MATH 462 LECTURE NOTES: FEATURE REGRESSION

ADAM M. OBERMAN

The formulas above looks complicated at first glance. However, there is a geometrical interpretation in terms of projection. https://en.wikipedia.org/wiki/Projection_matrix

1. Vector dataset notation

Here we want to emphasize the fact that feature vectors are functions of the data.
So let x be a datapoint in an abstract data domain \mathcal{X}. In particular, we do not think of X as being a vectors space, since, for generic data, we do not have a notion of $x_{1}+c x_{2}$.

We write a dataset

$$
S_{m}=\left\{\left(x_{1}, y_{1}\right), \ldots,\left(x_{m}, y_{m}\right)\right\}
$$

in matrix form as

$$
X=\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{m}
\end{array}\right], \quad X \in \mathcal{X}^{m \times 1}
$$

and

$$
Y=\left[\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{m}
\end{array}\right], \quad Y \in \mathbb{R}^{m \times 1}
$$

However, we assume that we have vector features, $f: \mathcal{X} \rightarrow \mathbb{R}^{d}$ written as a column vector,

$$
f(x)=\left[\begin{array}{c}
f^{1}(x) \\
\vdots \\
f^{d}(x)
\end{array}\right]
$$

so that

$$
f(x)^{\top}=\left[f^{1}(x), \ldots, f^{d}(x)\right], \quad f(x) \in \mathbb{R}^{d \times 1}
$$

is a row vector.
Note: since x is a column vector, the function $f(x)=x$ is also column vector, so we can think of a vector-valued function as a vector of functions.
1.1. Data Matrix. We are going to define, following the convention in [DFO20, Chapter 9] Convention. Note, if data/features are a column vector, then a matrix of data/features needs to be $m \times d$

Define

$$
F=f(X)^{\top}=\left[\begin{array}{c}
f\left(x_{1}\right)^{\top} \\
\vdots \\
f\left(x_{m}\right)^{\top}
\end{array}\right]=\left[\begin{array}{ccc}
f^{1}\left(x_{1}\right) & \cdots & f^{d}\left(x_{1}\right) \\
\vdots & & \vdots \\
f^{1}\left(x_{m}\right) & \cdots & f^{d}\left(x_{m}\right)
\end{array}\right], \quad F \in \mathbb{R}^{m \times d}
$$

Thus we also have

$$
F^{\top}=f(X)=\left[\begin{array}{ccc}
f^{1}\left(x_{1}\right) & \cdots & f^{1}\left(x_{m}\right) \\
\vdots & & \vdots \\
f^{d}\left(x_{1}\right) & \cdots & f^{d}\left(x_{m}\right)
\end{array}\right], \quad F \in \mathbb{R}^{d \times m}
$$

Let $w \in \mathbb{R}^{d}$ be a column vector,

$$
w=\left[\begin{array}{c}
w_{1} \\
\vdots \\
\vdots \\
w_{d}
\end{array}\right]
$$

Then, we can write,

$$
h(x)=f(x)^{\top} w
$$

Linear functions of the features

$$
\mathcal{H}=\left\{h: x \rightarrow \mathbb{R} \mid h(x)=f(x)^{\top} w, w \in \mathbb{R}^{d}\right\}
$$

Write, in vector notation

$$
\begin{aligned}
H & =h(X)=F w \\
E & =H-Y
\end{aligned}
$$

The mean squared loss

$$
L(h, S)=\frac{1}{m} \sum_{i=1}^{m}\left(h\left(x_{i}\right)-y_{i}\right)^{2}
$$

Can be written in vector notation as

$$
L(h, S)=E^{\top} E=\|H-Y\|_{2}^{2}=\|F w-Y\|_{2}^{2}
$$

Using the linear functions, we express the loss as a function of w,

$$
\begin{equation*}
L(w)=\frac{1}{m} \sum_{i=1}^{m}\left(f\left(x_{i}\right) \cdot w-y_{i}\right)^{2} \tag{1}
\end{equation*}
$$

1.2. Gradients and Jacobians. For a scalar function $h(x)$, we make $\nabla_{x} h$ a row vector. This way the jacobian of a vector valued function f is a matrix, where each row is $\nabla_{x} f^{i}$

Definition 1.1 (Jacobian). The collection of all first-order partial derivatives of a vector-valued function $\boldsymbol{f}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{d}$ is called the Jacobian. The Jacobian \boldsymbol{J} is an $d \times n$ matrix, which we define
and arrange as follows:

$$
\begin{aligned}
\boldsymbol{J} & =\nabla_{x} \boldsymbol{f}=\frac{\mathrm{d} \boldsymbol{f}(\boldsymbol{x})}{\mathrm{d} \boldsymbol{x}}=\left[\begin{array}{lll}
\frac{\partial \boldsymbol{f}(\boldsymbol{x})}{\partial x_{1}} & \cdots & \frac{\partial \boldsymbol{f}(\boldsymbol{x})}{\partial x_{n}}
\end{array}\right] \\
\boldsymbol{J} & =\left[\begin{array}{ccc}
\frac{\partial f_{1}(\boldsymbol{x})}{\partial x_{1}} & \cdots & \frac{\partial f_{1}(\boldsymbol{x})}{\partial x_{n}} \\
\vdots & & \vdots \\
\frac{\partial f_{d}(\boldsymbol{x})}{\partial x_{1}} & \cdots & \frac{\partial f_{d}(\boldsymbol{x})}{\partial x_{n}}
\end{array}\right],
\end{aligned}
$$

where

$$
\boldsymbol{x}=\left[\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right]
$$

so that

$$
J(i, j)=\frac{\partial f_{i}}{\partial x_{j}}
$$

As a special case of (5.58), a function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{1}$, which maps a vector $\boldsymbol{x} \in \mathbb{R}^{n}$ onto a scalar (e.g., $f(\boldsymbol{x})=\sum_{i=1}^{n} a_{i} x_{i}$), possesses a Jacobian that is a row vector (matrix of dimension $1 \times n$). Example 1.2. Let $f(x)=a^{\top} x=x^{\top} a$ be linear. Note, x is a column vector, and a is a column vector. Then $\nabla_{x} f(x)=a^{\top}$ is a row vector. However, we define $\nabla_{a} f(x)=x$ to be a column vector, to be consistent with the notion that a vector of functions is a column vector. Thus

$$
\begin{aligned}
f(x) & =a^{\top} x & & \text { scalar function } \\
\nabla_{x} f(x) & =a^{\top} & & \text { row vector (gradient in } x \text {) } \\
\nabla_{a} f(x) & =x & & \text { column vector (vector of functions) }
\end{aligned}
$$

Example 1.3. Now when w is the variable, and x is a parameter, let $L(w, x)=\left(w^{\top} x-y\right)^{2} / 2$. Then

$$
\begin{aligned}
L(w, x) & =\left(w^{\top} x-y\right)^{2} / 2 & & \text { scalar function of } w \\
\nabla_{w} L & =\left(w^{\top} x-y\right) x^{\top} & & \text { row vector (gradient in } w) \\
\nabla_{x} L & =\left(w^{\top} x-y\right) w & & \text { column vector (vector of functions of } w)
\end{aligned}
$$

1.3. Feature regression minimizer. Going back to the vector notation for the loss, (1),

$$
L(w)=\frac{1}{m} \sum_{i=1}^{m}\left(f\left(x_{i}\right) \cdot w-y_{i}\right)^{2}
$$

Taking a derivative

$$
\frac{\partial L}{\partial w_{j}}(w)=\frac{1}{m} \sum_{i=1}^{m}\left(f\left(x_{i}\right) \cdot w-y_{i}\right)\left(2 f^{j}\left(x_{i}\right)\right)
$$

Now for the gradient (which is a row vector),

$$
\nabla_{w} L(w)=\frac{2}{m} \sum_{i=1}^{m}\left(f\left(x_{i}\right) \cdot w-y_{i}\right) f\left(x_{i}\right)^{\top}
$$

in vector notation, this is

$$
\frac{2}{m} E^{\top} F^{\top}=\frac{2}{m} F^{\top}(F w-Y)
$$

Thus, in vector notation

$$
\nabla_{w} L(w)=\frac{2}{m} F^{\top}(F w-Y)
$$

So the mimizer satisfies the normal equation

$$
\begin{equation*}
F^{\top} F w=F^{\top} Y \tag{2}
\end{equation*}
$$

Which means

$$
w=\left(F^{\top} F\right)^{-1} F^{\top} y
$$

Then the function values are

$$
h=F w=F\left(F^{\top} F\right)^{-1} F^{\top} y
$$

and for new function values,

$$
h(x)=f(x) \cdot w=f(x) \cdot\left(F^{\top} F\right)^{-1} F^{\top} y
$$

2. Functional notation

2.1. Inner product of functions. Let H be a vector space of functions, with an inner product $(f, g)=(f, g)_{H}$.

We are now going to write the regression problem as a projection problem in function space.
Given $y \in H$, and given functions $f_{1}, \ldots f_{d}$, let

$$
V=\operatorname{span}\left\{f_{1}, \ldots f_{d}\right\}
$$

Let

$$
h=\operatorname{Proj}_{V}(y)=\arg \min _{f \in V}\|f-y\|_{H}^{2}
$$

Since h is the projection, for each basis element $f_{i} \in V$, we have

$$
\left(h, f_{i}\right)=\left(y, f_{i}\right)
$$

Write $h=\sum w_{j} f_{j}$. Then

$$
\left(\sum w_{i} f_{i}, f_{j}\right)=\left(y, f_{j}\right), \quad \forall j
$$

or

$$
\sum_{i} w_{i}\left(f_{i}, f_{j}\right)=\left(y, f_{j}\right)
$$

Define $M_{i j}=\left(f^{\prime}, f^{j}\right)$ and $b_{j}=\left(y, f_{j}\right)$. Then equation becomes

$$
M w=b
$$

This makes more intuitive sense to me than the vector way. If, instead, we find an orthonormal basis of V, say, e_{1}, \ldots, e_{d}, then the equations become

$$
\left(\sum w_{i} e_{i}, e_{j}\right)=\left(y, e_{j}\right), \quad \forall j
$$

or

$$
w_{i}=\left(y, e_{i}\right), \quad \forall i
$$

Leading to the projection

$$
h=\sum_{i}\left(y, e_{i}\right) e_{i}
$$

2.2. Analysis of the minimizer. Define the vector space $V=V(X)$ to be m-dimensional vectors, regarded as functions

$$
V=\left\{f: X \rightarrow \mathbb{R} \mid f_{i}=f\left(x_{i}\right)\right\}
$$

Define an inner product on V by

$$
(h, g)_{X}=\frac{1}{m} \sum_{i=1}^{m} g\left(x_{i}\right) h\left(x_{i}\right)
$$

Then the normal equation can be interpreted as follows

$$
\left(F^{\top} F\right)_{i j}=\left(f^{i}, f^{j}\right)_{X}, \quad\left(F^{\top} Y\right)_{j}=\left(y, f^{j}\right)_{X}
$$

and

$$
h(X)=w \cdot f(X)
$$

is the projection of Y onto the span of F.
we also have the following result.
The error is orthogonal to the solution
Theorem 2.1. Let Y be given as above. Let $H=F w$ be the solution of the normal equation. Let $E=H-Y$ be the error. Then the error is orthogonal to the solution,

$$
(E, H)_{X}=0
$$

Proof. From the normal equation, (2)

$$
F^{\top}(F w-Y)=0
$$

multiply on the right by w^{\top}, to obtain

$$
w^{\top} F^{\top}(F w-Y)=0
$$

rewrite this as

$$
(H, E)=0
$$

as desired.

References

[DFO20] Marc Peter Deisenroth, A Aldo Faisal, and Cheng Soon Ong. Mathematics for machine learning. Cambridge University Press, 2020.

