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ADAM M. OBERMAN

The formulas above looks complicated at first glance. However, there is a geometrical inter-
pretation in terms of projection. https://en.wikipedia.org/wiki/Projection_matrix

1. VECTOR DATASET NOTATION

Here we want to emphasize the fact that feature vectors are functions of the data.

So let x be a datapoint in an abstract data domain X. In particular, we do not think of X as
being a vectors space, since, for generic data, we do not have a notion of x; + cxs.

We write a dataset

Sm - {(Ihyl): R (Imaym)}

in matrix form as

X=|"1, Xeam!

and

Y=|"7], YeR™!

Ym
However, we assume that we have vector features, f : X — R? written as a column vector,
f1(z)
f(z) = :
fh(x)
so that
f@)" =[f"(),....fY@)], flz)eR¥

is a row vector.
Note: since x is a column vector, the function f(x) = z is also column vector, so we can think
of a vector-valued function as a vector of functions.
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1.1. Data Matrix. We are going to define, following the convention in [DFO20, Chapter 9]
Convention. Note, if data/features are a column vector, then a matrix of data/features needs to
bem x d

Define

Let w € R% be a column vector,

Then, we can write,

Linear functions of the features
H={h:2—=R|h(z)=f(z) w,weR}

Write, in vector notation
H= h(X) = Fw
E

The mean squared loss

Can be written in vector notation as
L(h,S)=E"E=|H-Y|3=|Fu—-Y|j

Using the linear functions, we express the loss as a function of w,
1) = LS G w
m 7

1.2. Gradients and Jacobians. For a scalar function h(z), we make V. h a row vector. This
way the jacobian of a vector valued function f is a matrix, where each row is V, f*

Definition 1.1 (Jacobian). The collection of all first-order partial derivatives of a vector-valued
function f : R” — R? is called the Jacobian. The Jacobian J is an d x n matrix, which we define
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and arrange as follows:

df(x) 0f(x) of (@)
of1(x) . Of1(x)
ox1 Ozxn
J = : : )
ofa(®) . Ofi(x)
ox1 Ozxn
where
T
T = : )
Tp
so that
df;
J(i,7) = .
(4,7) o,

As a special case of (5.58), a function f : R" — R!, which maps a vector z € R" onto a scalar
(e.g., f(x) =", a;x; ), possesses a Jacobian that is a row vector (matrix of dimension 1 x n).

Example 1.2. Let f(z) = a'xz = x"a be linear. Note, x is a column vector, and a is a column
vector. Then V,f(z) = a' is a row vector. However, we define V,f(z) = = to be a column
vector, to be consistent with the notion that a vector of functions is a column vector. Thus

flx)=a'x scalar function
V.f(x)=a" row vector (gradient in x)
V.f(z) == column vector (vector of functions)

Example 1.3. Now when w is the variable, and x is a parameter, let L(w,z) = (w'z — y)?/2.

Then

L(w,z) = (w'z —y)%/2 scalar function of w
Vol = (w'z —y)z’ row vector (gradient in w)
V.L = (w'z —y)w column vector (vector of functions of w)

1.3. Feature regression minimizer. Going back to the vector notation for the loss, (1),

:%Z ) w —y;)?

=1
Taking a derivative

OL () = L™ (fw0) - w0 — ) 27 (2)

ow; m 4

Now for the gradient (which is a row vector),

— % Z(f(xl) cw —yi) f (i)
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in vector notation, this is

2 2
“E'F" = ZF"(Fw-Y)
m m

Thus, in vector notation

Vol (w) = %FT(Fw -Y)
So the mimizer satisfies the normal equation
(2) F'Fw=F"Y
Which means

w=(F"F)Y'Fly

Then the function values are

h=Fw=FF"F)'Fly
and for new function values,

h(z) = f(z)-w= f(z)- (F'F)7'F'y

2. FUNCTIONAL NOTATION

2.1. Inner product of functions. Let H be a vector space of functions, with an inner product

(f,9)=(f,9)n

We are now going to write the regression problem as a projection problem in function space.
Given y € H, and given functions fi,... f, let

V =span{fi,... fa}
Let
h = Projy(y) = argmin | f - yllH

Since h is the projection, for each basis element f; € V', we have

(h, fi) = (y, f3)

(Y witinf) = @ f), ¥
thh (v, f))

Define M;; = (f’, f7) and b; = (y, f]) Then equation becomes

Write h = ) w, f;. Then

or

Mw=1b
This makes more intuitive sense to me than the vector way.
If, instead, we find an orthonormal basis of V/, say, eq,..., €4, then the equations become

(Z w;e;, e]> (y,e;), Vj

w; = (yaei)a Vi

h = Z(yv 62‘)6

or

Leading to the projection
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2.2. Analysis of the minimizer. Define the vector space V' = V(X) to be m-dimensional
vectors, regarded as functions
V=Af:X=>RI|fi=flz)}

Define an inner product on V' by

(h.g)x = = 3" glah(a)

Then the normal equation can be interpreted as follows

(FTF)’ij = (fzafJ)Xa (FTY>J = (y7 fJ)X
and
hX) =w- f(X)
is the projection of Y onto the span of F.
we also have the following result.
The error is orthogonal to the solution

Theorem 2.1. Let Y be given as above. Let H = Fw be the solution of the normal equation.
Let E = H —Y be the error. Then the error is orthogonal to the solution,

(E,H)x =0

Proof. From the normal equation, (2)
F'(Fw-Y)=0
multiply on the right by w ', to obtain
w F'(Fw—-Y)=0
rewrite this as
(H,E)=0

as desired. ]
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