
MATH 462 LECTURE NOTES: ORTHOGONAL FUNCTION REGRESSION

ADAM M. OBERMAN

Reference: Approximation theory Burden Faires Numerical Analysis 9th Burden Faires, Chapter
8. [Bur11].

1. Regression with full density

Previously, we looked at regression with a vector of data. If we knew the full function values,
we can do a continuous version.

To better understand the functional point of view, let’s do some examples. The easiest func-
tions to work with are polynomials, and trignometric functions, since we can easily compute the
intergrals.

L(h, ρ) = E
!
(h(x)− y)2

"

this helps us to understand generalization. If we think of the inner product as an approximation
to

(g, h)ρ =

#

X

g(x)h(x)ρ(x)

Then we are comparing the empirical inner product with the population inner product.

2. Functional analysis

Here we do a little introduction to thinking about features as functions. Then the normal
equation involves the inner products of each feature component.

2.1. Inner product of functions. Let X = [a, b] be an interval. Given a non-negative weight
function p(x)

Define the vector space V = V (X) of functions

V = {f : X → R}
with the inner product on V given by

(h, g) = (h, g)ρ = E[hg] =
# b

a

g(x)h(x)p(x)dx

Along with the norm

‖h‖p
Given d functions, f1, . . . , fd, define

V0 = span{f1, . . . fd}
Using the definition of the inner product,
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Definition 2.1. Given the features, fi and a function y ∈ V , define

Cij = (fi, fj), bi = (fi, y)

Let w be the solution of Cw = b, and define h ∈ V0 by

h(x) = w · f(x) = (C−1b)⊤f(x)

2.2. Derivation of the normal equations. Let

h = ProjV0(y) = argmin
f∈V

‖f − y‖2V

Define
e = y − h

to be the error (or residual).
Without going into the details about projections, which can be found in other references, we

know the following:
(e, f) = 0, ∀f ∈ V0

the error is orthogonal to the space.
In particular, since h is the projection, for each basis element fi ∈ V , we have

(e, fi) = 0, ∀i
So

(h, fi) = (y, fi)

Write h =
$

wjfj. Then %&
wifi, fj

'
= (y, fj) , ∀j

or &

i

wi (fi, fj) = (y, fj)

Using the definition above, Cij = (f i, f j) and bj = (y, fj).
Thus, using the orthogonality of projection, we recover the normal equation

Cw = b

2.3. Orthogonal Functions. To discuss general function approximation requires the introduction
of the notions of weight functions and orthogonality.

Definition 2.2. An integrable function w is called a weight function on the interval I if w(x) ≥ 0,
for all x in I, but w(x) ∕≡ 0 on any subinterval of I.

The purpose of a weight function is to assign varying degrees of importance to approximations
on certain portions of the interval.

Suppose {φ0,φ1, . . . ,φn} is a set of linearly independent functions on [a, b] and w is a weight
function for [a, b]. Given f ∈ C[a, b], we seek a linear combination

P (x) =
n&

k=0

akφk(x)

to minimize the error

E = E (a0, . . . , an) =

# b

a

w(x)

(
f(x)−

n&

k=0

akφk(x)

)2

dx.
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The normal equations associated with this problem are derived from the fact that for each
j = 0, 1, . . . , n,

0 =
∂E

∂aj
= 2

# b

a

w(x)

(
f(x)−

n&

k=0

akφk(x)

)
φj(x)dx.

The system of normal equations can be written
# b

a

w(x)f(x)φj(x)dx =
n&

k=0

ak

# b

a

w(x)φk(x)φj(x)dx, for j = 0, 1, . . . , n.

If the functions φ0,φ1, . . . ,φn can be chosen so that

# b

a

w(x)φk(x)φj(x)dx =

*
0, when j ∕= k

αj > 0, when j = k

then the normal equations will reduce to
# b

a

w(x)f(x)φj(x)dx = aj

# b

a

w(x) [φj(x)]
2 dx = ajαj,

for each j = 0, 1, . . . , n. These are easily solved to give

aj =
1

αj

# b

a

w(x)f(x)φj(x)dx.

The word orthogonal means right-angled. So in a sense, orthogonal functions are perpendicular
to one another.

Definition 2.3. {φ0,φ1, . . . ,φn} is said to be an orthogonal set of functions for the interval [a, b]
with respect to the weight function w if

# b

a

w(x)φk(x)φj(x)dx =

*
0, when j ∕= k,

αj > 0, when j = k.

If, in addition, αj = 1 for each j = 0, 1, . . . , n, the set is said to be orthonormal.

This definition, together with the remarks preceding it, produces the following theorem.

Theorem 2.4. If {φ0, . . . ,φn} is an orthogonal set of functions on an interval [a, b] with respect
to the weight function w, then the least squares approximation to f on [a, b] with respect to w is

P (x) =
n&

j=0

ajφj(x)

where, for each j = 0, 1, . . . , n,

aj =

+ b

a
w(x)φj(x)f(x)dx+ b

a
w(x) [φj(x)]

2 dx
=

1

αj

# b

a

w(x)φj(x)f(x)dx.

There are broad classes of orthogonal functions. We begin with orthogonal sets of polynomials.
The next theorem, which is based on the Gram-Schmidt process, describes how to construct
orthogonal polynomials on [a, b] with respect to a weight function w.
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Theorem 2.5. The set of polynomial functions {φ0,φ1, . . . ,φn} defined in the following way is
orthogonal on [a, b] with respect to the weight function w.

φ0(x) ≡ 1, φ1(x) = x− B1, for each x in [a, b],

where

B1 =

+ b

a
xw(x) [φ0(x)]

2 dx
+ b

a
w(x) [φ0(x)]

2 dx
,

and when k ≥ 2,

φk(x) = (x− Bk)φk−1(x)− Ckφk−2(x), for each x in [a, b],

where

Bk =

+ b

a
xw(x) [φk−1(x)]

2 dx
+ b

a
w(x) [φk−1(x)]

2 dx

and

Ck =

+ b

a
xw(x)φk−1(x)φk−2(x)dx+ b

a
w(x) [φk−2(x)]

2 dx

Theorem above provides a recursive procedure for constructing a set of orthogonal polynomi-
als. The proof of this theorem follows by applying mathematical induction to the degree of the
polynomial φn(x).

2.4. Classification and orthogonal functions. Now consider a classification problem. Let X
be the data domain. Let ρ(x) be the distribution of data. Let y1(x), . . . , yk(x) be the indicator
functions of the class labels and let cj be the normalized versions, so that

cj(x) =

*
1√
K

yj(x) = 1

0 otherwise

Assume that each element x ∈ X is a member of exactly one class.

Theorem 2.6. The class label functions, yj are orthogonal with respect to the weight function
ρ(x), as are cj,

(yi, yj)ρ = 0, i ∕= j

If the classes are balanced, then the normalized label functions are orthonormal,

(yi, yi)ρ =
1

K
, ‖ci‖ρ = 1

Proof. No element has two different class labels, so if i ∕= j, we have yj(x)yi(x) = 0, this means
(yj, yi)ρ0. If there are equally balanced classes then,

#
yi(x)ρ(x) = 1/K, i = 1, . . . , K

this means that ‖ci‖2ρ =
+
c2i (x)ρ(x) =

1
K

+
yiρ(x) = 1 as claimed. □
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3. Orthogonal Polynomials and Least Squares Approximation

Here we consider polynomial regression, with d+ 1 features, which corresponds to

f(x) = (f1(x) . . . , fd+1(x)) = (1, x, . . . , xd)

along with
h(x) = f(x)⊤w = w0 + w1x+ . . . wdx

d

3.1. definitions. The previous section considered the problem of least squares approximation to
fit a collection of data. The other approximation problem mentioned in the introduction concerns
the approximation of functions.

Suppose y =∈ C[a, b] (meaning it is a continuous function defined on the interval [a, b], and
that a polynomial h(x) = hn(x) of degree at most n is required that will minimize the error

# b

a

[y(x)− h(x)]2 dx

To determine a least squares approximating polynomial; that is, a polynomial to minimize this
expression, let

h(x) = w · f(x) ML Notation

= anx
n + an−1x

n−1 + · · ·+ a1x+ a0 =
n&

k=0

akx
k math notation

Remark 3.1. We are using two notations here: (i) ML notation to make it consistent with the
rest of the ML presentation, (ii) math notation to make it consistent with the reference [Bur11].

Define

L(w) =

# b

a

(y(x)− w · f(x))2 dx ML Notation

E(a) =

# b

a

,
y(x)−

n&

k=0

akx
k

-2

dx math notation

3.2. Calculus derivation of the minimizer. The problem is to find real coefficients a0, a1, . . . , an
that will minimize E. A necessary condition for the numbers a0, a1, . . . , an to minimize E is that

∂E

∂aj
= 0, for each j = 0, 1, . . . , n

Since

E =

# b

a

[f(x)]2dx− 2
n&

k=0

ak

# b

a

xkf(x)dx+

# b

a

,
n&

k=0

akx
k

-2

dx,

we have
∂E

∂aj
= −2

# b

a

xjf(x)dx+ 2
n&

k=0

ak

# b

a

xj+kdx.

Hence, to find Pn(x), the (n+ 1) linear normal equations
n&

k=0

ak

# b

a

xj+kdx =

# b

a

xjf(x)dx, for each j = 0, 1, . . . , n,
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must be solved for the (n+1) unknowns aj. The normal equations always have a unique solution
provided that f ∈ C[a, b]. (See Exercise)

Example 3.2. Find the least squares approximating polynomial of degree 2 for the function f(x) =
sin πx on the interval [0, 1]. Solution The normal equations for P2(x) = a2x

2 + a1x+ a0 are

a0

# 1

0

1dx+ a1

# 1

0

xdx+ a2

# 1

0

x2dx =

# 1

0

sin πxdx,

a0

# 1

0

xdx+ a1

# 1

0

x2dx+ a2

# 1

0

x3dx =

# 1

0

x sin πxdx,

a0

# 1

0

x2dx+ a1

# 1

0

x3dx+ a2

# 1

0

x4dx =

# 1

0

x2 sin πxdx.

Performing the integration yields

a0 +
1

2
a1 +

1

3
a2 =

2

π
,

1

2
a0 +

1

3
a1 +

1

4
a2 =

1

π
,

1

3
a0 +

1

4
a1 +

1

5
a2 =

π2 − 4

π3
.

These three equations in three unknowns can be solved to obtain

a0 =
12π2 − 120

π3
≈ −0.050465 and a1 = −a2 =

720− 60π2

π3
≈ 4.12251.

Consequently, the least squares polynomial approximation of degree 2 for f(x) = sin πx on
[0, 1] is P2(x) = −4.12251x2 + 4.12251x− 0.050465.

The example illustrates a difficulty in obtaining a least squares polynomial approximation. An
(n+ 1)× (n+ 1) linear system for the unknowns a0, . . . , an must be solved, and the coefficients
in the linear system are of the form

(fj(x), fk(x))ρ = (xj, xk)ρ =

# b

a

xj+kdx =
bj+k+1 − aj+k+1

j + k + 1
,

This leads to a linear system. The matrix in the linear system is known as a Hilbert matrix.

3.3. Legendre Polynomials. The set of Legendre polynomials, {Pn(x)}, is orthogonal on [−1, 1]
with respect to the weight function w(x) ≡ 1. The classical definition of the Legendre polynomials
requires that Pn(1) = 1 for each n, and a recursive relation is used to generate the polynomials
when n ≥ 2. This normalization will not be needed in our discussion, and the least squares
approximating polynomials generated in either case are essentially the same.

Using the Gram-Schmidt process with P0(x) ≡ 1 gives

B1 =

+ 1

−1
xdx

+ 1

−1
dx

= 0 and P1(x) = (x− B1)P0(x) = x

Also,

B2 =

+ 1

−1
x3dx

+ 1

−1
x2dx

= 0 and C2 =

+ 1

−1
x2dx

+ 1

−1
1dx

=
1

3
,

so

P2(x) = (x− B2)P1(x)− C2P0(x) = (x− 0)x− 1

3
· 1 = x2 − 1

3
.

The higher-degree Legendre polynomials shown in Figure 8.9 are derived in the same manner.
Although the integration can be tedious, it is not difficult with a Computer Algebra System.
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4. Trigonometric polynomial approximation

The first observation in the development of Fourier series is that, for each positive integer n,
the set of functions {φ0,φ1, . . . ,φ2n−1}, where

φ0(x) =
1

2
,

φk(x) = cos kx, for each k = 1, 2, . . . , n,

and

φn+k(x) = sin kx, for each k = 1, 2, . . . , n− 1,

is an orthogonal set on [−π, π] with respect to w(x) ≡ 1. This orthogonality follows from the
fact that for every integer j, the integrals of sin jx and cos jx over [−π, π] are 0 , and we can
rewrite products of sine and cosine functions as sums by using the three trigonometric identities

sin t1 sin t2 =
1

2
[cos (t1 − t2)− cos (t1 + t2)] ,

cos t1 cos t2 =
1

2
[cos (t1 − t2) + cos (t1 + t2)] ,

sin t1 cos t2 =
1

2
[sin (t1 − t2) + sin (t1 + t2)] .

4.1. Orthogonal Trigonometric Polynomials. Let Tn denote the set of all linear combinations
of the functions φ0,φ1, . . . ,φ2n−1. This set is called the set of trigonometric polynomials of degree
less than or equal to n.

For a function f ∈ C[−π, π], we want to find the continuous least squares approximation by
functions in Tn in the form

Sn(x) =
a0
2

+ an cosnx+
n−1&

k=1

(ak cos kx+ bk sin kx) .

Since the set of functions {φ0,φ1, . . . ,φ2n−1} is orthogonal on [−π, π] with respect to w(x) ≡ 1,
it follows from Theorem that the appropriate selection of coefficients is

ak =

+ π

−π
f(x) cos kxdx

+ π

−π
(cos kx)2dx

=
1

π

# π

−π

f(x) cos kxdx, for each k = 0, 1, 2, . . . , n,

and

bk =

+ π

−π
f(x) sin kxdx

+ π

−π
(sin kx)2dx

=
1

π

# π

−π

f(x) sin kxdx, for each k = 1, 2, . . . , n− 1.

The limit of Sn(x) when n → ∞ is called the Fourier series of f . Fourier series are used to
describe the solution of various ordinary and partial-differential equations that occur in physical
situations.

Example 4.1. Determine the trigonometric polynomial from Tn that approximates

f(x) = |x|, for − π < x < π.
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Solution We first need to find the coefficients

a0 =
1

π

# π

−π

|x|dx = − 1

π

# 0

−π

xdx+
1

π

# π

0

xdx =
2

π

# π

0

xdx = π,

ak =
1

π

# π

−π

|x| cos kxdx =
2

π

# π

0

x cos kxdx =
2

πk2

!
(−1)k − 1

"
,

for each k = 1, 2, . . . , n, and

bk =
1

π

# π

−π

|x| sin kxdx = 0, for each k = 1, 2, . . . , n− 1.

That the bk ’s are all 0 follows from the fact that g(x) = |x| sin kx is an odd function for each
k, and the integral of a continuous odd function over an interval of the form [−a, a] is 0 . (See
Exercises 13 and 14.) The trigonometric polynomial from Tn approximating f is therefore,

Sn(x) =
π

2
+

2

π

n&

k=1

(−1)k − 1

k2
cos kx.

5. TODO: discrete (data) least squares trig approximation

This section is good because it has discrete data.
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