
Model: "functional_1"

Layer (type) Output Shape Param #
===
======
input_3 (InputLayer) [(None, 10, 300, 64)] 0

conv2d (Conv2D) (None, 10, 300, 16) 9232

batch_normalization (BatchNo (None, 10, 300, 16) 64

activation (Activation) (None, 10, 300, 16) 0

max_pooling2d (MaxPooling2D) (None, 2, 75, 16) 0

dropout (Dropout) (None, 2, 75, 16) 0

permute (Permute) (None, 75, 2, 16) 0

reshape_1 (Reshape) (None, 60, 40) 0

time_distributed (TimeDistri (None, 60, 128) 5248

time_distributed_1 (TimeDist (None, 60, 7) 903
===
======
Total params: 15,447
Trainable params: 15,415
Non-trainable params: 32

WARNING:tensorflow:Layer regular_transfer_nn is casting an input tensor from
dtype float64 to the layer's dtype of float32, which is new behavior in
TensorFlow 2. The layer has dtype float32 because its dtype defaults to floatx.

If you intended to run this layer in float32, you can safely ignore this warning. If
in doubt, this warning is likely only an issue if you are porting a TensorFlow 1.X
model to TensorFlow 2.

To change all layers to have dtype float64 by default, call
`tf.keras.backend.set_floatx('float64')`. To change just this layer, pass
dtype='float64' to the layer constructor. If you are the author of this layer, you
can disable autocasting by passing autocast=False to the base Layer
constructor.

Computing src dataset size...
Done!
Computing tgt dataset size...

Done!
Epoch 1/3

TypeError Traceback (most recent call last)
<ipython-input-3-be1b144e3a4e> in <module>
 33 lambdas=0.,
 34 random_state=19)
---> 35 reg.fit(source_data, batch_size=10, epochs=3)

/usr/local/lib/python3.6/dist-packages/adapt/parameter_based/_regular.py in
fit(self, Xt, yt, **fit_params)
 397 Xs = Xt
 398 ys = yt
--> 399 return super().fit(Xs, ys, Xt=Xt, yt=yt, **fit_params)
 400
 401

/usr/local/lib/python3.6/dist-packages/adapt/base.py in fit(self, X, y, Xt, yt,
domains, **fit_params)
 1144 self.pretrain_ = False
 1145
-> 1146 hist = super().fit(dataset, validation_data=validation_data,
**fit_params)
 1147
 1148 for k, v in hist.history.items():

/usr/local/lib/python3.6/dist-packages/tensorflow/python/keras/engine/
training.py in _method_wrapper(self, *args, **kwargs)
 106 def _method_wrapper(self, *args, **kwargs):
 107 if not self._in_multi_worker_mode(): # pylint: disable=protected-
access
--> 108 return method(self, *args, **kwargs)
 109
 110 # Running inside `run_distribute_coordinator` already.

/usr/local/lib/python3.6/dist-packages/tensorflow/python/keras/engine/
training.py in fit(self, x, y, batch_size, epochs, verbose, callbacks,
validation_split, validation_data, shuffle, class_weight, sample_weight,
initial_epoch, steps_per_epoch, validation_steps, validation_batch_size,
validation_freq, max_queue_size, workers, use_multiprocessing)
 1096 batch_size=batch_size):
 1097 callbacks.on_train_batch_begin(step)
-> 1098 tmp_logs = train_function(iterator)
 1099 if data_handler.should_sync:
 1100 context.async_wait()

/usr/local/lib/python3.6/dist-packages/tensorflow/python/eager/def_function.py
in __call__(self, *args, **kwds)
 778 else:
 779 compiler = "nonXla"
--> 780 result = self._call(*args, **kwds)
 781
 782 new_tracing_count = self._get_tracing_count()

/usr/local/lib/python3.6/dist-packages/tensorflow/python/eager/def_function.py
in _call(self, *args, **kwds)
 821 # This is the first call of __call__, so we have to initialize.
 822 initializers = []
--> 823 self._initialize(args, kwds, add_initializers_to=initializers)
 824 finally:
 825 # At this point we know that the initialization is complete (or less

/usr/local/lib/python3.6/dist-packages/tensorflow/python/eager/def_function.py
in _initialize(self, args, kwds, add_initializers_to)
 695 self._concrete_stateful_fn = (
 696
self._stateful_fn._get_concrete_function_internal_garbage_collected(# pylint:
disable=protected-access
--> 697 *args, **kwds))
 698
 699 def invalid_creator_scope(*unused_args, **unused_kwds):

/usr/local/lib/python3.6/dist-packages/tensorflow/python/eager/function.py in
_get_concrete_function_internal_garbage_collected(self, *args, **kwargs)
 2853 args, kwargs = None, None
 2854 with self._lock:
-> 2855 graph_function, _, _ = self._maybe_define_function(args, kwargs)
 2856 return graph_function
 2857

/usr/local/lib/python3.6/dist-packages/tensorflow/python/eager/function.py in
_maybe_define_function(self, args, kwargs)
 3211
 3212 self._function_cache.missed.add(call_context_key)
-> 3213 graph_function = self._create_graph_function(args, kwargs)
 3214 self._function_cache.primary[cache_key] = graph_function
 3215 return graph_function, args, kwargs

/usr/local/lib/python3.6/dist-packages/tensorflow/python/eager/function.py in
_create_graph_function(self, args, kwargs, override_flat_arg_shapes)
 3073 arg_names=arg_names,
 3074 override_flat_arg_shapes=override_flat_arg_shapes,

-> 3075 capture_by_value=self._capture_by_value),
 3076 self._function_attributes,
 3077 function_spec=self.function_spec,

/usr/local/lib/python3.6/dist-packages/tensorflow/python/framework/
func_graph.py in func_graph_from_py_func(name, python_func, args, kwargs,
signature, func_graph, autograph, autograph_options,
add_control_dependencies, arg_names, op_return_value, collections,
capture_by_value, override_flat_arg_shapes)
 984 _, original_func = tf_decorator.unwrap(python_func)
 985
--> 986 func_outputs = python_func(*func_args, **func_kwargs)
 987
 988 # invariant: `func_outputs` contains only Tensors,
CompositeTensors,

/usr/local/lib/python3.6/dist-packages/tensorflow/python/eager/def_function.py
in wrapped_fn(*args, **kwds)
 598 # __wrapped__ allows AutoGraph to swap in a converted function.
We give
 599 # the function a weak reference to itself to avoid a reference cycle.
--> 600 return weak_wrapped_fn().__wrapped__(*args, **kwds)
 601 weak_wrapped_fn = weakref.ref(wrapped_fn)
 602

/usr/local/lib/python3.6/dist-packages/tensorflow/python/framework/
func_graph.py in wrapper(*args, **kwargs)
 971 except Exception as e: # pylint:disable=broad-except
 972 if hasattr(e, "ag_error_metadata"):
--> 973 raise e.ag_error_metadata.to_exception(e)
 974 else:
 975 raise

TypeError: in user code:

 /usr/local/lib/python3.6/dist-packages/tensorflow/python/keras/engine/
training.py:806 train_function *
 return step_function(self, iterator)
 /usr/local/lib/python3.6/dist-packages/tensorflow/python/keras/engine/
training.py:796 step_function **
 outputs = model.distribute_strategy.run(run_step, args=(data,))
 /usr/local/lib/python3.6/dist-packages/tensorflow/python/distribute/
distribute_lib.py:1211 run
 return self._extended.call_for_each_replica(fn, args=args, kwargs=kwargs)
 /usr/local/lib/python3.6/dist-packages/tensorflow/python/distribute/
distribute_lib.py:2585 call_for_each_replica
 return self._call_for_each_replica(fn, args, kwargs)

 /usr/local/lib/python3.6/dist-packages/tensorflow/python/distribute/
distribute_lib.py:2945 _call_for_each_replica
 return fn(*args, **kwargs)
 /usr/local/lib/python3.6/dist-packages/tensorflow/python/keras/engine/
training.py:789 run_step **
 outputs = model.train_step(data)
 /usr/local/lib/python3.6/dist-packages/adapt/base.py:1351 train_step
 self.optimizer.minimize(loss, self.trainable_variables, tape=tape)

 TypeError: minimize() got an unexpected keyword argument 'tape'

