
MaintainableCSS

Write CSS without worrying that overzealous, pre-existing styles will

cause problems. MaintainableCSS is an approach to writing modular,

scalable and maintainable CSS.

“A handy little read on learning how to write modular and maintainable

CSS.”

Smashing Magazine

“Finally a good book on how to write maintainable CSS.”

Alexander Dajani

“I actually love everything about this.”

Simon Taggart

START READING

Written by Adam Silver, an interaction designer from London, UK. Contribute on GitHub.

https://maintainablecss.com/chapters/introduction/
https://maintainablecss.com/chapters/introduction/
https://adamsilver.io/
https://adamsilver.io/
https://github.com/adamsilver/maintainablecss.com/
https://github.com/adamsilver/maintainablecss.com/

MaintainableCSS

CHAPTER 1

Introduction

MaintainableCSS is an approach to writing modular, scalable and

maintainable CSS for small and large codebases. You can learn it in

20 minutes and implement it immediately in your project.

Modular

A module is a distinct, independent unit that can be combined with

other modules to create a more complex structure. In a living room,

we can consider the TV, the sofa and the wall art to be modules.

When one module is taken away, the other modules continue to

work. For example, we can sit on the sofa even if the TV breaks down.

On a web page, a header, product list and menu can all be thought

about as modules.

Scalable

Scalable CSS means that as CSS increases in size, it's still easy to

maintain. If you've ever inherited a large CSS codebase, and been

afraid to make changes, you'll sympathise with this.

Maintainable

Maintainable CSS makes it easy to make styling changes without

worrying about accidentally causing problems elsewhere.

https://maintainablecss.com/
https://maintainablecss.com/

NEXT: SEMANTICS

CHAPTERS

1. Introduction

2. Semantics

3. Reuse

4. IDs

5. Conventions

6. Modules

7. State

8. Modifiers

9. Versioning

10. Javascript

11. Organisation

12. FAQs

Written by Adam Silver, an interaction designer from London, UK. Contribute on GitHub.

https://maintainablecss.com/chapters/semantics
https://maintainablecss.com/chapters/semantics
https://maintainablecss.com/chapters/introduction/
https://maintainablecss.com/chapters/introduction/
https://maintainablecss.com/chapters/semantics/
https://maintainablecss.com/chapters/semantics/
https://maintainablecss.com/chapters/reuse/
https://maintainablecss.com/chapters/reuse/
https://maintainablecss.com/chapters/ids/
https://maintainablecss.com/chapters/ids/
https://maintainablecss.com/chapters/conventions/
https://maintainablecss.com/chapters/conventions/
https://maintainablecss.com/chapters/modules/
https://maintainablecss.com/chapters/modules/
https://maintainablecss.com/chapters/state/
https://maintainablecss.com/chapters/state/
https://maintainablecss.com/chapters/modifiers/
https://maintainablecss.com/chapters/modifiers/
https://maintainablecss.com/chapters/versioning/
https://maintainablecss.com/chapters/versioning/
https://maintainablecss.com/chapters/javascript/
https://maintainablecss.com/chapters/javascript/
https://maintainablecss.com/chapters/organisation/
https://maintainablecss.com/chapters/organisation/
https://maintainablecss.com/chapters/faqs/
https://maintainablecss.com/chapters/faqs/
https://adamsilver.io/
https://adamsilver.io/
https://github.com/adamsilver/maintainablecss.com/
https://github.com/adamsilver/maintainablecss.com/

MaintainableCSS

CHAPTER 2

Semantics
Semantic HTML isn't only about the elements we use. It's quite

obvious that we should use <a> for links, <table> for tabular data

and <p> for paragraphs etc. What's less obvious is the names we use

for classes.

As Phil Karton says, “there are only two hard things in Computer

Science: cache invalidation and naming things.” So spending a

whole chapter talking about naming is essential.

Naming is the most important aspect of writing maintainable CSS.

There are two main approaches: the semantic approach and the non-

semantic approach.

Semantic vs non-semantic

<!-- non semantic -->

<div class="red pull-left pb3">

<div class="grid row">

<div class="col-xs-4">

<!-- semantic -->

<div class="basket">

<div class="product">

<div class="searchResults">

https://maintainablecss.com/
https://maintainablecss.com/

Non-semantic classes don't convey what an element represents. At

most they give you an idea of what an element looks like. Atomic,

visual, behavioural and utility classes are all forms of non-semantic

classes.

Semantic classes don't convey their styles, but that's fine—that's

what CSS is for. Semantic classes mean something to HTML, CSS,

Javascript and automated functional tests.

Let's look at why semantic classes usually work best.

1. Because they're readable
Here's a real snippet of HTML using atomic classes:

<div class="pb3 pb4-ns pt4 pt5-ns mt4 black-70 fl-l w-50-l">

 <h1 class="f4 fw6 f1-ns lh-title measure mt0">Heading</h1>

 <p class="f5 f4-ns fw4 b measure dib-m lh-copy">Tagline</p>

</div>

• Words are generally easier to understand than abbreviations

which have to be understood and interpreted before knowing

what they stand for

• It's unclear where the module begins and ends

• We have to wade through a very long list of classes to work out

what's going on; which classes override which; and which apply at

different breakpoints

• The classes lack clarity—for example, it's not clear whether

black-70 is referring to the foreground or background colour

• The content is obfuscated by the larger surrounding HTML

• The HTML is large in size

Here's the same HTML with semantic classes:

<div class="hero">

 <h1 class="hero-title">Heading</h1>

 <p class="hero-tagline">Tagline</p>

</div>

• These classes are easy to read without needing to be interpreted

• It's clear where the module begins and ends

• It's easy to read the CSS because it uses the standard syntax for

this purpose

• The content is no longer obfuscated

• The HTML is half the size

2. Because they make it easier to build
responsive sites
Imagine coding a two-column responsive grid whereby:

• each column has 20px and 50px padding on small and large

screens respectively

• each column has 2em and 3em font-size on small and large

screens respectively

• the columns stack on small screens. Note that column is now a

misleading class name.

With non-semantic classes it may look like this:

<div class="grid clearfix">

 <div class="col pd20 pd50 fs2 fs3">Column 1</div>

 <div class="col pd20 pd50 fs2 fs3">Column 2</div>

</div>

• There are 7 classes—some of which override each other

• To make the columns work responsively we would need a

fs3large class which means creating a naming convention that

recreates language constructs already provided by CSS

• At certain break points, the classes are misleading and

redundant—for example .clearfix doesn't clear on small

screens

With semantic classes it looks like this:

<div class="thing">

 <div class="thing-thingA"></div>

 <div class="thing-thingB"></div>

</div>

• The classes are encapsulated to the module's design and content

• It's easy to style elements without having to write a multiple

classes and changing the HTML

• The classes are meaningful in small and big screens

• Media queries can be used to clear elements when needed

Question: how valuable is a codified responsive grid system? A layout

should adapt to the content, not the other way around.

http://adamsilver.io/articles/stop-using-device-breakpoints/
http://adamsilver.io/articles/stop-using-device-breakpoints/
http://adamsilver.io/articles/stop-using-device-breakpoints/
http://adamsilver.io/articles/stop-using-device-breakpoints/

3. Because they're easier to find
Searching HTML with non-semantic classes yields many results.

Searching HTML with semantic classes should yield one result which

makes it quick to track down.

4. Because they reduce the chance of
regression
Updating a non-semantic class could cause regression across

multiple elements. Updating a semantic class only applies to the

specific module, eliminating the risk of regression.

5. Because visual classes aren't
necessarily valuable
Atomic CSS and inline CSS aren't totally equivalent. For example,

inline CSS can't use media queries and styling in HTML stops us from

being able to cache it.

But, in some ways we may as well use inline styles—at least it's

explicit and reduces the CSS footprint to zero.

Question: isn't .red the exact same abstraction that CSS already gives us

for free with color: red?

6. Because they provide hooks for
automated tests
Automated functional tests work by searching for and interacting

with elements. For example, a test might involve:

1. clicking a link

2. finding a text box

3. typing in text

4. submitting a form

5. verifying some criteria

We can't use non-semantic classes to target specific elements. And

adding hooks specifically for tests is wasteful as the user now has to

download extra code.

7. Because they provide hooks for
JavaScript
We can't use non-semantic classes to target specific elements in

order to enhance them with JavaScript.

8. Because they need less maintaining
When you name an element based on what it is, you don't have to

update the HTML. That's because, a heading, for example, is always a

heading, no matter what it looks like.

With visual classes, both the HTML and the CSS need updating

—assuming there aren't any selectors available for use.

9. Because they're easier to debug
Inspecting an element with multiple atomic classes, means having to

wade through many selectors. With a semantic class, there's only one

which is much easier to work with.

10. Because the standards recommend it

On using the class attribute, HTML5 specs say in 3.2.5.7:

"[...] authors are encouraged to use values that describe the nature of the

content, rather than values that describe the desired presentation of the

content."

11. Because styling state is easier
Consider this HTML:

Changing the padding and colour on hover is a difficult task. Try to

avoid having to fix self-induced problems like this.

12. Because they produce a small HTML
footprint
Atomic classes create extra code in HTML. Semantic classes result in

less code. And while the CSS may increase in size, it can be cached.

Final thought
Semantic classes are a cornerstone of MaintainableCSS. Without

them, everything else makes little sense. Name something based on

what it is and everything else falls into place.

NEXT: REUSE

https://maintainablecss.com/chapters/reuse
https://maintainablecss.com/chapters/reuse

CHAPTERS

1. Introduction

2. Semantics

3. Reuse

4. IDs

5. Conventions

6. Modules

7. State

8. Modifiers

9. Versioning

10. Javascript

11. Organisation

12. FAQs

Written by Adam Silver, an interaction designer from London, UK. Contribute on GitHub.

https://maintainablecss.com/chapters/introduction/
https://maintainablecss.com/chapters/introduction/
https://maintainablecss.com/chapters/semantics/
https://maintainablecss.com/chapters/semantics/
https://maintainablecss.com/chapters/reuse/
https://maintainablecss.com/chapters/reuse/
https://maintainablecss.com/chapters/ids/
https://maintainablecss.com/chapters/ids/
https://maintainablecss.com/chapters/conventions/
https://maintainablecss.com/chapters/conventions/
https://maintainablecss.com/chapters/modules/
https://maintainablecss.com/chapters/modules/
https://maintainablecss.com/chapters/state/
https://maintainablecss.com/chapters/state/
https://maintainablecss.com/chapters/modifiers/
https://maintainablecss.com/chapters/modifiers/
https://maintainablecss.com/chapters/versioning/
https://maintainablecss.com/chapters/versioning/
https://maintainablecss.com/chapters/javascript/
https://maintainablecss.com/chapters/javascript/
https://maintainablecss.com/chapters/organisation/
https://maintainablecss.com/chapters/organisation/
https://maintainablecss.com/chapters/faqs/
https://maintainablecss.com/chapters/faqs/
https://adamsilver.io/
https://adamsilver.io/
https://github.com/adamsilver/maintainablecss.com/
https://github.com/adamsilver/maintainablecss.com/

MaintainableCSS

CHAPTER 3

Reuse
As Harry Roberts says, “DRY is often misinterpreted as the necessity

to never repeat the exact same thing twice. This is impractical and

usually counterproductive, and can lead to forced abstractions, over-

thought and over-engineered code.”

This forced abstraction, over-thought and over-engineered code

often results in visual and atomic classes. We know how painful they

are because we discussed them thoroughly in semantics. Mixins may

also be a problem which we'll discuss shortly.

Whilst we often try to abstract CSS too much too soon, there are

obviously going to be times when reuse makes sense. The question

must be answered, how can we reuse a style?

How can we reuse a style?
If we want to reuse a style, one option would be to comma-delimit

selectors inside a well-named file, which if you're into SASS is exactly

what @extend does. For example, if multiple elements need red text,

we could do this:

.someThing,

.anotherThing {

 color: red;

https://maintainablecss.com/
https://maintainablecss.com/
https://maintainablecss.com/chapters/semantics/
https://maintainablecss.com/chapters/semantics/

}

This approach should be used for convenience, not for performance.

(If the abstraction only has one rule, we're simply exchanging one

line of code for another.)

If a selector deviates from the rules inside the abstraction, it should

be removed from the list. Otherwise it could regress the other

selectors and cause override issues.

It's important to note that this is one of several techniques at our

disposal. When a thing is well understood we can make use of other

techniques, which we'll discuss in Modules, State and Modifiers.

What about mixins?
Mixins provide the best of both worlds. At least in theory.

Like utility classes, updating a mixin propagates to all instances. If we

don't have a handle of what's using the mixin, we increase the risk of

regression. Instead of updating a mixin, we can create another, but

this causes redundancy.

Also, mixins easily end up with many rules, multiple parameters, and

conditionality. This is complicated. Complicated is hard to maintain.

To mitigate this complexity, we can create granular mixins, such as

one for red text. At first this seems better. But isn't the declaration of

a red mixin, the same as the rule itself i.e. color: red?

If we need to update the rule in multiple places, a search and replace

might be all that's necessary. Also, when the red mixin changes to

https://maintainablecss.com/chapters/modules/
https://maintainablecss.com/chapters/modules/
https://maintainablecss.com/chapters/state/
https://maintainablecss.com/chapters/state/
https://maintainablecss.com/chapters/modifiers/
https://maintainablecss.com/chapters/modifiers/

orange, its name will need updating anyway.

With all that said, mixins can be very useful. We might, for example,

want to apply clearfix rules across different elements and only within

certain breakpoints. This is something that vanilla CSS can't do

elegantly.

As such, mixins are not bad, it's just that we should use them

judiciously.

What about performance?
We often overthink performance and get obsessed with tiny details.

Even if CSS did total more than 100kb, there's little to gain from

mindlessly striving for DRYness.

Making CSS small makes HTML big. CSS can always be cached. But

HTML often contains dynamic and personalised content—so it can't

be cached.

The compression of a single image gives us a better return on

investment. And as we've discussed, resolving other forms of

redundancy improves maintainability and performance.

As you'll see in later chapters, the conventions in this guide, mean

CSS class names have repeated prefixes which works especially well

with GZip.

Is this violating DRY principles?
Attempting to reuse, for example float: left, is akin to trying to

reuse variable names in different Javascript objects. It's simply not in

violation of DRY.

Final thought
Striving for DRY leads to over-thought and over-engineered code. In

doing so we make maintenance harder, not easier. Instead of

obsessing over styles, we should focus on reusing tangible modules.

Something we'll discuss in upcoming chapters.

NEXT: IDS

CHAPTERS

1. Introduction

2. Semantics

3. Reuse

4. IDs

5. Conventions

6. Modules

7. State

8. Modifiers

9. Versioning

10. Javascript

11. Organisation

12. FAQs

Written by Adam Silver, an interaction designer from London, UK. Contribute on GitHub.

https://maintainablecss.com/chapters/ids
https://maintainablecss.com/chapters/ids
https://maintainablecss.com/chapters/introduction/
https://maintainablecss.com/chapters/introduction/
https://maintainablecss.com/chapters/semantics/
https://maintainablecss.com/chapters/semantics/
https://maintainablecss.com/chapters/reuse/
https://maintainablecss.com/chapters/reuse/
https://maintainablecss.com/chapters/ids/
https://maintainablecss.com/chapters/ids/
https://maintainablecss.com/chapters/conventions/
https://maintainablecss.com/chapters/conventions/
https://maintainablecss.com/chapters/modules/
https://maintainablecss.com/chapters/modules/
https://maintainablecss.com/chapters/state/
https://maintainablecss.com/chapters/state/
https://maintainablecss.com/chapters/modifiers/
https://maintainablecss.com/chapters/modifiers/
https://maintainablecss.com/chapters/versioning/
https://maintainablecss.com/chapters/versioning/
https://maintainablecss.com/chapters/javascript/
https://maintainablecss.com/chapters/javascript/
https://maintainablecss.com/chapters/organisation/
https://maintainablecss.com/chapters/organisation/
https://maintainablecss.com/chapters/faqs/
https://maintainablecss.com/chapters/faqs/
https://adamsilver.io/
https://adamsilver.io/
https://github.com/adamsilver/maintainablecss.com/
https://github.com/adamsilver/maintainablecss.com/

MaintainableCSS

CHAPTER 4

IDs
Semantically speaking, we should use an ID when there's only one

instance of a thing. And we should use a class when there are

several.

However, IDs overpower class names by orders of magnitude, which

is a problem when we want to override a style.

To demonstrate the problem, let's override the colour of an element

from red to blue using an ID.

Here's the HTML:

<div id="module" class="module-override">

And the CSS:

#module {

 color: red;

}

.module-override {

 color: blue;

}

https://maintainablecss.com/
https://maintainablecss.com/
http://www.w3.org/TR/css3-selectors/#specificity
http://www.w3.org/TR/css3-selectors/#specificity

The element will be red even though the override class declares blue.

Let's fix this by swapping the ID for a class:

<div class="module module-override">

And the CSS:

.module {

 color: red;

}

.module-override {

 color: blue;

}

Now, the element is blue—problem solved.

Whilst using IDs for styling is problematic, we can still use them for

other things. For example, we'll most certainly need to use them to

connect:

• labels to form fields

• in-page anchors to a hash fragment in the URL

• ARIA attributes to help screen reader users

Final thought
Use IDs whenever you need to enable particular behaviours for

browsers and assistive technology. But avoid using them as hooks

for styles.

NEXT: CONVENTIONS

CHAPTERS

1. Introduction

2. Semantics

3. Reuse

4. IDs

5. Conventions

6. Modules

7. State

8. Modifiers

9. Versioning

10. Javascript

11. Organisation

12. FAQs

Written by Adam Silver, an interaction designer from London, UK. Contribute on GitHub.

https://maintainablecss.com/chapters/conventions
https://maintainablecss.com/chapters/conventions
https://maintainablecss.com/chapters/introduction/
https://maintainablecss.com/chapters/introduction/
https://maintainablecss.com/chapters/semantics/
https://maintainablecss.com/chapters/semantics/
https://maintainablecss.com/chapters/reuse/
https://maintainablecss.com/chapters/reuse/
https://maintainablecss.com/chapters/ids/
https://maintainablecss.com/chapters/ids/
https://maintainablecss.com/chapters/conventions/
https://maintainablecss.com/chapters/conventions/
https://maintainablecss.com/chapters/modules/
https://maintainablecss.com/chapters/modules/
https://maintainablecss.com/chapters/state/
https://maintainablecss.com/chapters/state/
https://maintainablecss.com/chapters/modifiers/
https://maintainablecss.com/chapters/modifiers/
https://maintainablecss.com/chapters/versioning/
https://maintainablecss.com/chapters/versioning/
https://maintainablecss.com/chapters/javascript/
https://maintainablecss.com/chapters/javascript/
https://maintainablecss.com/chapters/organisation/
https://maintainablecss.com/chapters/organisation/
https://maintainablecss.com/chapters/faqs/
https://maintainablecss.com/chapters/faqs/
https://adamsilver.io/
https://adamsilver.io/
https://github.com/adamsilver/maintainablecss.com/
https://github.com/adamsilver/maintainablecss.com/

MaintainableCSS

CHAPTER 5

Conventions
MaintainableCSS has the following convention:

.<module>[-<component>][-<state>] {}

Square brackets are optional depending on the module in question.

Here are some examples:

/* Module container */

.searchResults {}

/* Component */

.searchResults-heading {}

/* State */

.searchResults-isLoading {}

Notes:

• component and state are both delimited by a dash

• names are written with lowerCamelCase

• selectors are prefixed with the module name

https://maintainablecss.com/
https://maintainablecss.com/

Must I give a class name to every
element?
No. You can write .searchResults p if you want to. And sometimes

you may have to, if for example you're using markdown. But beware

that if you nest a module which contains a p it will inherit the styles

and need overriding.

Why must I prefix the module name?
Good question. Here's some HTML without a prefix:

<div class="basket">

 <div class="heading">

And the CSS:

/* module */

.basket {}

/* heading component of basket module */

.basket .heading {}

There are two problems:

1. when viewing HTML, it's hard to differentiate between a module

and a component; and

2. the .basket .heading component will inherit styles from the

.heading module which has unintended side effects.

NEXT: MODULES

CHAPTERS

1. Introduction

2. Semantics

3. Reuse

4. IDs

5. Conventions

6. Modules

7. State

8. Modifiers

9. Versioning

10. Javascript

11. Organisation

12. FAQs

Written by Adam Silver, an interaction designer from London, UK. Contribute on GitHub.

https://maintainablecss.com/chapters/modules
https://maintainablecss.com/chapters/modules
https://maintainablecss.com/chapters/introduction/
https://maintainablecss.com/chapters/introduction/
https://maintainablecss.com/chapters/semantics/
https://maintainablecss.com/chapters/semantics/
https://maintainablecss.com/chapters/reuse/
https://maintainablecss.com/chapters/reuse/
https://maintainablecss.com/chapters/ids/
https://maintainablecss.com/chapters/ids/
https://maintainablecss.com/chapters/conventions/
https://maintainablecss.com/chapters/conventions/
https://maintainablecss.com/chapters/modules/
https://maintainablecss.com/chapters/modules/
https://maintainablecss.com/chapters/state/
https://maintainablecss.com/chapters/state/
https://maintainablecss.com/chapters/modifiers/
https://maintainablecss.com/chapters/modifiers/
https://maintainablecss.com/chapters/versioning/
https://maintainablecss.com/chapters/versioning/
https://maintainablecss.com/chapters/javascript/
https://maintainablecss.com/chapters/javascript/
https://maintainablecss.com/chapters/organisation/
https://maintainablecss.com/chapters/organisation/
https://maintainablecss.com/chapters/faqs/
https://maintainablecss.com/chapters/faqs/
https://adamsilver.io/
https://adamsilver.io/
https://github.com/adamsilver/maintainablecss.com/
https://github.com/adamsilver/maintainablecss.com/

MaintainableCSS

CHAPTER 6

Modules

What's a module?
A module is a distinct, independent unit, that can be combined with

other modules to form a more complex structure.

In a living room, we can consider the TV, the sofa and the wall art

modules. All coming together to create a useable room.

If we take one of the units away, the others still work. We don't need

the TV to be able to sit on the sofa etc.

In a website the header, registration form, shopping basket, article,

product list, navigation and homepage promo can all be considered

to be modules.

What's a component?
A module is made up of components. Without the components, the

module is incomplete or broken.

For example a sofa is made up of the frame, upholstery, legs,

cushions and back pillows, all of which are required components to

allow the sofa to function as designed.

A logo module might consist of copy, an image and a link, each of

https://maintainablecss.com/
https://maintainablecss.com/

which are components. Without the image the logo is broken,

without the link the logo is incomplete.

Modules vs components
Sometimes it's hard to decide whether something should be a

component or a module. For example, we might have a header

containing a logo and a menu. Are these components or modules?

In a recent project it made most sense for the logo to be a

component and the menu to be a module of its own. What's a header

without logo? And the navigation might be moved below the header.

Nobody understands your requirements as well as you do. Through

experience you'll get a feel for it. And if you get it wrong, changing

from a component to a module is easy.

That's enough theory. Let's build three different modules together. In

doing so, the hope is to cover most of the things we think about

when writing CSS.

1. Creating a basket module
We'll simplify this basket for brevity. Each product within the basket

will display the product's title with the ability to remove it from the

basket.

The basket template might be:

<div class="basket">

 <h1 class="basket-title">Your basket</h1>

 <div class="basket-item">

 <h3 class="basket-productTitle">Product title</h3>

 <form>

 <input type="submit" class="basket-removeButton" value="Remov

 </form>

 </div>

</div>

And the CSS would be:

.basket {}

.basket-title {}

.basket-item {}

.basket-productTitle {}

.basket-removeButton {}

2. Creating an order summary module
Next, we will build an order summary module. This module is shown

during checkout and bears some resemblance to the basket. For

example, it has a title and it displays a list of products.

It does, however, have a different aesthetic and the products can no

longer be removed i.e. no form and no remove button.

The first thing to address is the temptation to reuse the basket

template (and CSS). Even though there are similarities, this does not

mean they are the same.

If we try to combine them we'll entangle two modules with display

logic and CSS overrides. This entangling by definition is complex

which in turn is hard to maintain and easily avoidable.

Instead, we should create a new module with the following template:

<div class="orderSummary">

 <h2 class="orderSummary-title">Order summary</h2>

 <div class="orderSummary-item">...</div>

 <div class="orderSummary-item">...</div>

</div>

And the CSS would be:

.orderSummary {}

.orderSummary-title {}

.orderSummary-item {}

As counterintuitive as this may seem, duplication is a better

prospect. And, this is not really duplication. Duplication is copying

the same thing. These two modules might look similar but they are

not the same.

Keeping things separate, keeps things simple. Simple is the most

important aspect of building reliable, scalable and maintainable

software.

3. Creating a button module
As our basket module only appears in the basket page, we didn't

consider being able to reuse it elsewhere. Also, we didn't address the

fact that the remove button is a component of the basket, making it

harder to reuse across modules.

Buttons are an example of something that we want to reuse in lots of

places, and potentially within different modules. (A button is not

particularly useful on its own.)

One option would be to upgrade the button component into a

module as follows:

<input class="button" type="submit" value="{{text}}">

And the CSS would be:

.button {}

The problem is that buttons often have slightly different positioning,

sizing and spacing depending on context. And of course there are

media queries to consider.

For example, within one module a button might be floated to the

right next to some text. In another it might be centered with some

text beneath with some bottom margin.

Ideally, we should iron out these inconsistencies in design, before

they even make their way into code. But as this is not always possible

and for the purposes of example, we'll assume we have to deal with

these issues.

And so, because of these differences, it's tricky to abstract the

common rules because we don't want to end up in override hell. Or

worse that we're afraid to update the abstracted CSS rules.

To avoid these problems, we can use a mixin or comma-delimit the

common rules that aren't affected by their context. For example:

.basket-removeButton,

.another-loginButton,

.another-deleteButton {

 background-color: green;

 padding: 10px;

 color: #fff;

}

Notice that in this example, we don't specify float, margin or width

etc. Those styles are applied to the unique button:

.basket-removeButton {

 float: right;

}

.another-deleteButton {

 margin-bottom: 10px;

}

This seems sensible as it means we can opt in to these common

styles. The opposite, of course being having to override. But there's

another, third option.

Imagine a checkout flow whereby each page has a continue button

and a link to the previous step. We can reuse this by upgrading it into

a module:

<div class="checkoutActions">

 <input class="checkoutActions-continue">

</div>

And the CSS would be:

.checkoutActions-continue { }

.checkoutActions-back { }

In doing this, we abstracted and applied the styles to a well

understood .checkoutActions module. And we've done this

without affecting similar, but not identical buttons.

We haven't discussed having more than one type of button (primary

and secondary etc) yet. To do this we can use modifiers, which is

addressed later.

Final thought
A module, by definition, is a reusable chunk of HTML and CSS. Before

a group of elements can be upgraded into a module, we must first

understand what it is and what its different use cases are.

Only then, can we design the right abstraction. And in doing so, we

avoid complexity at the same time, which is the source of

unmaintainable CSS.

NEXT: STATE

https://maintainablecss.com/chapters/state
https://maintainablecss.com/chapters/state

CHAPTERS

1. Introduction

2. Semantics

3. Reuse

4. IDs

5. Conventions

6. Modules

7. State

8. Modifiers

9. Versioning

10. Javascript

11. Organisation

12. FAQs

Written by Adam Silver, an interaction designer from London, UK. Contribute on GitHub.

https://maintainablecss.com/chapters/introduction/
https://maintainablecss.com/chapters/introduction/
https://maintainablecss.com/chapters/semantics/
https://maintainablecss.com/chapters/semantics/
https://maintainablecss.com/chapters/reuse/
https://maintainablecss.com/chapters/reuse/
https://maintainablecss.com/chapters/ids/
https://maintainablecss.com/chapters/ids/
https://maintainablecss.com/chapters/conventions/
https://maintainablecss.com/chapters/conventions/
https://maintainablecss.com/chapters/modules/
https://maintainablecss.com/chapters/modules/
https://maintainablecss.com/chapters/state/
https://maintainablecss.com/chapters/state/
https://maintainablecss.com/chapters/modifiers/
https://maintainablecss.com/chapters/modifiers/
https://maintainablecss.com/chapters/versioning/
https://maintainablecss.com/chapters/versioning/
https://maintainablecss.com/chapters/javascript/
https://maintainablecss.com/chapters/javascript/
https://maintainablecss.com/chapters/organisation/
https://maintainablecss.com/chapters/organisation/
https://maintainablecss.com/chapters/faqs/
https://maintainablecss.com/chapters/faqs/
https://adamsilver.io/
https://adamsilver.io/
https://github.com/adamsilver/maintainablecss.com/
https://github.com/adamsilver/maintainablecss.com/

MaintainableCSS

CHAPTER 7

State
Quite often, particularly with richer user interfaces, styling needs to

be applied in response to an element's change of state. For example,

we may have different styles when a module (or component) is:

• showing or hiding

• active or inactive

• disabled or enabled

• loading or loaded

• hasProducts or hasNoProducts

• isEmpty or isFull

To represent state we need an additional class which should be

added to the module (or component) element to which it pertains.

For example, if our basket module needs a gray background when

it's empty, the HTML should be:

<div class="basket basket-isEmpty">

And the CSS should be:

.basket-isEmpty {

https://maintainablecss.com/
https://maintainablecss.com/

 background-color: #eee;

}

The class name is prefixed with the module (or component) because

whilst states might be common, associated styles might not. For

example, an empty basket has a gray background, where as an

empty search has an absolutely-positioned image.

What about reusing state?
Sometimes, we may in fact want to reuse state across modules or

components. For example, toggling an element's visibility. This is

discussed in more detail in the chapter entitled Javascript.

What about ARIA attributes?
Not all visual states can be represented by an ARIA attribute. For

example, there's no attribute to represent hasProducts. Therefore,

we should use them only when necessary and in addition to classes.

Also, using an attribute (instead of a class) selector has less support.

Whilst developers may consider these browsers old, insecure or

irrelevant, we should avoid techniques that unnecessarily exclude

users.

What about chaining classes?
We could use a chained selector for state e.g. .module.isDisabled.

The problem is that this approach has less browser support. We

should avoid patterns that unnecessarily exclude users, unless

there's a compelling reason to do so.

This also makes it harder to find out if/where the style is used, which

https://maintainablecss.com/chapters/javascript/
https://maintainablecss.com/chapters/javascript/
https://www.w3.org/WAI/PF/aria-1.1/states_and_properties#attrs_widgets
https://www.w3.org/WAI/PF/aria-1.1/states_and_properties#attrs_widgets
https://www.impressivewebs.com/attribute-selectors/
https://www.impressivewebs.com/attribute-selectors/

makes maintaining harder.

Final thought
If an element's style needs changing based on its state, we should

add an extra class to apply the differences. When necessary, use

ARIA attributes for assistive technology, not for styling. In doing so

we employ a consistent and inclusive approach to styling.

NEXT: MODIFIERS

CHAPTERS

1. Introduction

2. Semantics

3. Reuse

4. IDs

5. Conventions

6. Modules

7. State

8. Modifiers

9. Versioning

10. Javascript

11. Organisation

12. FAQs

Written by Adam Silver, an interaction designer from London, UK. Contribute on GitHub.

https://maintainablecss.com/chapters/modifiers
https://maintainablecss.com/chapters/modifiers
https://maintainablecss.com/chapters/introduction/
https://maintainablecss.com/chapters/introduction/
https://maintainablecss.com/chapters/semantics/
https://maintainablecss.com/chapters/semantics/
https://maintainablecss.com/chapters/reuse/
https://maintainablecss.com/chapters/reuse/
https://maintainablecss.com/chapters/ids/
https://maintainablecss.com/chapters/ids/
https://maintainablecss.com/chapters/conventions/
https://maintainablecss.com/chapters/conventions/
https://maintainablecss.com/chapters/modules/
https://maintainablecss.com/chapters/modules/
https://maintainablecss.com/chapters/state/
https://maintainablecss.com/chapters/state/
https://maintainablecss.com/chapters/modifiers/
https://maintainablecss.com/chapters/modifiers/
https://maintainablecss.com/chapters/versioning/
https://maintainablecss.com/chapters/versioning/
https://maintainablecss.com/chapters/javascript/
https://maintainablecss.com/chapters/javascript/
https://maintainablecss.com/chapters/organisation/
https://maintainablecss.com/chapters/organisation/
https://maintainablecss.com/chapters/faqs/
https://maintainablecss.com/chapters/faqs/
https://adamsilver.io/
https://adamsilver.io/
https://github.com/adamsilver/maintainablecss.com/
https://github.com/adamsilver/maintainablecss.com/

MaintainableCSS

CHAPTER 8

Modifiers
Like state, modifiers also override styles. They are useful when

modules (or components) have small and well understood

differences.

Take an e-commerce site whereby each category has a unique

background image in the header. All headers have the same

padding, and margin etc. The only difference is the background

image.

The boys category would have a modifier as follows:

<div class="categoryHeader categoryHeader--boys">

And similarly, the girls category would have a girls modifier:

<div class="categoryHeader categoryHeader--girls">

The CSS would be:

.categoryHeader {

 padding-top: 50px;

 padding-bottom: 50px;

https://maintainablecss.com/
https://maintainablecss.com/

 /* etc */

}

.categoryHeader--boys {

 background-image: url(/path/to/boys.jpg);

}

.categoryHeader--girls {

 background-image: url(/path/to/girls.jpg);

}

Because the differences are small and well understood, this type of

reuse is more maintainable.

We can use the same approach for buttons. Most sites have a

primary and secondary button style. If all that changes is one or two

styles we can have a modifier for primary and secondary buttons as

follows:

.button {

 padding: 20px;

 border-radius: 3px;

 /* etc */

}

.button--primary {

 background-color: green;

}

.button--secondary {

 background-color: #eee;

}

Again, this only works because the differences are well contained

and well understood.

Final thought
Modifiers are a good way to reuse styles across a well understood

element. But, the modifier itself should be a tweak. If it contains a lot

of overrides, then modifiers are not the way to go. Instead use a

module.

NEXT: VERSIONING

CHAPTERS

1. Introduction

2. Semantics

3. Reuse

4. IDs

5. Conventions

6. Modules

7. State

8. Modifiers

9. Versioning

10. Javascript

11. Organisation

12. FAQs

https://maintainablecss.com/chapters/modules/
https://maintainablecss.com/chapters/modules/
https://maintainablecss.com/chapters/versioning
https://maintainablecss.com/chapters/versioning
https://maintainablecss.com/chapters/introduction/
https://maintainablecss.com/chapters/introduction/
https://maintainablecss.com/chapters/semantics/
https://maintainablecss.com/chapters/semantics/
https://maintainablecss.com/chapters/reuse/
https://maintainablecss.com/chapters/reuse/
https://maintainablecss.com/chapters/ids/
https://maintainablecss.com/chapters/ids/
https://maintainablecss.com/chapters/conventions/
https://maintainablecss.com/chapters/conventions/
https://maintainablecss.com/chapters/modules/
https://maintainablecss.com/chapters/modules/
https://maintainablecss.com/chapters/state/
https://maintainablecss.com/chapters/state/
https://maintainablecss.com/chapters/modifiers/
https://maintainablecss.com/chapters/modifiers/
https://maintainablecss.com/chapters/versioning/
https://maintainablecss.com/chapters/versioning/
https://maintainablecss.com/chapters/javascript/
https://maintainablecss.com/chapters/javascript/
https://maintainablecss.com/chapters/organisation/
https://maintainablecss.com/chapters/organisation/
https://maintainablecss.com/chapters/faqs/
https://maintainablecss.com/chapters/faqs/

Written by Adam Silver, an interaction designer from London, UK. Contribute on GitHub.

https://adamsilver.io/
https://adamsilver.io/
https://github.com/adamsilver/maintainablecss.com/
https://github.com/adamsilver/maintainablecss.com/

MaintainableCSS

CHAPTER 9

Versioning
We may, for example, want to A/B test two different versions of a

module to see which works best. To do this, we need to duplicate the

module and give it a unique name. For example, if we want to test

two different baskets, the CSS might be as follows:

/* existing module (variant A) */

.basket {}

.basket-title {}

/* new version (variant B) */

.basket2 {}

.basket2-title {}

This way we can maintain two versions during testing until we settle

on the best one. And, once we do, it's easy to discard the redundant

module as they are not intertwined. Good code is easy to delete.

NEXT: JAVASCRIPT

https://maintainablecss.com/
https://maintainablecss.com/
https://maintainablecss.com/chapters/javascript
https://maintainablecss.com/chapters/javascript

CHAPTERS

1. Introduction

2. Semantics

3. Reuse

4. IDs

5. Conventions

6. Modules

7. State

8. Modifiers

9. Versioning

10. Javascript

11. Organisation

12. FAQs

Written by Adam Silver, an interaction designer from London, UK. Contribute on GitHub.

https://maintainablecss.com/chapters/introduction/
https://maintainablecss.com/chapters/introduction/
https://maintainablecss.com/chapters/semantics/
https://maintainablecss.com/chapters/semantics/
https://maintainablecss.com/chapters/reuse/
https://maintainablecss.com/chapters/reuse/
https://maintainablecss.com/chapters/ids/
https://maintainablecss.com/chapters/ids/
https://maintainablecss.com/chapters/conventions/
https://maintainablecss.com/chapters/conventions/
https://maintainablecss.com/chapters/modules/
https://maintainablecss.com/chapters/modules/
https://maintainablecss.com/chapters/state/
https://maintainablecss.com/chapters/state/
https://maintainablecss.com/chapters/modifiers/
https://maintainablecss.com/chapters/modifiers/
https://maintainablecss.com/chapters/versioning/
https://maintainablecss.com/chapters/versioning/
https://maintainablecss.com/chapters/javascript/
https://maintainablecss.com/chapters/javascript/
https://maintainablecss.com/chapters/organisation/
https://maintainablecss.com/chapters/organisation/
https://maintainablecss.com/chapters/faqs/
https://maintainablecss.com/chapters/faqs/
https://adamsilver.io/
https://adamsilver.io/
https://github.com/adamsilver/maintainablecss.com/
https://github.com/adamsilver/maintainablecss.com/

MaintainableCSS

CHAPTER 10

Javascript
We may want to use Javascript to apply the same behaviour to

multiple modules or components.

For example, we may use a Collapser constructor that toggles an

element's visibility.

There are two approaches we can take, both of which complement

the CSS approach we've discussed in previous chapters.

1. Encapsulating state to the module
To do this, we would need to specify a module-specific state class to

the constructor as follows:

var module1Collapser = new Collapser(element1, {

 cssHideClass: 'moduleA-isHidden'

});

var module2Collapser = new Collapser(element2, {

 cssHideClass: 'moduleB-isHidden'

});

Then reuse the CSS styles as follows:

https://maintainablecss.com/
https://maintainablecss.com/

.moduleA-isHidden,

.moduleB-isHidden {

 display: none;

}

The trade-off is that this list could grow quickly (or use a mixin). And

every time we add behavior, we need to update the CSS. A small

change, but a change nonetheless. In this case we might consider a

global state class.

2. Creating a global state class
If we find ourselves repeating the exact same set of styles for

multiple modules, it might be better to use a global state class as

follows:

.globalState-isHidden {

 display: none;

}

This approach does away with the long comma-delimited list. And we

no longer need to specify the module class when instantiating. This

is because the global class will be referenced from within.

var module1Collapser = new Collapser(element1);

var module2Collapser = new Collapser(element2);

However, this approach doesn't always make sense. We may have

two different modules that behave the same, but look different, which

is something we've discussed in State.

https://maintainablecss.com/chapters/state/
https://maintainablecss.com/chapters/state/

3. The best of both worlds
We could combine the two approaches by defaulting the class to the

global state class. And then only when needed we can specify a class

during instantiation as shown in the first example above.

Final thought
When we think about state, particularly with our Javascript hat on,

we need to consider how this state affects behaviour as well as style.

Different components may share the same behaviour, but they may

look rather different. After careful consideration, we can choose the

right solution to the problem.

NEXT: ORGANISATION

https://maintainablecss.com/chapters/organisation
https://maintainablecss.com/chapters/organisation

CHAPTERS

1. Introduction

2. Semantics

3. Reuse

4. IDs

5. Conventions

6. Modules

7. State

8. Modifiers

9. Versioning

10. Javascript

11. Organisation

12. FAQs

Written by Adam Silver, an interaction designer from London, UK. Contribute on GitHub.

https://maintainablecss.com/chapters/introduction/
https://maintainablecss.com/chapters/introduction/
https://maintainablecss.com/chapters/semantics/
https://maintainablecss.com/chapters/semantics/
https://maintainablecss.com/chapters/reuse/
https://maintainablecss.com/chapters/reuse/
https://maintainablecss.com/chapters/ids/
https://maintainablecss.com/chapters/ids/
https://maintainablecss.com/chapters/conventions/
https://maintainablecss.com/chapters/conventions/
https://maintainablecss.com/chapters/modules/
https://maintainablecss.com/chapters/modules/
https://maintainablecss.com/chapters/state/
https://maintainablecss.com/chapters/state/
https://maintainablecss.com/chapters/modifiers/
https://maintainablecss.com/chapters/modifiers/
https://maintainablecss.com/chapters/versioning/
https://maintainablecss.com/chapters/versioning/
https://maintainablecss.com/chapters/javascript/
https://maintainablecss.com/chapters/javascript/
https://maintainablecss.com/chapters/organisation/
https://maintainablecss.com/chapters/organisation/
https://maintainablecss.com/chapters/faqs/
https://maintainablecss.com/chapters/faqs/
https://adamsilver.io/
https://adamsilver.io/
https://github.com/adamsilver/maintainablecss.com/
https://github.com/adamsilver/maintainablecss.com/

MaintainableCSS

CHAPTER 11

Organisation
Good code is easy-to-find and easy-to-find code is well-organised.

And so it follows we want our CSS to be well-organised. There are,

generally speaking, two approaches to choose from, both of which

we'll discuss in this chapter.

1. CSS in a single folder
This approach puts all CSS inside a single folder:

path/to/css/

 vendor/

 some3rdParty.css

 someOther3rdParty.css

 yourApp/

 some.css

 global.css

 basket.css

Notes

• Third-party CSS files live under /vendor.

• The application's CSS lives under /yourApp where yourApp is the

name of your project.

• This approach simplifies deployment because a build script can

https://maintainablecss.com/
https://maintainablecss.com/

easily target a single directory in order to bundle and compress

the files.

• This seems to be the most common approach but that doesn't

mean it's the best.

2. CSS in a module folder
This approach puts module-specific CSS within a folder of its own:

global/

 css/

 resetPerhaps.css

 global.css

 etc.css

basket/

 controllers/

 ...

 templates/

 basket.html

 emptyBasket.html

 partials/

 basketHeader.html

 basketSummary.html

 js/

 ...

 css/

 basket.css

header/

 ...

Notes

• We normally orientate ourselves by feature as opposed to

technology, making this approach a compelling one.

• Global CSS needs a folder of its own because global styles by their

very nature don't belong to a module.

• This approach is more likely to suffer from the 31 CSS file limit

problem, which is explained next.

The 31 CSS file limit problem
Whichever approach you take, be aware of the 31 CSS file limit found

in versions of Internet Explorer. Internet Explorer 9, for example,

ignores styles stored in the 32nd (or 33rd etc) file.

For production this is fine, because we should bundle our CSS to

reduce HTTP requests. But for local development it's better to work

with source files to make debugging easier. And it's in legacy

browsers where bugs normally arise.

If you have a compilation step for local development—as would be

the case when using a CSS preprocessor—you don't need to worry.

The preprocessor will bundle the files.

If you don't have a compilation step for local development

—because debugging source files is easier this way—then you may

want to remedy this with one of two approaches:

1. Add an option to concatenate CSS locally

By doing this you'll be able to mimick production and debug CSS in

offending legacy browsers.

2. Use less than 32 CSS files

As you'll probably have more than 31 modules, you can't organise

your CSS by module. Instead you'll have to put several modules

within the same CSS file.

Final thought
In this chapter we've discussed two ways in which to organise CSS.

Whichever approach we take, we should be aware of the 31 CSS file

limit problem because it makes debugging CSS much harder in the

very browsers that cause most trouble.

NEXT: FAQS

CHAPTERS

1. Introduction

2. Semantics

3. Reuse

4. IDs

5. Conventions

6. Modules

7. State

8. Modifiers

9. Versioning

10. Javascript

11. Organisation

12. FAQs

Written by Adam Silver, an interaction designer from London, UK. Contribute on GitHub.

https://maintainablecss.com/chapters/faqs
https://maintainablecss.com/chapters/faqs
https://maintainablecss.com/chapters/introduction/
https://maintainablecss.com/chapters/introduction/
https://maintainablecss.com/chapters/semantics/
https://maintainablecss.com/chapters/semantics/
https://maintainablecss.com/chapters/reuse/
https://maintainablecss.com/chapters/reuse/
https://maintainablecss.com/chapters/ids/
https://maintainablecss.com/chapters/ids/
https://maintainablecss.com/chapters/conventions/
https://maintainablecss.com/chapters/conventions/
https://maintainablecss.com/chapters/modules/
https://maintainablecss.com/chapters/modules/
https://maintainablecss.com/chapters/state/
https://maintainablecss.com/chapters/state/
https://maintainablecss.com/chapters/modifiers/
https://maintainablecss.com/chapters/modifiers/
https://maintainablecss.com/chapters/versioning/
https://maintainablecss.com/chapters/versioning/
https://maintainablecss.com/chapters/javascript/
https://maintainablecss.com/chapters/javascript/
https://maintainablecss.com/chapters/organisation/
https://maintainablecss.com/chapters/organisation/
https://maintainablecss.com/chapters/faqs/
https://maintainablecss.com/chapters/faqs/
https://adamsilver.io/
https://adamsilver.io/
https://github.com/adamsilver/maintainablecss.com/
https://github.com/adamsilver/maintainablecss.com/

MaintainableCSS

CHAPTER 12

FAQs
If you can't find an answer here, raise an issue on Github.

Can I translate this?
Yes but please cite the original (that's this site) and let me know.

What about inheritance for headings
etc?
Ideally our semantic HTML matches the integrity of the visual design.

Meaning that we would hope that all h1s are identical. In this case

we can declare the following CSS:

h1 {

 /* etc */

}

However, this is rarely the case, in commercial, large-scale websites.

In this case we should encapsulate styles to the module in question:

https://maintainablecss.com/
https://maintainablecss.com/
https://github.com/adamsilver/maintainablecss.com/issues/new
https://github.com/adamsilver/maintainablecss.com/issues/new

.module-heading {

 font-size: ...;

 color: ...;

}

CHAPTERS

1. Introduction

2. Semantics

3. Reuse

4. IDs

5. Conventions

6. Modules

7. State

8. Modifiers

9. Versioning

10. Javascript

11. Organisation

12. FAQs

Written by Adam Silver, an interaction designer from London, UK. Contribute on GitHub.

https://maintainablecss.com/chapters/introduction/
https://maintainablecss.com/chapters/introduction/
https://maintainablecss.com/chapters/semantics/
https://maintainablecss.com/chapters/semantics/
https://maintainablecss.com/chapters/reuse/
https://maintainablecss.com/chapters/reuse/
https://maintainablecss.com/chapters/ids/
https://maintainablecss.com/chapters/ids/
https://maintainablecss.com/chapters/conventions/
https://maintainablecss.com/chapters/conventions/
https://maintainablecss.com/chapters/modules/
https://maintainablecss.com/chapters/modules/
https://maintainablecss.com/chapters/state/
https://maintainablecss.com/chapters/state/
https://maintainablecss.com/chapters/modifiers/
https://maintainablecss.com/chapters/modifiers/
https://maintainablecss.com/chapters/versioning/
https://maintainablecss.com/chapters/versioning/
https://maintainablecss.com/chapters/javascript/
https://maintainablecss.com/chapters/javascript/
https://maintainablecss.com/chapters/organisation/
https://maintainablecss.com/chapters/organisation/
https://maintainablecss.com/chapters/faqs/
https://maintainablecss.com/chapters/faqs/
https://adamsilver.io/
https://adamsilver.io/
https://github.com/adamsilver/maintainablecss.com/
https://github.com/adamsilver/maintainablecss.com/

