = 1.122 we have b = e1.122 = 3.071, and the approximation assumes the form

y = 3.071e0.5056x.

At the data points this gives the values in Table 8.6. (See Figure 8.5.) !

Table 8.6 i xi yi 3.071e0.5056xi |yi − 3.071e0.5056xi |
1 1.00 5.10 5.09 0.01
2 1.25 5.79 5.78 0.01
3 1.50 6.53 6.56 0.03
4 1.75 7.45 7.44 0.01
5 2.00 8.46 8.44 0.02
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Figure 8.5
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Exponential and other nonlinear discrete least squares approximations can be obtain in
the Statistics package by using the commands ExponentialFit and NonlinearFit.

For example, the approximation in the Illustration can be obtained by first defining the
data with

X := Vector([1, 1.25, 1.5, 1.75, 2]): Y := Vector([5.1, 5.79, 6.53, 7.45, 8.46]):
and then issuing the command

ExponentialFit(X , Y , x)

gives the result, rounded to 5 decimal places,

3.07249e0.50572x

If instead the NonlinearFit command is issued, the approximation produced uses methods
of Chapter 10 for solving a system of nonlinear equations. The approximation that Maple
gives in this case is

3.06658(1.66023)x ≈ 3.06658e0.50695.

E X E R C I S E S E T 8.1

1. Compute the linear least squares polynomial for the data of Example 2.
2. Compute the least squares polynomial of degree 2 for the data of Example 1, and compare the total

error E for the two polynomials.
3. Find the least squares polynomials of degrees 1, 2, and 3 for the data in the following table. Compute

the error E in each case. Graph the data and the polynomials.

xi 1.0 1.1 1.3 1.5 1.9 2.1
yi 1.84 1.96 2.21 2.45 2.94 3.18
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8.1 Discrete Least Squares Approximation 507

4. Find the least squares polynomials of degrees 1, 2, and 3 for the data in the following table. Compute
the error E in each case. Graph the data and the polynomials.

xi 0 0.15 0.31 0.5 0.6 0.75
yi 1.0 1.004 1.031 1.117 1.223 1.422

5. Given the data:

xi 4.0 4.2 4.5 4.7 5.1 5.5 5.9 6.3 6.8 7.1
yi 102.56 113.18 130.11 142.05 167.53 195.14 224.87 256.73 299.50 326.72

a. Construct the least squares polynomial of degree 1, and compute the error.

b. Construct the least squares polynomial of degree 2, and compute the error.

c. Construct the least squares polynomial of degree 3, and compute the error.

d. Construct the least squares approximation of the form beax , and compute the error.

e. Construct the least squares approximation of the form bxa, and compute the error.

6. Repeat Exercise 5 for the following data.

xi 0.2 0.3 0.6 0.9 1.1 1.3 1.4 1.6
yi 0.050446 0.098426 0.33277 0.72660 1.0972 1.5697 1.8487 2.5015

7. In the lead example of this chapter, an experiment was described to determine the spring constant k
in Hooke’s law:

F(l) = k(l − E).

The function F is the force required to stretch the spring l units, where the constant E = 5.3 in. is the
length of the unstretched spring.

a. Suppose measurements are made of the length l, in inches, for applied weights F(l), in pounds,
as given in the following table.

F(l) l

2 7.0
4 9.4
6 12.3

Find the least squares approximation for k.

b. Additional measurements are made, giving more data:

F(l) l

3 8.3
5 11.3
8 14.4

10 15.9

Compute the new least squares approximation for k. Which of (a) or (b) best fits the total
experimental data?

8. The following list contains homework grades and the final-examination grades for 30 numerical
analysis students. Find the equation of the least squares line for this data, and use this line to determine
the homework grade required to predict minimal A (90%) and D (60%) grades on the final.
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Homework Final Homework Final

302 45 323 83
325 72 337 99
285 54 337 70
339 54 304 62
334 79 319 66
322 65 234 51
331 99 337 53
279 63 351 100
316 65 339 67
347 99 343 83
343 83 314 42
290 74 344 79
326 76 185 59
233 57 340 75
254 45 316 45

9. The following table lists the college grade-point averages of 20 mathematics and computer science
majors, together with the scores that these students received on the mathematics portion of the ACT
(American College Testing Program) test while in high school. Plot these data, and find the equation
of the least squares line for this data.

ACT Grade-point ACT Grade-point
score average score average

28 3.84 29 3.75
25 3.21 28 3.65
28 3.23 27 3.87
27 3.63 29 3.75
28 3.75 21 1.66
33 3.20 28 3.12
28 3.41 28 2.96
29 3.38 26 2.92
23 3.53 30 3.10
27 2.03 24 2.81

10. The following set of data, presented to the Senate Antitrust Subcommittee, shows the comparative
crash-survivability characteristics of cars in various classes. Find the least squares line that approxi-
mates these data. (The table shows the percent of accident-involved vehicles in which the most severe
injury was fatal or serious.)

Average Percent
Type Weight Occurrence

1. Domestic luxury regular 4800 lb 3.1
2. Domestic intermediate regular 3700 lb 4.0
3. Domestic economy regular 3400 lb 5.2
4. Domestic compact 2800 lb 6.4
5. Foreign compact 1900 lb 9.6

11. To determine a relationship between the number of fish and the number of species of fish in samples
taken for a portion of the Great Barrier Reef, P. Sale and R. Dybdahl [SD] fit a linear least squares
polynomial to the following collection of data, which were collected in samples over a 2-year period.
Let x be the number of fish in the sample and y be the number of species in the sample.
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8.1 Discrete Least Squares Approximation 509

x y x y x y

13 11 29 12 60 14
15 10 30 14 62 21
16 11 31 16 64 21
21 12 36 17 70 24
22 12 40 13 72 17
23 13 42 14 100 23
25 13 55 22 130 34

Determine the linear least squares polynomial for these data.
12. To determine a functional relationship between the attenuation coefficient and the thickness of a

sample of taconite, V. P. Singh [Si] fits a collection of data by using a linear least squares polynomial.
The following collection of data is taken from a graph in that paper. Find the linear least squares
polynomial fitting these data.

Thickness (cm) Attenuation coefficient (dB/cm)

0.040 26.5
0.041 28.1
0.055 25.2
0.056 26.0
0.062 24.0
0.071 25.0
0.071 26.4
0.078 27.2
0.082 25.6
0.090 25.0
0.092 26.8
0.100 24.8
0.105 27.0
0.120 25.0
0.123 27.3
0.130 26.9
0.140 26.2

13. In a paper dealing with the efficiency of energy utilization of the larvae of the modest sphinx moth
(Pachysphinx modesta), L. Schroeder [Schr1] used the following data to determine a relation be-
tween W , the live weight of the larvae in grams, and R, the oxygen consumption of the larvae in
milliliters/hour. For biological reasons, it is assumed that a relationship in the form of R = bWa exists
between W and R.
a. Find the logarithmic linear least squares polynomial by using

ln R = ln b + a ln W .

b. Compute the error associated with the approximation in part (a):

E =
37∑

i=1

(Ri − bWa
i )2.

c. Modify the logarithmic least squares equation in part (a) by adding the quadratic term c(ln Wi)
2,

and determine the logarithmic quadratic least squares polynomial.
d. Determine the formula for and compute the error associated with the approximation in part (c).
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W R W R W R W R W R

0.017 0.154 0.025 0.23 0.020 0.181 0.020 0.180 0.025 0.234
0.087 0.296 0.111 0.357 0.085 0.260 0.119 0.299 0.233 0.537
0.174 0.363 0.211 0.366 0.171 0.334 0.210 0.428 0.783 1.47
1.11 0.531 0.999 0.771 1.29 0.87 1.32 1.15 1.35 2.48
1.74 2.23 3.02 2.01 3.04 3.59 3.34 2.83 1.69 1.44
4.09 3.58 4.28 3.28 4.29 3.40 5.48 4.15 2.75 1.84
5.45 3.52 4.58 2.96 5.30 3.88 4.83 4.66
5.96 2.40 4.68 5.10 5.53 6.94

14. Show that the normal equations (8.3) resulting from discrete least squares approximation yield a
symmetric and nonsingular matrix and hence have a unique solution. [Hint: Let A = (aij), where

aij =
m∑

k=1

xi+j−2
k

and x1, x2, . . . , xm are distinct with n < m − 1. Suppose A is singular and that c (= 0 is such that
ctAc = 0. Show that the nth-degree polynomial whose coefficients are the coordinates of c has more
than n roots, and use this to establish a contradiction.]

8.2 Orthogonal Polynomials and Least Squares Approximation

The previous section considered the problem of least squares approximation to fit a collec-
tion of data. The other approximation problem mentioned in the introduction concerns the
approximation of functions.

Suppose f ∈ C[a, b] and that a polynomial Pn(x) of degree at most n is required that
will minimize the error

∫ b

a
[f (x)− Pn(x)]2 dx.

To determine a least squares approximating polynomial; that is, a polynomial to mini-
mize this expression, let

Pn(x) = anxn + an−1xn−1 + · · · + a1x + a0 =
n∑

k=0

akxk ,

and define, as shown in Figure 8.6,

E ≡ E2(a0, a1, . . . , an) =
∫ b

a

(
f (x)−

n∑

k=0

akxk
)2

dx.

The problem is to find real coefficients a0, a1, . . . , an that will minimize E. A necessary
condition for the numbers a0, a1, . . . , an to minimize E is that

∂E
∂aj

= 0, for each j = 0, 1, . . . , n.
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Figure 8.6
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Since

E =
∫ b

a
[f (x)]2 dx − 2

n∑

k=0

ak

∫ b

a
xkf (x) dx +

∫ b

a

( n∑

k=0

akxk
)2

dx,

we have

∂E
∂aj

= −2
∫ b

a
xjf (x) dx + 2

n∑

k=0

ak

∫ b

a
xj+k dx.

Hence, to find Pn(x), the (n + 1) linear normal equations

n∑

k=0

ak

∫ b

a
xj+k dx =

∫ b

a
xjf (x) dx, for each j = 0, 1, . . . , n, (8.6)

must be solved for the (n + 1) unknowns aj. The normal equations always have a unique
solution provided that f ∈ C[a, b]. (See Exercise 15.)

Example 1 Find the least squares approximating polynomial of degree 2 for the function f (x) = sin πx
on the interval [0, 1].

Solution The normal equations for P2(x) = a2x2 + a1x + a0 are

a0

∫ 1

0
1 dx + a1

∫ 1

0
x dx + a2

∫ 1

0
x2 dx =

∫ 1

0
sin πx dx,

a0

∫ 1

0
x dx + a1

∫ 1

0
x2 dx + a2

∫ 1

0
x3 dx =

∫ 1

0
x sin πx dx,

a0

∫ 1

0
x2 dx + a1

∫ 1

0
x3 dx + a2

∫ 1

0
x4 dx =

∫ 1

0
x2 sin πx dx.

Performing the integration yields

a0 + 1
2

a1 + 1
3

a2 = 2
π

,
1
2

a0 + 1
3

a1 + 1
4

a2 = 1
π

,
1
3

a0 + 1
4

a1 + 1
5

a2 = π2 − 4
π3

.
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512 C H A P T E R 8 Approximation Theory

These three equations in three unknowns can be solved to obtain

a0 = 12π2 − 120
π3

≈ −0.050465 and a1 = −a2 = 720− 60π2

π3
≈ 4.12251.

Consequently, the least squares polynomial approximation of degree 2 for f (x) = sin πx
on [0, 1] is P2(x) = −4.12251x2 + 4.12251x − 0.050465. (See Figure 8.7.)

Figure 8.7
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Example 1 illustrates a difficulty in obtaining a least squares polynomial approximation.
An (n + 1) × (n + 1) linear system for the unknowns a0, . . . , an must be solved, and the
coefficients in the linear system are of the form

∫ b

a
xj+k dx = bj+k+1 − aj+k+1

j + k + 1
,

a linear system that does not have an easily computed numerical solution. The matrix in the
linear system is known as a Hilbert matrix, which is a classic example for demonstrating
round-off error difficulties. (See Exercise 11 of Section 7.5.)

David Hilbert (1862–1943) was
the dominant mathematician at
the turn of the 20th century. He is
best remembered for giving a talk
at the International Congress of
Mathematicians in Paris in 1900
in which he posed 23 problems
that he thought would be
important for mathematicians in
the next century.

Another disadvantage is similar to the situation that occurred when the Lagrange poly-
nomials were first introduced in Section 3.1. The calculations that were performed in ob-
taining the best nth-degree polynomial, Pn(x), do not lessen the amount of work required
to obtain Pn+1(x), the polynomial of next higher degree.

Linearly Independent Functions

A different technique to obtain least squares approximations will now be considered. This
turns out to be computationally efficient, and once Pn(x) is known, it is easy to determine
Pn+1(x). To facilitate the discussion, we need some new concepts.

Definition 8.1 The set of functions {φ0, . . . ,φn} is said to be linearly independent on [a, b] if, whenever

c0φ0(x) + c1φ1(x) + · · · + cnφn(x) = 0, for all x ∈ [a, b],
we have c0 = c1 = · · · = cn = 0. Otherwise the set of functions is said to be linearly
dependent.
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8.2 Orthogonal Polynomials and Least Squares Approximation 513

Theorem 8.2 Suppose that, for each j = 0, 1, . . . , n, φj(x) is a polynomial of degree j. Then {φ0, . . . ,φn}
is linearly independent on any interval [a, b].

Proof Let c0, . . . , cn be real numbers for which

P(x) = c0φ0(x) + c1φ1(x) + · · · + cnφn(x) = 0, for all x ∈ [a, b].

The polynomial P(x) vanishes on [a, b], so it must be the zero polynomial, and the coeffi-
cients of all the powers of x are zero. In particular, the coefficient of xn is zero. But cnφn(x)
is the only term in P(x) that contains xn, so we must have cn = 0. Hence

P(x) =
n−1∑

j=0

cjφj(x).

In this representation of P(x), the only term that contains a power of xn−1 is cn−1φn−1(x),
so this term must also be zero and

P(x) =
n−2∑

j=0

cjφj(x).

In like manner, the remaining constants cn−2, cn−3, . . . , c1, c0 are all zero, which implies
that {φ0,φ1, . . . ,φn} is linearly independent on [a, b].

Example 2 Let φ0(x) = 2,φ1(x) = x−3, and φ2(x) = x2 +2x +7, and Q(x) = a0 +a1x +a2x2. Show
that there exist constants c0, c1, and c2 such that Q(x) = c0φ0(x) + c1φ1(x) + c2φ2(x).

Solution By Theorem 8.2, {φ0,φ1,φ2} is linearly independent on any interval [a, b]. First
note that

1 = 1
2
φ0(x), x = φ1(x) + 3 = φ1(x) + 3

2
φ0(x),

and

x2 = φ2(x)− 2x − 7 = φ2(x)− 2
[
φ1(x) + 3

2
φ0(x)

]
− 7

[
1
2
φ0(x)

]

= φ2(x)− 2φ1(x)−
13
2
φ0(x).

Hence

Q(x) = a0

[
1
2
φ0(x)

]
+ a1

[
φ1(x) + 3

2
φ0(x)

]
+ a2

[
φ2(x)− 2φ1(x)−

13
2
φ0(x)

]

=
(

1
2

a0 + 3
2

a1 −
13
2

a2

)
φ0(x) + [a1 − 2a2]φ1(x) + a2φ2(x).

The situation illustrated in Example 2 holds in a much more general setting. Let
∏

n de-
note the set of all polynomials of degree at most n. The following result is used extensively
in many applications of linear algebra. Its proof is considered in Exercise 13.

Theorem 8.3 Suppose that {φ0(x),φ1(x), . . . ,φn(x)} is a collection of linearly independent polynomials
in
∏

n. Then any polynomial in
∏

n can be written uniquely as a linear combination of φ0(x),
φ1(x), . . ., φn(x).
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514 C H A P T E R 8 Approximation Theory

Orthogonal Functions

To discuss general function approximation requires the introduction of the notions of weight
functions and orthogonality.

Definition 8.4 An integrable function w is called a weight function on the interval I if w(x) ≥ 0, for all
x in I , but w(x) (≡ 0 on any subinterval of I .

The purpose of a weight function is to assign varying degrees of importance to approx-
imations on certain portions of the interval. For example, the weight function

w(x) = 1√
1− x2

places less emphasis near the center of the interval (−1, 1) and more emphasis when |x| is
near 1 (see Figure 8.8). This weight function is used in the next section.

Suppose {φ0,φ1, . . . ,φn} is a set of linearly independent functions on [a, b] and w is a
weight function for [a, b]. Given f ∈ C[a, b], we seek a linear combination

P(x) =
n∑

k=0

akφk(x)

to minimize the error

E = E(a0, . . . , an) =
∫ b

a
w(x)

[
f (x)−

n∑

k=0

akφk(x)
]2

dx.

This problem reduces to the situation considered at the beginning of this section in the

Figure 8.8
(x)

1!1

1

x

special case when w(x) ≡ 1 and φk(x) = xk , for each k = 0, 1, . . . , n.
The normal equations associated with this problem are derived from the fact that for

each j = 0, 1, . . . , n,

0 = ∂E
∂aj

= 2
∫ b

a
w(x)

[
f (x)−

n∑

k=0

akφk(x)
]
φj(x) dx.

The system of normal equations can be written
∫ b

a
w(x)f (x)φj(x) dx =

n∑

k=0

ak

∫ b

a
w(x)φk(x)φj(x) dx, for j = 0, 1, . . . , n.

If the functions φ0,φ1, . . . ,φn can be chosen so that
∫ b

a
w(x)φk(x)φj(x) dx =

{
0, when j (= k,
αj > 0, when j = k,

(8.7)

then the normal equations will reduce to
∫ b

a
w(x)f (x)φj(x) dx = aj

∫ b

a
w(x)[φj(x)]2 dx = ajαj,

for each j = 0, 1, . . . , n. These are easily solved to give

aj = 1
αj

∫ b

a
w(x)f (x)φj(x) dx.

Hence the least squares approximation problem is greatly simplified when the functions
φ0,φ1, . . . ,φn are chosen to satisfy the orthogonality condition in Eq. (8.7). The remainder
of this section is devoted to studying collections of this type.

The word orthogonal means
right-angled. So in a sense,
orthogonal functions are
perpendicular to one another.
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Definition 8.5 {φ0,φ1, . . . ,φn} is said to be an orthogonal set of functions for the interval [a, b] with
respect to the weight function w if

∫ b

a
w(x)φk(x)φj(x) dx =

{
0, when j (= k,
αj > 0, when j = k.

If, in addition, αj = 1 for each j = 0, 1, . . . , n, the set is said to be orthonormal.

This definition, together with the remarks preceding it, produces the following theorem.

Theorem 8.6 If {φ0, . . . ,φn} is an orthogonal set of functions on an interval [a, b] with respect to the
weight function w, then the least squares approximation to f on [a, b] with respect to w is

P(x) =
n∑

j=0

ajφj(x),

where, for each j = 0, 1, . . . , n,

aj =
∫ b

a w(x)φj(x)f (x) dx
∫ b

a w(x)[φj(x)]2 dx
= 1
αj

∫ b

a
w(x)φj(x)f (x) dx.

Although Definition 8.5 and Theorem 8.6 allow for broad classes of orthogonal func-
tions, we will consider only orthogonal sets of polynomials. The next theorem, which is
based on the Gram-Schmidt process, describes how to construct orthogonal polynomials
on [a, b] with respect to a weight function w.

Theorem 8.7 The set of polynomial functions {φ0,φ1, . . . ,φn} defined in the following way is orthogonal
on [a, b] with respect to the weight function w.

φ0(x) ≡ 1, φ1(x) = x − B1, for each x in [a, b],

where

B1 =
∫ b

a xw(x)[φ0(x)]2 dx
∫ b

a w(x)[φ0(x)]2 dx
,

and when k ≥ 2,

φk(x) = (x − Bk)φk−1(x)− Ckφk−2(x), for each x in [a, b],

where

Bk =
∫ b

a xw(x)[φk−1(x)]2 dx
∫ b

a w(x)[φk−1(x)]2 dx

and

Ck =
∫ b

a xw(x)φk−1(x)φk−2(x) dx
∫ b

a w(x)[φk−2(x)]2 dx
.

Theorem 8.7 provides a recursive procedure for constructing a set of orthogonal polyno-
mials. The proof of this theorem follows by applying mathematical induction to the degree
of the polynomial φn(x).

Erhard Schmidt (1876–1959)
received his doctorate under the
supervision of David Hilbert in
1905 for a problem involving
integral equations. Schmidt
published a paper in 1907 in
which he gave what is now called
the Gram-Schmidt process for
constructing an orthonormal
basis for a set of functions. This
generalized results of Jorgen
Pedersen Gram (1850–1916) who
considered this problem when
studying least squares. Laplace,
however, presented a similar
process much earlier than either
Gram or Schmidt.
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Corollary 8.8 For any n > 0, the set of polynomial functions {φ0, . . . ,φn} given in Theorem 8.7 is linearly
independent on [a, b] and

∫ b

a
w(x)φn(x)Qk(x) dx = 0,

for any polynomial Qk(x) of degree k < n.

Proof For each k = 0, 1, . . . , n, φk(x) is a polynomial of degree k. So Theorem 8.2 implies
that {φ0, . . . ,φn} is a linearly independent set.

Let Qk(x) be a polynomial of degree k < n. By Theorem 8.3 there exist numbers
c0, . . . , ck such that

Qk(x) =
k∑

j=0

cjφj(x).

Because φn is orthogonal to φj for each j = 0, 1, . . . , k we have

∫ b

a
w(x)Qk(x)φn(x) dx =

k∑

j=0

cj

∫ b

a
w(x)φj(x)φn(x) dx =

k∑

j=0

cj · 0 = 0.

Illustration The set of Legendre polynomials, {Pn(x)}, is orthogonal on [−1, 1] with respect to the
weight function w(x) ≡ 1. The classical definition of the Legendre polynomials requires
that Pn(1) = 1 for each n, and a recursive relation is used to generate the polynomials
when n ≥ 2. This normalization will not be needed in our discussion, and the least squares
approximating polynomials generated in either case are essentially the same.

Using the Gram-Schmidt process with P0(x) ≡ 1 gives

B1 =
∫ 1
−1 x dx
∫ 1
−1 dx

= 0 and P1(x) = (x − B1)P0(x) = x.

Also,

B2 =
∫ 1
−1 x3 dx
∫ 1
−1 x2 dx

= 0 and C2 =
∫ 1
−1 x2 dx
∫ 1
−1 1 dx

= 1
3

,

so

P2(x) = (x − B2)P1(x)− C2P0(x) = (x − 0)x − 1
3

· 1 = x2 − 1
3

.

The higher-degree Legendre polynomials shown in Figure 8.9 are derived in the same
manner. Although the integration can be tedious, it is not difficult with a Computer Algebra
System.
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Figure 8.9
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For example, the Maple command int is used to compute the integrals B3 and C3:

B3 :=
int
(

x
(
x2 − 1

3

)2
, x = −1..1

)

int
((

x2 − 1
3

)2
, x = −1..1

) ; C3 := int
(
x
(
x2 − 1

3

)
, x = −1..1

)

int(x2, x = −1..1)

0

4
15

Thus

P3(x) = xP2(x)−
4
15

P1(x) = x3 − 1
3

x − 4
15

x = x3 − 3
5

x.

The next two Legendre polynomials are

P4(x) = x4 − 6
7

x2 + 3
35

and P5(x) = x5 − 10
9

x3 + 5
21

x. !

The Legendre polynomials were introduced in Section 4.7, where their roots, given on
page 232, were used as the nodes in Gaussian quadrature.
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E X E R C I S E S E T 8.2

1. Find the linear least squares polynomial approximation to f (x) on the indicated interval if
a. f (x) = x2 + 3x + 2, [0, 1]; b. f (x) = x3, [0, 2];
c. f (x) = 1

x
, [1, 3]; d. f (x) = ex , [0, 2];

e. f (x) = 1
2

cos x + 1
3

sin 2x, [0, 1]; f. f (x) = x ln x, [1, 3].
2. Find the linear least squares polynomial approximation on the interval [−1, 1] for the following

functions.
a. f (x) = x2 − 2x + 3 b. f (x) = x3

c. f (x) = 1
x + 2

d. f (x) = ex

e. f (x) = 1
2

cos x + 1
3

sin 2x f. f (x) = ln(x + 2)

3. Find the least squares polynomial approximation of degree two to the functions and intervals in
Exercise 1.

4. Find the least squares polynomial approximation of degree 2 on the interval [−1, 1] for the functions
in Exercise 3.

5. Compute the error E for the approximations in Exercise 3.
6. Compute the error E for the approximations in Exercise 4.
7. Use the Gram-Schmidt process to construct φ0(x), φ1(x), φ2(x), and φ3(x) for the following intervals.

a. [0, 1] b. [0, 2] c. [1, 3]
8. Repeat Exercise 1 using the results of Exercise 7.
9. Obtain the least squares approximation polynomial of degree 3 for the functions in Exercise 1 using

the results of Exercise 7.
10. Repeat Exercise 3 using the results of Exercise 7.
11. Use the Gram-Schmidt procedure to calculate L1, L2, and L3, where {L0(x), L1(x), L2(x), L3(x)} is

an orthogonal set of polynomials on (0,∞) with respect to the weight functions w(x) = e−x and
L0(x) ≡ 1. The polynomials obtained from this procedure are called the Laguerre polynomials.

12. Use the Laguerre polynomials calculated in Exercise 11 to compute the least squares polynomials of
degree one, two, and three on the interval (0,∞) with respect to the weight function w(x) = e−x for
the following functions:
a. f (x) = x2 b. f (x) = e−x c. f (x) = x3 d. f (x) = e−2x

13. Suppose {φ0,φ1, . . . ,φn} is any linearly independent set in
∏

n. Show that for any element Q ∈ ∏n,
there exist unique constants c0, c1, . . . , cn, such that

Q(x) =
n∑

k=0

ckφk(x).

14. Show that if {φ0,φ1, . . . ,φn} is an orthogonal set of functions on [a, b] with respect to the weight
function w, then {φ0,φ1, . . . ,φn} is a linearly independent set.

15. Show that the normal equations (8.6) have a unique solution. [Hint: Show that the only solution for the
function f (x) ≡ 0 is aj = 0, j = 0, 1, . . . , n. Multiply Eq. (8.6) by aj, and sum over all j. Interchange
the integral sign and the summation sign to obtain

∫ b
a [P(x)]2dx = 0. Thus, P(x) ≡ 0, so aj = 0, for

j = 0, . . . , n. Hence, the coefficient matrix is nonsingular, and there is a unique solution to Eq. (8.6).]

8.3 Chebyshev Polynomials and Economization of Power Series

The Chebyshev polynomials {Tn(x)} are orthogonal on (−1, 1) with respect to the weight
function w(x) = (1− x2)−1/2 . Although they can be derived by the method in the previous
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8.3 Chebyshev Polynomials and Economization of Power Series 519

section, it is easier to give their definition and then show that they satisfy the required
orthogonality properties.

Pafnuty Lvovich Chebyshev
(1821–1894) did exceptional
mathematical work in many
areas, including applied
mathematics, number theory,
approximation theory, and
probability. In 1852 he traveled
from St. Petersburg to visit
mathematicians in France,
England, and Germany. Lagrange
and Legendre had studied
individual sets of orthogonal
polynomials, but Chebyshev was
the first to see the important
consequences of studying the
theory in general. He developed
the Chebyshev polynomials to
study least squares
approximation and probability,
then applied his results to
interpolation, approximate
quadrature, and other areas.

For x ∈ [−1, 1], define

Tn(x) = cos[n arccos x], for each n ≥ 0. (8.8)

It might not be obvious from this definition that for each n, Tn(x) is a polynomial in x, but
we will now show this. First note that

T0(x) = cos 0 = 1 and T1(x) = cos(arccos x) = x.

For n ≥ 1, we introduce the substitution θ = arccos x to change this equation to

Tn(θ(x)) ≡ Tn(θ) = cos(nθ), where θ ∈ [0,π ].

A recurrence relation is derived by noting that

Tn+1(θ) = cos(n + 1)θ = cos θ cos(nθ)− sin θ sin(nθ)

and

Tn−1(θ) = cos(n− 1)θ = cos θ cos(nθ) + sin θ sin(nθ)

Adding these equations gives

Tn+1(θ) = 2 cos θ cos(nθ)− Tn−1(θ).

Returning to the variable x = cos θ , we have, for n ≥ 1,

Tn+1(x) = 2x cos(n arccos x)− Tn−1(x),

that is,

Tn+1(x) = 2xTn(x)− Tn−1(x). (8.9)

Because T0(x) = 1 and T1(x) = x, the recurrence relation implies that the next three
Chebyshev polynomials are

T2(x) = 2xT1(x)− T0(x) = 2x2 − 1,

T3(x) = 2xT2(x)− T1(x) = 4x3 − 3x,

and

T4(x) = 2xT3(x)− T2(x) = 8x4 − 8x2 + 1.

The recurrence relation also implies that when n ≥ 1, Tn(x) is a polynomial of degree n
with leading coefficient 2n−1. The graphs of T1, T2, T3, and T4 are shown in Figure 8.10.
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Figure 8.10
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To show the orthogonality of the Chebyshev polynomials with respect to the weight
function w(x) = (1− x2)−1/2, consider

∫ 1

−1

Tn(x)Tm(x)√
1− x2

dx =
∫ 1

−1

cos(n arccos x) cos(m arccos x)√
1− x2

dx.

Reintroducing the substitution θ = arccos x gives

dθ = − 1√
1− x2

dx

and
∫ 1

−1

Tn(x)Tm(x)√
1− x2

dx = −
∫ 0

π

cos(nθ) cos(mθ) dθ =
∫ π

0
cos(nθ) cos(mθ) dθ .

Suppose n (= m. Since

cos(nθ) cos(mθ) = 1
2
[cos(n + m)θ + cos(n− m)θ ],

we have
∫ 1

−1

Tn(x)Tm(x)√
1− x2

dx = 1
2

∫ π

0
cos((n + m)θ) dθ + 1

2

∫ π

0
cos((n− m)θ) dθ

=
[

1
2(n + m)

sin((n + m)θ) + 1
2(n− m)

sin((n− m)θ)

]π

0
= 0.

By a similar technique (see Exercise 9), we also have
∫ 1

−1

[Tn(x)]2

√
1− x2

dx = π

2
, for each n ≥ 1. (8.10)

The Chebyshev polynomials are used to minimize approximation error. We will see
how they are used to solve two problems of this type:

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.
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• an optimal placing of interpolating points to minimize the error in Lagrange interpolation;

• a means of reducing the degree of an approximating polynomial with minimal loss of
accuracy.

The next result concerns the zeros and extreme points of Tn(x).

Theorem 8.9 The Chebyshev polynomial Tn(x) of degree n ≥ 1 has n simple zeros in [−1, 1] at

x̄k = cos
(

2k − 1
2n

π

)
, for each k = 1, 2, . . . , n.

Moreover, Tn(x) assumes its absolute extrema at

x̄′k = cos
(

kπ
n

)
with Tn(x̄′k) = (−1)k , for each k = 0, 1, . . . , n.

Proof Let

x̄k = cos
(

2k − 1
2n

π

)
, for k = 1, 2, . . . , n.

Then

Tn(x̄k) = cos(n arccos x̄k) = cos
(

n arccos
(

cos
(

2k − 1
2n

π

)))
= cos

(
2k − 1

2
π

)
= 0.

But the x̄k are distinct (see Exercise 10) and Tn(x) is a polynomial of degree n, so all the
zeros of Tn(x) must have this form.

To show the second statement, first note that

T ′n(x) = d
dx

[cos(n arccos x)] = n sin(n arccos x)√
1− x2

,

and that, when k = 1, 2, . . . , n− 1,

T ′n(x̄
′
k) =

n sin
(

n arccos
(

cos
(

kπ
n

)))

√

1−
[

cos
(

kπ
n

)]2
= n sin(kπ)

sin
(

kπ
n

) = 0.

Since Tn(x) is a polynomial of degree n, its derivative T ′n(x) is a polynomial of degree
(n− 1), and all the zeros of T ′n(x) occur at these n− 1 distinct points (that they are distinct
is considered in Exercise 11). The only other possibilities for extrema of Tn(x) occur at the
endpoints of the interval [−1, 1]; that is, at x̄′0 = 1 and at x̄′n = −1.

For any k = 0, 1, . . . , n we have

Tn(x̄′k) = cos
(

n arccos
(

cos
(

kπ
n

)))
= cos(kπ) = (−1)k .

So a maximum occurs at each even value of k and a minimum at each odd value.

The monic (polynomials with leading coefficient 1) Chebyshev polynomials T̃n(x) are
derived from the Chebyshev polynomials Tn(x) by dividing by the leading coefficient 2n−1.
Hence

T̃0(x) = 1 and T̃n(x) = 1
2n−1

Tn(x), for each n ≥ 1. (8.11)
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The recurrence relationship satisfied by the Chebyshev polynomials implies that

T̃2(x) = xT̃1(x)−
1
2

T̃0(x) and (8.12)

T̃n+1(x) = xT̃n(x)−
1
4

T̃n−1(x), for each n ≥ 2.

The graphs of T̃1, T̃2, T̃3, T̃4, and T̃5 are shown in Figure 8.11.

Figure 8.11
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Because T̃n(x) is just a multiple of Tn(x), Theorem 8.9 implies that the zeros of T̃n(x)
also occur at

x̄k = cos
(

2k − 1
2n

π

)
, for each k = 1, 2, . . . , n,

and the extreme values of T̃n(x), for n ≥ 1, occur at

x̄′k = cos
(

kπ
n

)
, with T̃n(x̄′k) = (−1)k

2n−1
, for each k = 0, 1, 2, . . . , n. (8.13)

Let
∏̃

n denote the set of all monic polynomials of degree n. The relation expressed
in Eq. (8.13) leads to an important minimization property that distinguishes T̃n(x) from the
other members of

∏̃
n.

Theorem 8.10 The polynomials of the form T̃n(x), when n ≥ 1, have the property that

1
2n−1

= max
x∈[−1,1]

|T̃n(x)| ≤ max
x∈[−1, 1]

|Pn(x)|, for all Pn(x) ∈
∏̃

n
.

Moreover, equality occurs only if Pn ≡ T̃n.
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Proof Suppose that Pn(x) ∈
∏̃

n and that

max
x∈[−1, 1]

|Pn(x)| ≤
1

2n−1
= max

x∈[−1, 1]
|T̃n(x)|.

Let Q = T̃n−Pn. Then T̃n(x) and Pn(x) are both monic polynomials of degree n, so Q(x) is
a polynomial of degree at most (n− 1). Moreover, at the n + 1 extreme points x̄′k of T̃n(x),
we have

Q(x̄′k) = T̃n(x̄′k)− Pn(x̄′k) = (−1)k

2n−1
− Pn(x̄′k).

However

|Pn(x̄′k)| ≤
1

2n−1
, for each k = 0, 1, . . . , n,

so we have

Q(x̄′k) ≤ 0, when k is odd and Q(x̄′k) ≥ 0, when k is even.

Since Q is continuous, the Intermediate Value Theorem implies that for each j =
0, 1, . . . , n − 1 the polynomial Q(x) has at least one zero between x̄′j and x̄′j+1. Thus,
Q has at least n zeros in the interval [−1, 1]. But the degree of Q(x) is less than n, so Q ≡ 0.
This implies that Pn ≡ T̃n.

Minimizing Lagrange Interpolation Error

Theorem 8.10 can be used to answer the question of where to place interpolating nodes
to minimize the error in Lagrange interpolation. Theorem 3.3 on page 112 applied to the
interval [−1, 1] states that, if x0, . . . , xn are distinct numbers in the interval [−1, 1] and if
f ∈ Cn+1[−1, 1], then, for each x ∈ [−1, 1], a number ξ(x) exists in (−1, 1) with

f (x)− P(x) = f (n+1)(ξ(x))
(n + 1)! (x − x0)(x − x1) · · · (x − xn),

where P(x) is the Lagrange interpolating polynomial. Generally, there is no control over
ξ(x), so to minimize the error by shrewd placement of the nodes x0, . . . , xn, we choose
x0, . . . , xn to minimize the quantity

|(x − x0)(x − x1) · · · (x − xn)|
throughout the interval [−1, 1].

Since (x − x0)(x − x1) · · · (x − xn) is a monic polynomial of degree (n + 1), we have
just seen that the minimum is obtained when

(x − x0)(x − x1) · · · (x − xn) = T̃n+1(x).

The maximum value of |(x− x0)(x− x1) · · · (x− xn)| is smallest when xk is chosen for
each k = 0, 1, . . . , n to be the (k + 1)st zero of T̃n+1. Hence we choose xk to be

x̄k+1 = cos
(

2k + 1
2(n + 1)

π

)
.

Because maxx∈[−1,1] |T̃n+1(x)| = 2−n, this also implies that

1
2n

= max
x∈[−1,1]

|(x − x̄1) · · · (x − x̄n+1)| ≤ max
x∈[−1,1]

|(x − x0) · · · (x − xn)|,

for any choice of x0, x1, . . . , xn in the interval [−1, 1]. The next corollary follows from these
observations.
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Corollary 8.11 Suppose that P(x) is the interpolating polynomial of degree at most n with nodes at the
zeros of Tn+1(x). Then

max
x∈[−1,1]

|f (x)− P(x)| ≤ 1
2n(n + 1)! max

x∈[−1,1]
|f (n+1)(x)|, for each f ∈ Cn+1[−1, 1].

Minimizing Approximation Error on Arbitrary Intervals

The technique for choosing points to minimize the interpolating error is extended to a
general closed interval [a, b] by using the change of variables

x̃ = 1
2
[(b− a)x + a + b]

to transform the numbers x̄k in the interval [−1, 1] into the corresponding number x̃k in the
interval [a, b], as shown in the next example.

Example 1 Let f (x) = xex on [0, 1.5]. Compare the values given by the Lagrange polynomial with
four equally-spaced nodes with those given by the Lagrange polynomial with nodes given
by zeros of the fourth Chebyshev polynomial.

Solution The equally-spaced nodes x0 = 0, x1 = 0.5, x2 = 1, and x3 = 1.5 give

L0(x) = −1.3333x3 + 4.0000x2 − 3.6667x + 1,

L1(x) = 4.0000x3 − 10.000x2 + 6.0000x,

L2(x) = −4.0000x3 + 8.0000x2 − 3.0000x,

L3(x) = 1.3333x3 − 2.000x2 + 0.66667x,

which produces the polynomial

P3(x) = L0(x)(0) + L1(x)(0.5e0.5) + L2(x)e1 + L3(x)(1.5e1.5) = 1.3875x3

+ 0.057570x2 + 1.2730x.

For the second interpolating polynomial, we shift the zeros x̄k = cos((2k + 1)/8)π ,
for k = 0, 1, 2, 3, of T̃4 from [−1, 1] to [0, 1.5], using the linear transformation

x̃k = 1
2

[(1.5− 0)x̄k + (1.5 + 0)] = 0.75 + 0.75x̄k .

Because

x̄0 = cos
π

8
= 0.92388, x̄1 = cos

3π
8

= 0.38268,

x̄2 = cos
5π
8

= −0.38268, andx̄4 = cos
7π
8

= −0.92388,

we have

x̃0 = 1.44291, x̃1 = 1.03701, x̃2 = 0.46299, and x̃3 = 0.05709.

The Lagrange coefficient polynomials for this set of nodes are

L̃0(x) = 1.8142x3 − 2.8249x2 + 1.0264x − 0.049728,

L̃1(x) = −4.3799x3 + 8.5977x2 − 3.4026x + 0.16705,

L̃2(x) = 4.3799x3 − 11.112x2 + 7.1738x − 0.37415,

L̃3(x) = −1.8142x3 + 5.3390x2 − 4.7976x + 1.2568.
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The functional values required for these polynomials are given in the last two columns
of Table 8.7. The interpolation polynomial of degree at most 3 is

P̃3(x) = 1.3811x3 + 0.044652x2 + 1.3031x − 0.014352.

Table 8.7 x f (x) = xex x̃ f (x̃) = xex

x0 = 0.0 0.00000 x̃0 = 1.44291 6.10783
x1 = 0.5 0.824361 x̃1 = 1.03701 2.92517
x2 = 1.0 2.71828 x̃2 = 0.46299 0.73560
x3 = 1.5 6.72253 x̃3 = 0.05709 0.060444

For comparison, Table 8.8 lists various values of x, together with the values of
f (x), P3(x), and P̃3(x). It can be seen from this table that, although the error using P3(x) is
less than using P̃3(x) near the middle of the table, the maximum error involved with using
P̃3(x), 0.0180, is considerably less than when using P3(x), which gives the error 0.0290.
(See Figure 8.12.)

Table 8.8 x f (x) = xex P3(x) |xex − P3(x)| P̃3(x) |xex − P̃3(x)|
0.15 0.1743 0.1969 0.0226 0.1868 0.0125
0.25 0.3210 0.3435 0.0225 0.3358 0.0148
0.35 0.4967 0.5121 0.0154 0.5064 0.0097
0.65 1.245 1.233 0.012 1.231 0.014
0.75 1.588 1.572 0.016 1.571 0.017
0.85 1.989 1.976 0.013 1.974 0.015
1.15 3.632 3.650 0.018 3.644 0.012
1.25 4.363 4.391 0.028 4.382 0.019
1.35 5.208 5.237 0.029 5.224 0.016

Figure 8.12
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Reducing the Degree of Approximating Polynomials

Chebyshev polynomials can also be used to reduce the degree of an approximating poly-
nomial with a minimal loss of accuracy. Because the Chebyshev polynomials have a mini-
mum maximum-absolute value that is spread uniformly on an interval, they can be used to
reduce the degree of an approximation polynomial without exceeding the error tolerance.

Consider approximating an arbitrary nth-degree polynomial

Pn(x) = anxn + an−1xn−1 + · · · + a1x + a0

on [−1, 1] with a polynomial of degree at most n − 1. The object is to choose Pn−1(x) in∏
n−1 so that

max
x∈[−1, 1]

|Pn(x)− Pn−1(x)|

is as small as possible.
We first note that (Pn(x)−Pn−1(x))/an is a monic polynomial of degree n, so applying

Theorem 8.10 gives

max
x∈[−1, 1]

∣∣∣∣
1
an

(Pn(x)− Pn−1(x))
∣∣∣∣ ≥

1
2n−1

.

Equality occurs precisely when

1
an

(Pn(x)− Pn−1(x)) = T̃n(x).

This means that we should choose

Pn−1(x) = Pn(x)− anT̃n(x),

and with this choice we have the minimum value of

max
x∈[−1, 1]

|Pn(x)− Pn−1(x)| = |an| max
x∈[−1, 1]

∣∣∣∣
1
an

(Pn(x)− Pn−1(x))
∣∣∣∣ = |an|

2n−1
.

Illustration The function f (x) = ex is approximated on the interval [−1, 1] by the fourth Maclaurin
polynomial

P4(x) = 1 + x + x2

2
+ x3

6
+ x4

24
,

which has truncation error

|R4(x)| = |f (5)(ξ(x))||x5|
120

≤ e
120
≈ 0.023, for − 1 ≤ x ≤ 1.

Suppose that an error of 0.05 is tolerable and that we would like to reduce the degree of the
approximating polynomial while staying within this bound.

The polynomial of degree 3 or less that best uniformly approximates P4(x) on [−1, 1] is

P3(x) = P4(x)− a4T̃4(x) = 1 + x + x2

2
+ x3

6
+ x4

24
− 1

24

(
x4 − x2 + 1

8

)

= 191
192

+ x + 13
24

x2 + 1
6

x3.
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With this choice, we have

|P4(x)− P3(x)| = |a4T̃4(x)| ≤
1

24
· 1

23
= 1

192
≤ 0.0053.

Adding this error bound to the bound for the Maclaurin truncation error gives

0.023 + 0.0053 = 0.0283,

which is within the permissible error of 0.05.

The polynomial of degree 2 or less that best uniformly approximates P3(x) on [−1, 1] is

P2(x) = P3(x)−
1
6

T̃3(x)

= 191
192

+ x + 13
24

x2 + 1
6

x3 − 1
6
(x3 − 3

4
x) = 191

192
+ 9

8
x + 13

24
x2.

However,

|P3(x)− P2(x)| =
∣∣∣∣
1
6

T̃3(x)
∣∣∣∣ = 1

6

(
1
2

)2

= 1
24
≈ 0.042,

which—when added to the already accumulated error bound of 0.0283—exceeds the tol-
erance of 0.05. Consequently, the polynomial of least degree that best approximates ex on
[−1, 1] with an error bound of less than 0.05 is

P3(x) = 191
192

+ x + 13
24

x2 + 1
6

x3.

Table 8.9 lists the function and the approximating polynomials at various points in [−1, 1].
Note that the tabulated entries for P2 are well within the tolerance of 0.05, even though the
error bound for P2(x) exceeded the tolerance. !

Table 8.9 x ex P4(x) P3(x) P2(x) |ex − P2(x)|
−0.75 0.47237 0.47412 0.47917 0.45573 0.01664
−0.25 0.77880 0.77881 0.77604 0.74740 0.03140

0.00 1.00000 1.00000 0.99479 0.99479 0.00521
0.25 1.28403 1.28402 1.28125 1.30990 0.02587
0.75 2.11700 2.11475 2.11979 2.14323 0.02623

E X E R C I S E S E T 8.3

1. Use the zeros of T̃3 to construct an interpolating polynomial of degree 2 for the following functions
on the interval [−1, 1].
a. f (x) = ex b. f (x) = sin x c. f (x) = ln(x + 2) d. f (x) = x4

2. Use the zeros of T̃4 to construct an interpolating polynomial of degree 3 for the functions in Exercise 1.
3. Find a bound for the maximum error of the approximation in Exercise 1 on the interval [−1, 1].
4. Repeat Exercise 3 for the approximations computed in Exercise 3.
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528 C H A P T E R 8 Approximation Theory

5. Use the zeros of T̃3 and transformations of the given interval to construct an interpolating polynomial
of degree 2 for the following functions.

a. f (x) = 1
x

, [1, 3] b. f (x) = e−x , [0, 2]

c. f (x) = 1
2

cos x + 1
3

sin 2x, [0, 1] d. f (x) = x ln x, [1, 3]

6. Find the sixth Maclaurin polynomial for xex , and use Chebyshev economization to obtain a lesser-
degree polynomial approximation while keeping the error less than 0.01 on [−1, 1].

7. Find the sixth Maclaurin polynomial for sin x, and use Chebyshev economization to obtain a lesser-
degree polynomial approximation while keeping the error less than 0.01 on [−1, 1].

8. Show that for any positive integers i and j with i > j, we have Ti(x)Tj(x) = 1
2 [Ti+j(x) + Ti−j(x)].

9. Show that for each Chebyshev polynomial Tn(x), we have

∫ 1

−1

[Tn(x)]2

√
1− x2

dx = π

2
.

10. Show that for each n, the Chebyshev polynomial Tn(x) has n distinct zeros in (−1, 1).

11. Show that for each n, the derivative of the Chebyshev polynomial Tn(x) has n − 1 distinct zeros
in (−1, 1).

8.4 Rational Function Approximation

The class of algebraic polynomials has some distinct advantages for use in approximation:

• There are a sufficient number of polynomials to approximate any continuous function on
a closed interval to within an arbitrary tolerance;

• Polynomials are easily evaluated at arbitrary values; and

• The derivatives and integrals of polynomials exist and are easily determined.

The disadvantage of using polynomials for approximation is their tendency for oscil-
lation. This often causes error bounds in polynomial approximation to significantly exceed
the average approximation error, because error bounds are determined by the maximum
approximation error. We now consider methods that spread the approximation error more
evenly over the approximation interval. These techniques involve rational functions.

A rational function r of degree N has the form

r(x) = p(x)
q(x)

,

where p(x) and q(x) are polynomials whose degrees sum to N .
Every polynomial is a rational function (simply let q(x) ≡ 1), so approximation by

rational functions gives results that are no worse than approximation by polynomials. How-
ever, rational functions whose numerator and denominator have the same or nearly the same
degree often produce approximation results superior to polynomial methods for the same
amount of computation effort. (This statement is based on the assumption that the amount
of computation effort required for division is approximately the same as for multiplication.)

Rational functions have the added advantage of permitting efficient approximation
of functions with infinite discontinuities near, but outside, the interval of approximation.
Polynomial approximation is generally unacceptable in this situation.
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and 5. Compare these results with those produced from the other Padé approximations of degree
five.
a. n = 0, m = 5 b. n = 1, m = 4 c. n = 3, m = 2 d. n = 4, m = 1

8. Express the following rational functions in continued-fraction form:

a.
x2 + 3x + 2
x2 − x + 1

b.
4x2 + 3x − 7

2x3 + x2 − x + 5

c.
2x3 − 3x2 + 4x − 5

x2 + 2x + 4
d.

2x3 + x2 − x + 3
3x3 + 2x2 − x + 1

9. Find all the Chebyshev rational approximations of degree 2 for f (x) = e−x . Which give the best
approximations to f (x) = e−x at x = 0.25, 0.5, and 1?

10. Find all the Chebyshev rational approximations of degree 3 for f (x) = cos x. Which give the best
approximations to f (x) = cos x at x = π/4 and π/3?

11. Find the Chebyshev rational approximation of degree 4 with n = m = 2 for f (x) = sin x. Compare
the results at xi = 0.1i, for i = 0, 1, 2, 3, 4, 5, from this approximation with those obtained in Exercise
5 using a sixth-degree Padé approximation.

12. Find all Chebyshev rational approximations of degree 5 for f (x) = ex . Compare the results at
xi = 0.2i, for i = 1, 2, 3, 4, 5, with those obtained in Exercises 3 and 4.

13. To accurately approximate f (x) = ex for inclusion in a mathematical library, we first restrict the
domain of f . Given a real number x, divide by ln

√
10 to obtain the relation

x = M · ln
√

10 + s,

where M is an integer and s is a real number satisfying |s| ≤ 1
2 ln
√

10.
a. Show that ex = es · 10M/2.
b. Construct a rational function approximation for es using n = m = 3. Estimate the error when

0 ≤ |s| ≤ 1
2 ln
√

10.
c. Design an implementation of ex using the results of part (a) and (b) and the approximations

1

ln
√

10
= 0.8685889638 and

√
10 = 3.162277660.

14. To accurately approximate sin x and cos x for inclusion in a mathematical library, we first restrict their
domains. Given a real number x, divide by π to obtain the relation

|x| = Mπ + s, where M is an integer and |s| ≤ π

2
.

a. Show that sin x = sgn(x) · (−1)M · sin s.
b. Construct a rational approximation to sin s using n = m = 4. Estimate the error when 0 ≤ |s| ≤

π/2.
c. Design an implementation of sin x using parts (a) and (b).
d. Repeat part (c) for cos x using the fact that cos x = sin(x + π/2).

8.5 Trigonometric Polynomial Approximation

The use of series of sine and cosine functions to represent arbitrary functions had its be-
ginnings in the 1750s with the study of the motion of a vibrating string. This problem was
considered by Jean d’Alembert and then taken up by the foremost mathematician of the
time, Leonhard Euler. But it was Daniel Bernoulli who first advocated the use of the infinite
sums of sine and cosines as a solution to the problem, sums that we now know as Fourier
series. In the early part of the 19th century, Jean Baptiste Joseph Fourier used these series
to study the flow of heat and developed quite a complete theory of the subject.
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8.5 Trigonometric Polynomial Approximation 539

The first observation in the development of Fourier series is that, for each positive
integer n, the set of functions {φ0,φ1, . . . ,φ2n−1}, where

φ0(x) = 1
2

,

φk(x) = cos kx, for each k = 1, 2, . . . , n,

and

φn+k(x) = sin kx, for each k = 1, 2, . . . , n− 1,

is an orthogonal set on [−π ,π ] with respect to w(x) ≡ 1. This orthogonality follows from

During the late 17th and early
18th centuries, the Bernoulli
family produced no less than 8
important mathematicians and
physicists. Daniel Bernoulli’s
most important work involved the
pressure, density, and velocity of
fluid flow, which produced what
is known as the Bernoulli
principle.

the fact that for every integer j, the integrals of sin jx and cos jx over [−π ,π ] are 0, and we
can rewrite products of sine and cosine functions as sums by using the three trigonometric
identities

sin t1 sin t2 = 1
2
[cos(t1 − t2)− cos(t1 + t2)],

cos t1 cos t2 = 1
2
[cos(t1 − t2) + cos(t1 + t2)], (8.19)

sin t1 cos t2 = 1
2
[sin(t1 − t2) + sin(t1 + t2)].

OrthogonalTrigonometric Polynomials

Let Tn denote the set of all linear combinations of the functions φ0,φ1, . . . ,φ2n−1. This set
is called the set of trigonometric polynomials of degree less than or equal to n. (Some
sources also include an additional function in the set, φ2n(x) = sin nx.)

For a function f ∈ C[−π ,π ], we want to find the continuous least squares approxi-
mation by functions in Tn in the form

Sn(x) = a0

2
+ an cos nx +

n−1∑

k=1

(ak cos kx + bk sin kx).

Since the set of functions {φ0,φ1, . . . ,φ2n−1} is orthogonal on [−π ,π ] with respect to
w(x) ≡ 1, it follows from Theorem 8.6 on page 515 and the equations in (8.19) that the
appropriate selection of coefficients is

ak =
∫ π
−π f (x) cos kx dx
∫ π
−π (cos kx)2 dx

= 1
π

∫ π

−π
f (x) cos kx dx, for each k = 0, 1, 2, . . . , n, (8.20)

and

bk =
∫ π
−π f (x) sin kx dx
∫ π
−π (sin kx)2 dx

= 1
π

∫ π

−π
f (x) sin kx dx, for each k = 1, 2, . . . , n− 1. (8.21)

The limit of Sn(x) when n→∞ is called the Fourier series of f . Fourier series are used
to describe the solution of various ordinary and partial-differential equations that occur in
physical situations.

Joseph Fourier (1768–1830)
published his theory of
trigonometric series in Théorie
analytique de la chaleur to solve
the problem of steady state heat
distribution in a solid.

Example 1 Determine the trigonometric polynomial from Tn that approximates

f (x) = |x|, for − π < x < π .
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Solution We first need to find the coefficients

a0 = 1
π

∫ π

−π
|x| dx = − 1

π

∫ 0

−π
x dx + 1

π

∫ π

0
x dx = 2

π

∫ π

0
x dx = π ,

ak = 1
π

∫ π

−π
|x| cos kx dx = 2

π

∫ π

0
x cos kx dx = 2

πk2

[
(−1)k − 1

]
,

for each k = 1, 2, . . . , n, and

bk = 1
π

∫ π

−π
|x| sin kx dx = 0, for each k = 1, 2, . . . , n− 1.

That the bk’s are all 0 follows from the fact that g(x) = |x| sin kx is an odd function for
each k, and the integral of a continuous odd function over an interval of the form [−a, a]
is 0. (See Exercises 13 and 14.) The trigonometric polynomial from Tn approximating f is
therefore,

Sn(x) = π

2
+ 2
π

n∑

k=1

(−1)k − 1
k2

cos kx.

The first few trigonometric polynomials for f (x) = |x| are shown in Figure 8.13.

Figure 8.13

x

y

! π!π

π y "   " x "

y " S0(x) " 

y " S3(x) "     ! 4π
π
2

π
2

π
2

π
2

4
9πcos x ! cos 3x

y " S1(x) " S2(x) "     ! 4
π

π
2

π
2

cos x

The Fourier series for f is

S(x) = lim
n→∞

Sn(x) = π

2
+ 2
π

∞∑

k=1

(−1)k − 1
k2

cos kx.

Since | cos kx| ≤ 1 for every k and x, the series converges, and S(x) exists for all real
numbers x.
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8.5 Trigonometric Polynomial Approximation 541

DiscreteTrigonometric Approximation

There is a discrete analog that is useful for the discrete least squares approximation and the
interpolation of large amounts of data.

Suppose that a collection of 2m paired data points {(xj, yj)}2m−1
j=0 is given, with the first

elements in the pairs equally partitioning a closed interval. For convenience, we assume
that the interval is [−π ,π ], so, as shown in Figure 8.14,

xj = −π +
(

j
m

)
π , for each j = 0, 1, . . . , 2m− 1. (8.22)

If it is not [−π ,π ], a simple linear transformation could be used to transform the data into
this form.

Figure 8.14

!π " x0 π " x2mxm

10!1!2!3!4 2 3 4

The goal in the discrete case is to determine the trigonometric polynomial Sn(x) in Tn

that will minimize

E(Sn) =
2m−1∑

j=0

[yj − Sn(xj)]2.

To do this we need to choose the constants a0, a1, . . . , an, b1, b2, . . . , bn−1 to minimize

E(Sn) =
2m−1∑

j=0

{
yj −

[
a0

2
+ an cos nxj +

n−1∑

k=1

(ak cos kxj + bk sin kxj)

]}2

. (8.23)

The determination of the constants is simplified by the fact that the set {φ0, φ1, . . . ,
φ2n−1} is orthogonal with respect to summation over the equally spaced points {xj}2m−1

j=0 in
[−π ,π ]. By this we mean that for each k (= l,

2m−1∑

j=0

φk(xj)φl(xj) = 0. (8.24)

To show this orthogonality, we use the following lemma.

Lemma 8.12 Suppose that the integer r is not a multiple of 2m. Then

•
2m−1∑

j=0

cos rxj = 0 and
2m−1∑

j=0

sin rxj = 0.

Moreover, if r is not a multiple of m, then

•
2m−1∑

j=0

(cos rxj)
2 = m and

2m−1∑

j=0

(sin rxj)
2 = m.
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Proof Euler’s Formula states that with i2 = −1, we have, for every real number z,

eiz = cos z + i sin z. (8.25)

Euler first used the symbol i in
1794 to represent

√
−1 in his

memoir De Formulis
Differentialibus Angularibus.

Applying this result gives

2m−1∑

j=0

cos rxj + i
2m−1∑

j=0

sin rxj =
2m−1∑

j=0

(
cos rxj + i sin rxj

)
=

2m−1∑

j=0

eirxj .

But

eirxj = eir(−π+jπ/m) = e−irπ · eirjπ/m,

so
2m−1∑

j=0

cos rxj + i
2m−1∑

j=0

sin rxj = e−irπ
2m−1∑

j=0

eirjπ/m.

Since
2m−1∑

j=0

eirjπ/m is a geometric series with first term 1 and ratio eirπ/m (= 1, we have

2m−1∑

j=0

eirjπ/m = 1− (eirπ/m)2m

1− eirπ/m
= 1− e2irπ

1− eirπ/m
.

But e2irπ = cos 2rπ + i sin 2rπ = 1, so 1− e2irπ = 0 and

2m−1∑

j=0

cos rxj + i
2m−1∑

j=0

sin rxj = e−irπ
2m−1∑

j=0

eirjπ/m = 0.

This implies that both the real and imaginary parts are zero, so

2m−1∑

j=0

cos rxj = 0 and
2m−1∑

j=0

sin rxj = 0.

In addition, if r is not a multiple of m, these sums imply that

2m−1∑

j=0

(cos rxj)
2 =

2m−1∑

j=0

1
2

(
1 + cos 2rxj

)
= 1

2



2m +
2m−1∑

j=0

cos 2rxj



 = 1
2
(2m + 0) = m

and, similarly, that

2m−1∑

j=0

(sin rxj)
2 =

2m−1∑

j=0

1
2

(
1− cos 2rxj

)
= m.

We can now show the orthogonality stated in (8.24). Consider, for example, the case

2m−1∑

j=0

φk(xj)φn+l(xj) =
2m−1∑

j=0

(cos kxj)(sin lxj).

Since

cos kxj sin lxj = 1
2
[sin(l + k)xj + sin(l − k)xj]
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and (l + k) and (l − k) are both integers that are not multiples of 2m, Lemma 8.12 implies
that

2m−1∑

j=0

(cos kxj)(sin lxj) = 1
2




2m−1∑

j=0

sin(l + k)xj +
2m−1∑

j=0

sin(l − k)xj



 = 1
2

(0 + 0) = 0.

This technique is used to show that the orthogonality condition is satisfied for any pair
of the functions and to produce the following result.

Theorem 8.13 The constants in the summation

Sn(x) = a0

2
+ an cos nx +

n−1∑

k=1

(ak cos kx + bk sin kx)

that minimize the least squares sum

E(a0, . . . , an, b1, . . . , bn−1) =
2m−1∑

j=0

(yj − Sn(xj))
2

are

• ak = 1
m

2m−1∑

j=0

yj cos kxj, for each k = 0, 1, . . . , n,

and

• bk = 1
m

2m−1∑

j=0

yj sin kxj, for each k = 1, 2, . . . , n− 1.

The theorem is proved by setting the partial derivatives of E with respect to the ak’s
and the bk’s to zero, as was done in Sections 8.1 and 8.2, and applying the orthogonality to
simplify the equations. For example,

0 = ∂E
∂bk

= 2
2m−1∑

j=0

[yj − Sn(xj)](− sin kxj),

so

0 =
2m−1∑

j=0

yj sin kxj −
2m−1∑

j=0

Sn(xj) sin kxj

=
2m−1∑

j=0

yj sin kxj −
a0

2

2m−1∑

j=0

sin kxj − an

2m−1∑

j=0

sin kxj cos nxj

−
n−1∑

l=1

al

2m−1∑

j=0

sin kxj cos lxj −
n−1∑

l=1,
l (=k

bl

2m−1∑

j=0

sin kxj sin lxj − bk

2m−1∑

j=0

(sin kxj)
2.

The orthogonality implies that all but the first and last sums on the right side are zero,
and Lemma 8.12 states the final sum is m. Hence

0 =
2m−1∑

j=0

yj sin kxj − mbk ,
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which implies that

bk = 1
m

2m−1∑

j=0

yj sin kxj.

The result for the ak’s is similar but need an additional step to determine a0 (See
Exercise 17.)

Example 2 Find S2(x), the discrete least squares trigonometric polynomial of degree 2 for f (x) =
2x2 − 9 when x is in [−π ,π ].
Solution We have m = 2(2)− 1 = 3, so the nodes are

xj = π + j
m
π and yj = f (xj) = 2x2

j − 9, for j = 0, 1, 2, 3, 4, 5.

The trigonometric polynomial is

S2(x) = 1
2

a0 + a2 cos 2x + (a1 cos x + b1 sin x),

where

ak = 1
3

5∑

j=0

yj cos kxj, for k = 0, 1, 2, and b1 = 1
3

5∑

j=0

yj sin xj.

The coefficients are

a0 = 1
3

(
f (−π) + f

(
−2π

3

)
+ f

(
−π

3

)
f (0) + f

(π
3

)
+ f

(
2π
3

))
= −4.10944566,

a1 = 1
3

(
f (−π) cos(−π) + f

(
−2π

3

)
cos

(
−2π

3

)
+ f

(
−π

3

)
cos

(
−π

3

)
f (0) cos 0

+ f
(π

3

)
cos

(π
3

)
+ f

(
2π
3

)
cos

(
2π
3

))
= −8.77298169,

a2 = 1
3

(
f (−π) cos(−2π) + f

(
−2π

3

)
cos

(
−4π

3

)
+ f

(
−π

3

)
cos

(
−2π

3

)
f (0) cos 0

+ f
(π

3

)
cos

(
2π
3

)
+ f

(
2π
3

)
cos

(
4π
3

))
= 2.92432723,

and

b1 = 1
3

(
f (−π) sin(−π) + f

(
−2π

3

)
sin
(
−π

3

)
+ f

(
−π

3

) (
−π

3

)
f (0) sin 0

+ f
(π

3

) (π
3

)
+ f

(
2π
3

)(
2π
3

))
= 0.

Thus

S2(x) = 1
2
(−4.10944562)− 8.77298169 cos x + 2.92432723 cos 2x.

Figure 8.15 shows f (x) and the discrete least squares trigonometric polynomial S2(x).
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Figure 8.15

y = f (x)

y = S2 (x)

x
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3
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!10

!3 !1

y

The next example gives an illustration of finding a least-squares approximation for a
function that is defined on a closed interval other than [−π ,π ].

Example 3 Find the discrete least squares approximation S3(x) for

f (x) = x4 − 3x3 + 2x2 − tan x(x − 2)

using the data {(xj, yj)}9
j=0, where xj = j/5 and yj = f (xj).

Solution We first need the linear transformation from [0, 2] to [−π ,π ] given by

zj = π(xj − 1).

Then the transformed data have the form
{(

zj, f
(

1 + zj

π

))}9

j=0
.

The least squares trigonometric polynomial is consequently,

S3(z) =
[

a0

2
+ a3 cos 3z +

2∑

k=1

(ak cos kz + bk sin kz)

]

,

where

ak = 1
5

9∑

j=0

f
(

1 + zj

π

)
cos kzj, for k = 0, 1, 2, 3,

and

bk = 1
5

9∑

j=0

f
(

1 + zj

π

)
sin kzj, for k = 1, 2.
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546 C H A P T E R 8 Approximation Theory

Evaluating these sums produces the approximation

S3(z) = 0.76201 + 0.77177 cos z + 0.017423 cos 2z + 0.0065673 cos 3z

− 0.38676 sin z + 0.047806 sin 2z,

and converting back to the variable x gives

S3(x) = 0.76201 + 0.77177 cosπ(x − 1) + 0.017423 cos 2π(x − 1)

+ 0.0065673 cos 3π(x − 1)− 0.38676 sin π(x − 1) + 0.047806 sin 2π(x − 1).

Table 8.12 lists values of f (x) and S3(x).

Table 8.12 x f (x) S3(x) |f (x)− S3(x)|
0.125 0.26440 0.24060 2.38× 10−2

0.375 0.84081 0.85154 1.07× 10−2

0.625 1.36150 1.36248 9.74× 10−4

0.875 1.61282 1.60406 8.75× 10−3

1.125 1.36672 1.37566 8.94× 10−3

1.375 0.71697 0.71545 1.52× 10−3

1.625 0.07909 0.06929 9.80× 10−3

1.875 −0.14576 −0.12302 2.27× 10−2

E X E R C I S E S E T 8.5

1. Find the continuous least squares trigonometric polynomial S2(x) for f (x) = x2 on [−π ,π ].
2. Find the continuous least squares trigonometric polynomial Sn(x) for f (x) = x on [−π ,π ].
3. Find the continuous least squares trigonometric polynomial S3(x) for f (x) = ex on [−π ,π ].
4. Find the general continuous least squares trigonometric polynomial Sn(x) for f (x) = ex on [−π ,π ].
5. Find the general continuous least squares trigonometric polynomial Sn(x) for

f (x) =
{

0, if − π < x ≤ 0,
1, if 0 < x < π .

6. Find the general continuous least squares trigonometric polynomial Sn(x) in for

f (x) =
{
−1, if −π < x < 0.
1, if 0 ≤ x ≤ π .

7. Determine the discrete least squares trigonometric polynomial Sn(x) on the interval [−π ,π ] for the
following functions, using the given values of m and n:
a. f (x) = cos 2x, m = 4, n = 2 b. f (x) = cos 3x, m = 4, n = 2
c. f (x) = sin x

2 + 2 cos x
3 , m = 6, n = 3 d. f (x) = x2 cos x, m = 6, n = 3

8. Compute the error E(Sn) for each of the functions in Exercise 7.
9. Determine the discrete least squares trigonometric polynomial S3(x), using m = 4 for f (x) = ex cos 2x

on the interval [−π ,π ]. Compute the error E(S3).
10. Repeat Exercise 9 using m = 8. Compare the values of the approximating polynomials with the values

of f at the points ξj = −π + 0.2jπ , for 0 ≤ j ≤ 10. Which approximation is better?
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11. Let f (x) = 2 tan x − sec 2x, for 2 ≤ x ≤ 4. Determine the discrete least squares trigonometric
polynomials Sn(x), using the values of n and m as follows, and compute the error in each case.
a. n = 3, m = 6 b. n = 4, m = 6

12. a. Determine the discrete least squares trigonometric polynomial S4(x), using m = 16, for f (x) =
x2 sin x on the interval [0, 1].

b. Compute
∫ 1

0 S4(x) dx.

c. Compare the integral in part (b) to
∫ 1

0 x2 sin x dx.
13. Show that for any continuous odd function f defined on the interval [−a, a], we have

∫ a
−a f (x) dx = 0.

14. Show that for any continuous even function f defined on the interval [−a, a], we have
∫ a
−a f (x) dx =

2
∫ a

0 f (x) dx.
15. Show that the functions φ0(x) = 1/2,φ1(x) = cos x, . . . ,φn(x) = cos nx,φn+1(x) = sin x, . . . ,

φ2n−1(x) = sin(n− 1)x are orthogonal on [−π ,π ] with respect to w(x) ≡ 1.
16. In Example 1 the Fourier series was determined for f (x) = |x|. Use this series and the assumption

that it represents f at zero to find the value of the convergent infinite series
∑∞

k=0(1/(2k + 1)2).
17. Show that the form of the constants ak for k = 0, . . . , n in Theorem 8.13 is correct as stated.

8.6 Fast Fourier Transforms

In the latter part of Section 8.5, we determined the form of the discrete least squares poly-
nomial of degree n on the 2m data points {(xj, yj)}2m−1

j=0 , where xj = −π + (j/m)π , for each
j = 0, 1, . . . , 2m − 1.

The interpolatory trigonometric polynomial in Tm on these 2m data points is nearly
the same as the least squares polynomial. This is because the least squares trigonometric
polynomial minimizes the error term

E(Sm) =
2m−1∑

j=0

(
yj − Sm(xj)

)2 ,

and for the interpolatory trigonometric polynomial, this error is 0, hence minimized, when
the Sm(xj) = yj, for each j = 0, 1, . . . , 2m − 1.

A modification is needed to the form of the polynomial, however, if we want the
coefficients to assume the same form as in the least squares case. In Lemma 8.12 we found
that if r is not a multiple of m, then

2m−1∑

j=0

(cos rxj)
2 = m.

Interpolation requires computing instead

2m−1∑

j=0

(cos mxj)
2,

which (see Exercise 8) has the value 2m. This requires the interpolatory polynomial to be
written as

Sm(x) = a0 + am cos mx
2

+
m−1∑

k=1

(ak cos kx + bk sin kx), (8.26)

if we want the form of the constants ak and bk to agree with those of the discrete least
squares polynomial; that is,
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