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1.1. Decision Trees: Examples and Theory, basic coding.

Exercise 1.1. Apply the decision tree algorithm, using the information gain as the attribute test to learn a
decision tree for the data which follows. Be sure to present the information gain corresponding each attribute.

The data set is comprised of three attributes (binary input features) A1, A2, and A3 and one binary output,
along with five labelled samples.

Sample A1 A2 A3 Output y
x1 1 0 0 0
x2 1 0 1 0
x3 0 1 0 0
x4 1 1 1 1
x5 1 1 0 1

Exercise 1.2. For each of the following logical functions of the attributes A,B,C, draw the corresponding
decision tree.

(1) Tree for h(A,B,C) = A ∨ (B ∧ C).
(2) Tree for h(A,B) = A XOR B
(3) Tree for h(A,B,C,D) = (A ∧B) ∨ (C ∧D)

Exercise 1.3 (Loss design). For the definitions, refer to the notes, section 5, ”Loss minimization for choosing
attributes”.

(1) Define ℓ(p, 0) = cp2. Find the value of c so that the loss is normalized. Define ℓ(p, 1) so that the
loss is balanced. Show that the loss rewards confidence.

(2) Suppose a dataset S has 10 positive and 4 negative examples. Evaluate the expression L(q, S) for
this loss. Find the value of the loss when q = 10/14, and when q = .9.

ANSWER: ℓ(p, 0) = 4p2, ℓ(p, 1) = 4(1− p)2. derivative is nonzero.
Answer : 10

14
4(1− q)2 + 4

14
4(q)2 When q = 10/14: simplifies to 4 ∗ 10 ∗ 4/142

2.2. Bayes.

Exercise 2.4 (Bayes Rule Medical Test). Refer to the page 3, section 3.2. of Lecture 3 Bayes Lecture notes,
Example of Bayes rule. Suppose we consider a medical test for a disease. We have prior knowledge that over
the entire population of people only .0002 have this disease. The test returns a correct positive result in only
97% of the cases in which the disease is actually present and a correct negative result in only 95% of the
cases in which the disease is not present. In other cases, the test returns the opposite result.

(1) Suppose a person, randomly selected from the population is tested, and the test comes back positive.
Use Bayes rule to calculate the probability that they have the disease.

(2) Suppose a person comes from a higher risk group, where the probability of having the disease is 20
times higher. Suppose this person receives a positive rest result. What is the probability they have
the disease?

Exercise 2.5 (Naive Bayes Classifier). (Refer to section 3 in Lecture 4 Bayes notes) The naive Bayes classifier
defines

s(x) = w0 +
K!

i=1

wiai(x)

1
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where ai(x) is 1 when word i appears in x, and 0 otherwise, and where

wi = log

"
P (1 | ai = 1)

P (0 | ai = 1)

#
.

Suppose that, in a given database, P1 = .65 of the emails are spam, and the rest are ham (not spam), the
word ‘password’ appears in 856 of the spam emails, and 230 of the ham emails, the word ’benefits’ appears
in 112 spam and 670 ham.

(1) Suppose email x contains the word ‘password’. What is s(x)?
(2) Suppose email x contains both ‘password’ and ‘benefits’, what is s(x)?

2.3. Neural Networks.

Exercise 2.6. Consider a single layer perceptron, with the sgn(x) nonlinearity h(x, w) = sgn(w · x). For
binary data x = (1, x1, . . . xn), solve the following problems. Find the weight vector w = w0, . . . , wn for
which h(x, w) fits y(x) (as best as possible). If possible, use ‘simple’ weight vectors, in other words choose
w to make reading the function easier for a person.

(1) For n = 2, write out w for the AND(x) function and for OR(x).
(2) Write out w for the AND(x) function and for OR(x). for arbitrary n ≥ 2.
(3) For n > 2, define y(x) = 1 if half or more of xi are 1, and y(x) = 0 otherwise. Write out a w that

fits this function for a perceptron.
(4) coding Implement these functions (with n = 4) in a perceptron code, and plot the decision boundary,

as a function of x1, x2, when x3 = 0, x4 = 1.

2.4. Vector Calculus for ML.

Exercise 2.7. Let f : Rd → R and write ‖x‖ =
$

x2
1 + · · ·+ x2

d. Find ∇f(x) for each of the following
functions. Write the answer in vector notation.

(1) f(x) = ‖x‖2.
(2) f(x) = ‖x‖,
(3) f(x) = ‖x− a‖
(4) f(x) = 1/‖x‖
(5) f(x) = ‖m · x− b‖2, where m ∈ Rd, b ∈ R
(6) f(x) = ‖m1 · x− b1‖2 + . . . ‖mn · x− bn‖2, where mi ∈ Rd, bi ∈ R

Exercise 2.8 (Vector calculus for loss minimization). Consider the following

(1) Let w, x1, . . . , xm ∈ R. Define

L(w) = f(w, x1, . . . , xm) =
1

m

m!

i=1

(w − xi)
2

Find L′(w). Solve for L′(w∗) = 0. Evaluate L(w∗) in terms of x.
(2) Now same problem, but with vector data. Let w, x1, . . . , xm ∈ Rd. Set

L(w) = f(w, x1, . . . , xm) =
1

m

m!

i=1

‖w − xi‖22

Find ∇wf(w, x1, . . . , xm). Write it in terms of x̄ = 1
m

%m
i=1 xi Find

w∗ = argmin
w

L(w), L(w∗) =
1

m

m!

i=1

‖w∗ − xi‖2

(3) Interpret w∗, L(w∗) in terms of familiar statistics (mean, variance).
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3.5. Losses.

Exercise 3.9. Consider the normalized log loss,

ℓlog,2(s, y) =
1

log 2
log(1 + exp(−ys))

(1) Plot it, (do one plot for each value of y ∈ ±1), and show in the plot that it is an upper bound for
the zero-one loss.

(2) Show that it is balanced, normalized, monotone, and convex.

Exercise 3.10. Consider the exponential loss ℓ(s, y) = exp(−ys).

(1) Plot it, (do one plot for each value of y ∈ ±1), and show in the plot that it is an upper bound for
the zero-one loss.

(2) Show that it is balanced, normalized, monotone, and convex.

Exercise 3.11 (Multi-class losses). (1) Let s = (5.2, 3, .5), calculate the K = 3 class log loss when y = 1
and when y = 2.

(2) Let s = (5.2, 3, .5), calculate the K = 3 class margin loss when y = 1 and when y = 2.
(3) Let ℓ be (a) the multiclass log loss and (b) the multiclass margin loss. In each case, plot the function

ℓ(s(t), y = 3) for s(t) = (1, 2, t) with t ∈ [−4, 4].

3.6. Gradient Descent and SGD.

Exercise 3.12 (Convergence rates and log plots). We say an algorithm converges exponentially with rate c < 1
if the error e(t) satisfies log e(t)/e(0) ≤ ct. Consider the sequence a(t) = 25(2/3)t.

(1) Show that it convergences exponentially and find the rate.
(2) Plot a(t) a log-plot, so that the slope shows the rate of convergence. The x-axis should be the

iteration count, and the y-axis should be the log of the error.
(3) Combine the previous plot with a log-plot for the sequences (.99)t, 100(.99)t and .04t.

Exercise 3.13 (Gradient Descent and SGD Implementation). You may use the code provided as a starting
point, or write your own.
https://colab.research.google.com/drive/1-YoLDf3OyH3SxLJtC5W4qG3L1zYxkyMf?usp=sharing

Consider the model problem, for w ∈ R,

L(w) =
1

m

m!

i=1

(w − yi)
2

2

for w ∈ R, where m = 500 and yi are uniformly generated over [−1, 1].

(a) Run Gradient Descent on the model problem with learning rates α = .95, .75, .5, .25, .1. In this case,
you know the exact w∗. Plot the error, e(wt) = ‖wt − w∗‖2, on a log-plot, so that the slope shows
the rate of convergence. The x-axis should be the iteration count, and the y-axis should be the log
of the error, see sample below.

(b) Run the SGD algorithm, corresponding to example 2.3 in the notes. (Drawing balls with replacement).
Consider a data set with R = 10 red ball and B = 15 blue balls, and let pt be the estimate of the
fraction of red balls. Do the update,

pt+1 = pt −
1

t+ 1
(pt − yt)

where yt is 1 if the ball is red, and zero otherwise. Plot the error, e(t) = (pt− p∗)2 as a function of t.

https://colab.research.google.com/drive/1-YoLDf3OyH3SxLJtC5W4qG3L1zYxkyMf?usp=sharing
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Figure 1. Sample convergence rate plot for gradient descen

4.7. Analytic Geometry and Covariance matrices.

Exercise 4.14 (Exercise 3.5 from MLL1). Consider the Euclidean vector space R5. A subspace U ⊆ R5 and
x ∈ R5 are given by

U = span

&
''''(

'''')

*

++++,

0
−1
2
0
2

-

..../
,

*

++++,

1
−3
1
−1
2

-

..../
,

*

++++,

−3
4
1
2
1

-

..../
,

*

++++,

−1
−3
5
0
7

-

..../

0
''''1

''''2

, x =

*

++++,

−1
−9
−1
4
1

-

..../

(a) Determine the orthogonal projection πU(x) of x onto U
(b) Determine the distance d(x, U)

Exercise 4.15 (Inner products). (a) Rewrite the definition of an inner product on a vector space.
(b) Given the n× n matrix M , which is full rank, verify from the definition that 〈x, y〉M = (Mx)⊤(My)

defines an inner product on Rn. What goes wrong if the matrix has a non-trivial null-space?
(c) Give an example of a norm on Rn which does not come from an inner product.

Exercise 4.16 (Covariance Matrix). Let n = 2. Find the covariance matrix for the following datasets, Sm.

(a) Sm = {(1, 1), (−1,−1), (1, 0), (−1, 0), (−1, 1), (1,−1), (0, 1), (0,−1)}
(b) Sm = {(t, t), (−t,−t), (1, 0), (−1, 0), (−1, 1), (1,−1), (0, 1), (0,−1)}, for any t ∈ R.

Exercise 4.17 (Covariance Matrix Theory). Prove that the covariance matrix, C, is symmetric and non-
negative definite, meaning x⊤Cx ≥ 0 for all x. Assuming that the matrix is invertible, prove it is (strictly)
positive definite.

4.8. k-means Clustering.

Exercise 4.18. For the following two dimensional data sets, plot the data by hand and indicate the clusterings
by drawing a circle around the points in each cluster

(a) The dataset

S = {(.8, 1), (1.2, 1), (1, .8), (1, 1.2), (−.8,−1), (−1.2,−1), (−1,−.8), (−1,−1.2), . . .

(−.8, 1), (−1.2, 1), (−1, .8), (−1, 1.2), (.8,−1), (1.2,−1), (1,−.8), (1,−1.2)}.
(b) S = {(3, 1), (−3,−1), (−3, 1), (3,−1)}. Indicate two possible clusterings.

1Deisenroth, Marc Peter, A. Aldo Faisal, and Cheng Soon Ong. Mathematics for machine learning. Cambridge University
Press, 2020.
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Exercise 4.19. Consider the dataset S = {−5,−4,−3, 6, 8, 10} ⊂ R.
(a) Starting from W 0 = (w1, w2) = (6, 9) perform the k-means algorithm with k = 2 until a fixed point

is reached.
(b) Let hW be the minimizer of the k-means loss. Plot hW (x) on the interval [−5, 10].

4.9. Hypothesis classes for unsupervised ML.

Exercise 4.20. Given a dataset S = {x1, . . . , xm} in Rd, which is mean zero, x̄ = 1
m

%
xi = 0. Given a

hypothesis class H of functions h : Rd → Rd, consider the loss L(h, S) = 1
m

%m
i=1 ‖h(xi) − xi‖2. In this

exercise we identify algorithms in terms of this loss and a specific hypothesis class.

(a) Let Hlin,k = {h(x) = W⊤Wx | W ∈ Rk×d}. Show that this class includes the projection matrices
onto rank k subspaces. How do you describe the W in this case? (Hint: orthgonality). If we minimize
the loss L(h, S) over this hypothesis class, which familiar algorithm do we obtain?

(b) Let H = {h(x) = argmink
i=1 ‖x − wi‖2 | wi ∈ Rd, i = 1, . . . , k}. Describe the hypothesis class in

words. Are the functions in H differentiable? Identify the corresponding algorithm.

5.10. Convex Learning Problems. Refer to Ch 12 of Understanding Machine Learning (Shalev-Shwartz).
For the next two exercises, consider the classification problem with x ∈ X = [−1, 1], y ∈ {±1}. Let

m = 6 be the size of S, which is given by

S = {(−1,−1), (−0.8,−1), (−0.6,+1), (−0.3,−1), (0.3,+1), (0.6,−1), (0.8,+1), (+1,+1)}

Let h(x, w) = x− w, and c(h) = sgn(h).

Exercise 5.21 (non-convexity of 0-1 loss). With S and h as above, consider the zero-one loss

L(w) =
1

m

m!

i=1

ℓ0−1(c(xi − w), yi)

(a) Plot (sketch by hand) the function L(w), for w ∈ [−1, 1].
(b) Identify two local minima (they can be intervals), and the global minimum of the loss function.

Exercise 5.22 (Convex classification loss). With S and h as above, consider the classification loss ℓlog(h, y) =
log(1 + exp(−yh)), along with the loss function

L(w) =
1

m

m!

i=1

ℓlog(h(xi, w), yi)

(a) Plot (or sketch by hand) the function L(w), for w ∈ [−1, 1].
(b) For the function g(w, (x, y)) = ℓlog(h, y), show that, for any values of (x, y) in the domain X×{±1},

g is a convex function of w. Find the first and second derivatives of g in w.
(c) Explain why L is also convex as a function of w.

Exercise 5.23 (Convexity, Lipschitz, and Smoothness of logistic regression loss.). Shalev-Shwartz Problem
12.2.

Exercise 5.24 (Lipschitz continuity of the hinge loss). Shalev-Shwartz Problem 12.3.

5.11. Feature Regression and orthogonal features.

Exercise 5.25. Consider the following vectors in R3:

v1 =

*

,
1
2
3

-

/ , v2 =

*

,
2
1
−1

-

/ , v3 =

*

,
1
0
2

-

/
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(a) Make these vectors orthogonal using the Gram-Schmidt process, by performing the following steps.
(i) Start with the first vector and set u1 = v1. (ii) Next, compute the projection of v2 onto u1 and
subtract it from v2:

u2 = v2 − proju1
(v2), where proju1

(v2) =
u1 · v2

‖u1‖2
· u1

(iii) Lastly, compute the projection of v3 onto the subspace spanned by u1 and u2, and subtract it
from v3:

u3 = v3 − proju1
(v3)− proju2

(v3)

Find the orthogonalized vectors u1,u2, and u3.
(b) Next, given the vector y = [6, 0− 6]⊤. Solve

min
w

‖Fw − y‖2, F = [u1,u2,u3], Fw =
!

i

wiui

with F the 3×3 matrix with columns given by the vectors ui, . Express wi in terms of inner products
of y with certain vectors.

Exercise 5.26. Now consider the vector space of functions u : X = [0, 1] → R, with the inner product

(f, g) = (f, g)X =
3 1

0
f(x)g(x)dx. Start with the functions

v1(x) = 1, v2(x) = x, v3(x) = x3

(a) Make these functions orthogonal, using the Gram-Schmidt process for these functions, with same
ordering as in the previous exercise, to find the orthogonalized functions u1, u2, u3.

(b) Now, assuming u1, u2, u3 are orthogonal, given a function y, consider the functional regression problem

min
w

‖h(x, w)− y(x)‖2X
where h(x, w) = w1u1(x)−w2u2(x)+w3u3(x). Express the coefficients, w1, w2, w3 of the minimizer,
h(x, w), in terms of inner products of y and the functions ui. For y(x) = exp(5x), find w1.

Exercise 5.27. Let S = {(x1, y1), . . . (xm, ym)} where X = [x1, . . . , xm]
⊤ = [0.01, 0.02, . . . , 0.99, 1.00]⊤ is

m = 100 equally spaced points in [0, 1]. Let y = exp(5x) and let yi = y(xi).

(a) Solve the feature regression problem on Sx with data Y using features f(x) = [1, x, x3] and with
h1(x, w) = w · f(x).

(b) Same problem, but find h2(x, v) = v · g(x) where g(x) = [u1(x), u2(x), u3(x)], and ui are the
orthogonal features from the previous problem. Is v = w? Is h2 = h1?

(c) Now let h3(x, w) be the solution of the function regression problem with X = [0, 1]. Approximate
it by taking m2 = 1, 000 and solving the regression problem on the larger dataset. (You could also
find the exact solution using integration/computer algebra). Plot e(x) = h1(x)−h3(x), and find the
mean squared error,

E(h1, h3, X) =
1

m

m!

i=1

(h1(xi)− h3(xi))
2

What is the value of the mean squared error? How does it compare to m (e.g. 1/m, 1/m2)?


