MATH 462 LECTURE NOTES: ORTHOGONAL FUNCTION REGRESSION

ADAM M. OBERMAN

Reference: Approximation theory Burden Faires Numerical Analysis 9th Burden Faires, Chapter
8. [Burll].
1. REGRESSION WITH FULL DENSITY

Previously, we looked at regression with a vector of data. If we knew the full function values,
we can do a continuous version.

To better understand the functional point of view, let's do some examples. The easiest func-
tions to work with are polynomials, and trignometric functions, since we can easily compute the
intergrals.

L(h, p) = E [(h(z) — y)?]
this helps us to understand generalization. If we think of the inner product as an approximation
to

(9, h), = /X g(2)h(x)p(z)

Then we are comparing the empirical inner product with the population inner product.

2. FUNCTIONAL ANALYSIS

Here we do a little introduction to thinking about features as functions. Then the normal
equation involves the inner products of each feature component.

2.1. Inner product of functions. Let X = [a,b] be an interval. Given a non-negative weight
function p(z)
Define the vector space V' = V(X)) of functions

V={f:X—>R}
with the inner product on V' given by

(h,9) = (h, 9), = Elhg] = / g(2)h(2)p(x)dz

Along with the norm

e
Given d functions, fi,..., fq, define

Vo = span{ fi,... fa}
Using the definition of the inner product,
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Definition 2.1. Given the features, f; and a function y € V, define

Cij = (fi, 3), bi = (fi,y)
Let w be the solution of Cw = b, and define h € V|, by
h(z) =w- f(z) = (C7'b)" f(z)
2.2. Derivation of the normal equations. Let
h = Projy,(y) = argmin | f =yl
Define
e=y—nh
to be the error (or residual).
Without going into the details about projections, which can be found in other references, we
know the following:
(e,f)=0, Vfel,

the error is orthogonal to the space.
In particular, since h is the projection, for each basis element f; € V, we have

(e?fi) - O? Vi
So

Write h =) w; f;. Then

(D wii ;) = (w.1), Vi
Zwi (fi: f5) = (y, f3)

Using the definition above, C;; = (f*, f7) and b; = (y, f;)-
Thus, using the orthogonality of projection, we recover the normal equation

Cw=2»5

or

2.3. Orthogonal Functions. To discuss general function approximation requires the introduction
of the notions of weight functions and orthogonality.

Definition 2.2. An integrable function w is called a weight function on the interval [ if w(x) > 0,
for all x in I, but w(x) # 0 on any subinterval of I.

The purpose of a weight function is to assign varying degrees of importance to approximations
on certain portions of the interval.

Suppose {¢qg, ¢1,...,Pn} is a set of linearly independent functions on [a, b] and w is a weight
function for [a,b]. Given f € C[a,b], we seek a linear combination

P(r) = Zak¢k(x)

to minimize the error

E = FE((ag,...,a,) = / w(x) [f(x) - Zakqﬁk(m‘)] dx.
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The normal equations associated with this problem are derived from the fact that for each
7=0,1,...,n,

b n
0= da = 2/@ w(z) [f(x) - ;am(x)] ¢;(x)dz.

The system of normal equations can be written

/ w(x) f(z)p;(z)dx = Zak/ w(x)or(z)p;(x)dx, for j=0,1,...,n.

If the functions ¢, ¢1, ..., ¢, can be chosen so that

0, when j # k
a; >0, whenj=%k

b
t/w@waw@qu:{

then the normal equations will reduce to

b b
/ w(x) f(z)p;(z)dr = aj/ w(z) [(;5]-(3:)]2 dr = a;a;,

foreach 7 =0,1,...,n. These are easily solved to give

b
aj = O%/ w(x) f(z)p;(x)dx.

The word orthogonal means right-angled. So in a sense, orthogonal functions are perpendicular
to one another.

Definition 2.3. {¢g, ¢1,...,¢,} is said to be an orthogonal set of functions for the interval [a, b]
with respect to the weight function w if

b .
0, when j # k,
w(x x)o;(x)dr =
/a (@)9()?5() {aj >0, whenj==%k.
If, in addition, o; = 1 for each j =0, 1,...,n, the set is said to be orthonormal.
This definition, together with the remarks preceding it, produces the following theorem.

Theorem 2.4. If {¢y, ..., 0.} is an orthogonal set of functions on an interval |a,b] with respect
to the weight function w, then the least squares approximation to f on [a,b] with respect to w is

P(e) =" aj6,(x)

where, for each j =0,1,...,n,

 [Jw@)e(a) f)de 1 |
v f:w(:c) 6 (2))” da B O‘j/a w(z)g;(x) f(z)dx.

There are broad classes of orthogonal functions. We begin with orthogonal sets of polynomials.
The next theorem, which is based on the Gram-Schmidt process, describes how to construct
orthogonal polynomials on [a, b] with respect to a weight function w.
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Theorem 2.5. The set of polynomial functions {¢q, ¢1, ..., ¢} defined in the following way is
orthogonal on [a, b] with respect to the weight function w.

¢o(x) =1, ¢i(x) =x— By, foreachx in|a,b],
where
S aw(z) [po(w))” da

B = =5 2
J, w(@) [do(2)]" da

Y

and when k > 2,

or(z) = (v — By) ¢pr—1(x) — Crpp—2(z),  for each x in [a,b],
where
Jy ww(@) [9r-1(0)] da
S w(@) [Broa (@) da

By, =

and
_ f; 2w(x)pp_1(z)pp—2(x)dx
fabw(x) [¢k—2($)]2 dx

Theorem above provides a recursive procedure for constructing a set of orthogonal polynomi-
als. The proof of this theorem follows by applying mathematical induction to the degree of the
polynomial ¢, (z).

2.4. Classification and orthogonal functions. Now consider a classification problem. Let X
be the data domain. Let p(z) be the distribution of data. Let y;(z),...,yx(x) be the indicator
functions of the class labels and let c; be the normalized versions, so that

1
— ylz)=1
0 otherwise
Assume that each element x € X is a member of exactly one class.

Theorem 2.6. The class label functions, y; are orthogonal with respect to the weight function
p(z), as are ¢;,

(yiayj)PZOa 7’7&]

If the classes are balanced, then the normalized label functions are orthonormal,

1
(yiayi)p = ?, ||Ci||p =1

Proof. No element has two different class labels, so if i # j, we have y;(x)y;(z) = 0, this means
(yj,9i),0. If there are equally balanced classes then,

/yz(x)p(x) =1/K, i=1,...,K

this means that [|c;||2 = [ ¢}(2)p(z) = % [ yip(z) =1 as claimed. O
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3. ORTHOGONAL POLYNOMIALS AND LEAST SQUARES APPROXIMATION

Here we consider polynomial regression, with d + 1 features, which corresponds to

f@) = (fi(@)..., faa(2) = (Lz,...,2%)
along with

h(z) = f(z)"w = wo + wiz + ... wez?

3.1. definitions. The previous section considered the problem of least squares approximation to
fit a collection of data. The other approximation problem mentioned in the introduction concerns
the approximation of functions.

Suppose y =€ Ca,b] (meaning it is a continuous function defined on the interval [a, b], and
that a polynomial h(x) = h,(x) of degree at most n is required that will minimize the error

[ vta) = b do

To determine a least squares approximating polynomial; that is, a polynomial to minimize this
expression, let

h(z) =w - f(z) ML Notation
="+ ap, 2" 4 a4 ag = Z apz® math notation

Remark 3.1. We are using two notations here: (i) ML notation to make it consistent with the
rest of the ML presentation, (ii) math notation to make it consistent with the reference [Burll].

Define

b
L(w) = / (y(z) —w - f(z))*dx ML Notation
ab § )
E(a) = / (y(x) — Zakxk) dx math notation
@ k=0
3.2. Calculus derivation of the minimizer. The problem is to find real coefficients aq, a1, . .., a,
that will minimize E. A necessary condition for the numbers ag, aq, ..., a, to minimize E is that
oF
— =0, foreach;j=0,1,...,n
8aj
Since
b n b b [ n 2
E:/ [f(x)]zdx—22ak/ xkf(a:)daﬂ—/ Zakxk dz,
a k=0 a ¢ \k=0
we have

OF b S b
Erete —2/ 2! f(x)dx + QZak/ R d.
J a k=0 7@

Hence, to find P,(x), the (n + 1) linear normal equations

n b b
Zak/ Ry = / o) f(x)dx, foreach j=0,1,...,n,
k=0 a

a
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must be solved for the (n+ 1) unknowns a;. The normal equations always have a unique solution
provided that f € Cfa,b]. (See Exercise)

Example 3.2. Find the least squares approximating polynomial of degree 2 for the function f(x) =
sin mx on the interval [0, 1]. Solution The normal equations for Py(x) = axx?® + a1z + aq are

1 1 1 1
ao/ ldx + al/ rdx + ag/ 22dr = / sin rxdx,
0 0 0 0
1 1 1 1
ao/ rzdx + a1 / 22dx + as / 2dr = / xsin rxdr,
0 0 0 0
1 1 1 1
ao/ 22dr + a; / 22dr + ag/ ztdr = / 2% sin rxdz.
0 0 0 0

Performing the integration yields
1 2 1 1 1 1 1 1 1 -4

a0+§a1+§a2:;, §a0+§a1+4—1a2:%, §a0+1a1+3a2= 3
These three equations in three unknowns can be solved to obtain
1272 — 120 720 — 6072
Go =~ ~ —0.050465 and a; = —as = 2 ~ 4.12251.
e e

Consequently, the least squares polynomial approximation of degree 2 for f(x) = sinzz on
[0,1] is Py(z) = —4.122512% + 4.12251x — 0.050465.

The example illustrates a difficulty in obtaining a least squares polynomial approximation. An
(n+1) x (n+ 1) linear system for the unknowns ay, . .., a, must be solved, and the coefficients
in the linear system are of the form

b pitk+l _ gitk+l

o) oy = (), = [ athin = 2

This leads to a linear system. The matrix in the linear system is known as a Hilbert matrix.

Y

3.3. Legendre Polynomials. The set of Legendre polynomials, { P,,(x)}, is orthogonal on [—1, 1]
with respect to the weight function w(z) = 1. The classical definition of the Legendre polynomials
requires that P, (1) = 1 for each n, and a recursive relation is used to generate the polynomials
when n > 2. This normalization will not be needed in our discussion, and the least squares
approximating polynomials generated in either case are essentially the same.

Using the Gram-Schmidt process with Py(z) = 1 gives

f_ll xdx
By = — = and Pi(z) =(x— By) Py(z) ==z
J- da
Also,
1 1
B2:M: and Cb:ﬂ:l)
f_ll x2dx fll lde 3
so . .
Py(z) = (x — Bs) Pi(z) — CyPy(x) = (x — 0)z — 3" 1=2?— 3

The higher-degree Legendre polynomials shown in Figure 8.9 are derived in the same manner.
Although the integration can be tedious, it is not difficult with a Computer Algebra System.
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4. TRIGONOMETRIC POLYNOMIAL APPROXIMATION

The first observation in the development of Fourier series is that, for each positive integer n,

the set of functions {¢q, ¢1,. .., Pan_1}, Where
1
d)O(x) = 57

¢r(x) = coskx, foreach k=1,2,...,n,
and
Gnik(x) =sinkx, foreachk=1,2,...,n—1,

is an orthogonal set on [—7, ] with respect to w(z) = 1. This orthogonality follows from the
fact that for every integer j, the integrals of sin jx and cos jz over [—m, 7] are 0 , and we can
rewrite products of sine and cosine functions as sums by using the three trigonometric identities

1

sinty sinty = 3 [cos (t1 — ta) — cos (t; + to)],
1

cost; costy = 3 [cos (t; — t2) + cos (t1 + t2)],
1

sin ty costy = 5 [sin (t1 — t2) +sin (¢ + t2)] .

4.1. Orthogonal Trigonometric Polynomials. Let 7, denote the set of all linear combinations
of the functions ¢, ¢1, ..., P2n_1. This set is called the set of trigonometric polynomials of degree
less than or equal to n.

For a function f € C[—m, 7], we want to find the continuous least squares approximation by
functions in 7, in the form

n—1
Sp(z) = % + a, cosnx + (ay cos kx + by sin kx) .
k=1
Since the set of functions {¢g, @1, . . ., 2,1} is orthogonal on [—, 7] with respect to w(z) = 1,
it follows from Theorem that the appropriate selection of coefficients is
" f(x)cos kxdx 1 [™
ay = f_frf( ) = —/ f(z)coskxdr, foreach k=0,1,2,... n,
J7 (cos kx)?dx 7).,
and
" f(x)sin kxdx 1 [™
by, = f_ﬁrf(> = —/ f(z)sinkxzdz, foreach k=1,2,....,n—1.
ST (sin kz)2dzx T ) .

The limit of S, () when n — oo is called the Fourier series of f. Fourier series are used to
describe the solution of various ordinary and partial-differential equations that occur in physical
situations.

Example 4.1. Determine the trigonometric polynomial from 7, that approximates

flz)=|z|, for —m<z<m.
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Solution We first need to find the coefficients

1 [7 I I 2 [
ao:—/ ’:L’\d:c:——/ xdx—l——/ SL’dSC:—/ rdr =,
Y — TJ-n ™ Jo T Jo

I 2 [T
ap = —/ || cos kxdx = —/ xcoskrdr = — [(_Uk - 1} ’
™ Jo

Q0 -7

foreach k=1,2,....n, and

1 ™
bk:—/ |z| sin kxdx =0, foreach k=1,2,...,n— 1.
m

That the by, 's are all 0 follows from the fact that g(z) = |x|sin kx is an odd function for each
k, and the integral of a continuous odd function over an interval of the form [—a,a] is 0 . (See
Exercises 13 and 14.) The trigonometric polynomial from 7, approximating f is therefore,

n

T 2 —1)F -1
Sn(z) = 5T ;Z%Coskz.
k=1

5. TODO: DISCRETE (DATA) LEAST SQUARES TRIG APPROXIMATION
This section is good because it has discrete data.
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