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The formulas above looks complicated at first glance. However, there is a geometrical inter-
pretation in terms of projection. https://en.wikipedia.org/wiki/Projection_matrix

1. Vector dataset notation

Here we want to emphasize the fact that feature vectors are functions of the data.
So let x be a datapoint in an abstract data domain X . In particular, we do not think of X as

being a vectors space, since, for generic data, we do not have a notion of x1 + cx2.
We write a dataset

Sm = {(x1, y1), . . . , (xm, ym)}

in matrix form as

X =

!

""#

x1

x2
...
xm

$

%%& , X ∈ Xm×1

and

Y =

!

""#

y1
y2
...
ym

$

%%& , Y ∈ Rm×1

However, we assume that we have vector features, f : X → Rd written as a column vector,

f(x) =

!

#
f 1 (x)

...
fd (x)

$

&

so that

f(x)⊤ =
'
f 1(x), . . . , fd(x)

(
, f(x) ∈ Rd×1

is a row vector.
Note: since x is a column vector, the function f(x) = x is also column vector, so we can think

of a vector-valued function as a vector of functions.
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1.1. Data Matrix. We are going to define, following the convention in [DFO20, Chapter 9]
Convention. Note, if data/features are a column vector, then a matrix of data/features needs to
be m× d

Define

F = f(X)⊤ =

!

"#
f(x1)

⊤

...

f (xm)
⊤

$

%& =

!

#
f 1 (x1) · · · fd (x1)

...
...

f 1(xm) . . . fd (xm)

$

& , F ∈ Rm×d

Thus we also have

F⊤ = f(X) =

!

#
f 1 (x1) · · · f 1 (xm)

...
...

fd(x1) . . . fd (xm)

$

& , F ∈ Rd×m

Let w ∈ Rd be a column vector,

w =

!

"""#

w1
...
...
wd

$

%%%&

Then, we can write,

h(x) = f(x)⊤w

Linear functions of the features

H = {h : x → R | h(x) = f(x)⊤w,w ∈ Rd}

Write, in vector notation
H = h(X) = Fw

E = H − Y

The mean squared loss

L(h, S) =
1

m

m)

i=1

(h (xi)− yi)
2

Can be written in vector notation as

L(h, S) = E⊤E = ‖H − Y ‖22 = ‖Fw − Y ‖22
Using the linear functions, we express the loss as a function of w,

(1) L(w) =
1

m

m)

i=1

(f(xi) · w − yi)
2

1.2. Gradients and Jacobians. For a scalar function h(x), we make ∇x h a row vector. This
way the jacobian of a vector valued function f is a matrix, where each row is ∇x f

i

Definition 1.1 (Jacobian). The collection of all first-order partial derivatives of a vector-valued
function f : Rn → Rd is called the Jacobian. The Jacobian J is an d×n matrix, which we define
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and arrange as follows:

J = ∇xf =
df(x)

dx
=

*
∂f(x)
∂x1

· · · ∂f(x)
∂xn

+

J =

!

"#

∂f1(x)
∂x1

· · · ∂f1(x)
∂xn

...
...

∂fd(x)
∂x1

· · · ∂fd(x)
∂xn

$

%& ,

where

x =

!

#
x1
...
xn

$

& ,

so that

J(i, j) =
∂fi
∂xj

.

As a special case of (5.58), a function f : Rn → R1, which maps a vector x ∈ Rn onto a scalar
(e.g., f(x) =

,n
i=1 aixi ), possesses a Jacobian that is a row vector (matrix of dimension 1×n).

Example 1.2. Let f(x) = a⊤x = x⊤a be linear. Note, x is a column vector, and a is a column
vector. Then ∇xf(x) = a⊤ is a row vector. However, we define ∇af(x) = x to be a column
vector, to be consistent with the notion that a vector of functions is a column vector. Thus

f(x) = a⊤x scalar function

∇xf(x) = a⊤ row vector (gradient in x)

∇af(x) = x column vector (vector of functions)

Example 1.3. Now when w is the variable, and x is a parameter, let L(w, x) = (w⊤x − y)2/2.
Then

L(w, x) = (w⊤x− y)2/2 scalar function of w

∇wL = (w⊤x− y)x⊤ row vector (gradient in w)

∇xL = (w⊤x− y)w column vector (vector of functions of w)

1.3. Feature regression minimizer. Going back to the vector notation for the loss, (1),

L(w) =
1

m

m)

i=1

(f(xi) · w − yi)
2

Taking a derivative

∂L

∂wj

(w) =
1

m

m)

i=1

(f(xi) · w − yi) (2f
j (xi))

Now for the gradient (which is a row vector),

∇wL (w) =
2

m

m)

i=1

(f(xi) · w − yi)f(xi)
⊤
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in vector notation, this is
2

m
E⊤F⊤ =

2

m
F⊤(Fw − Y )

Thus, in vector notation

∇wL (w) =
2

m
F⊤(Fw − Y )

So the mimizer satisfies the normal equation

(2) F⊤Fw = F⊤Y

Which means
w = (F⊤F )−1F⊤y

Then the function values are
h = Fw = F (F⊤F )−1F⊤y

and for new function values,

h(x) = f(x) · w = f(x) · (F⊤F )−1F⊤y

2. Functional notation

2.1. Inner product of functions. Let H be a vector space of functions, with an inner product
(f, g) = (f, g)H .

We are now going to write the regression problem as a projection problem in function space.
Given y ∈ H, and given functions f1, . . . fd, let

V = span{f1, . . . fd}
Let

h = ProjV (y) = argmin
f∈V

‖f − y‖2H
Since h is the projection, for each basis element fi ∈ V , we have

(h, fi) = (y, fi)

Write h =
,

wjfj. Then -)
wifi, fj

.
= (y, fj) , ∀j

or )

i

wi (fi, fj) = (y, fj)

Define Mij = (f ′, f j) and bj = (y, fj). Then equation becomes

Mw = b

This makes more intuitive sense to me than the vector way.
If, instead, we find an orthonormal basis of V , say, e1, . . . , ed, then the equations become

-)
wiei, ej

.
= (y, ej) , ∀j

or
wi = (y, ei), ∀i

Leading to the projection

h =
)

i

(y, ei)ei
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2.2. Analysis of the minimizer. Define the vector space V = V (X) to be m-dimensional
vectors, regarded as functions

V = {f : X → R | fi = f(xi)}
Define an inner product on V by

(h, g)X =
1

m

m)

i=1

g(xi)h(xi)

Then the normal equation can be interpreted as follows

(F⊤F )ij = (f i, f j)X , (F⊤Y )j = (y, f j)X

and
h(X) = w · f(X)

is the projection of Y onto the span of F .
we also have the following result.
The error is orthogonal to the solution

Theorem 2.1. Let Y be given as above. Let H = Fw be the solution of the normal equation.
Let E = H − Y be the error. Then the error is orthogonal to the solution,

(E,H)X = 0

Proof. From the normal equation, (2)

F⊤(Fw − Y ) = 0

multiply on the right by w⊤, to obtain

w⊤F⊤(Fw − Y ) = 0

rewrite this as
(H,E) = 0

as desired. □
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