
Application of the discrete dipole approximation to

radiation pressure calculations on dust-aggregates:

An exploration

Martijn Frijlink

December 9, 2010



Contents

1 Introduction 2
1.1 Radiation pressure

on Interstellar and Circumstellar Matter . . . . . . . . . . . . 2
1.2 Elastic Light Scattering . . . . . . . . . . . . . . . . . . . . . 3
1.3 Discrete Dipole Approximation . . . . . . . . . . . . . . . . . 7
1.4 Description of research . . . . . . . . . . . . . . . . . . . . . . 9

2 Adapting existing DDA-code to absorbing, inhomogeneous
particles 11
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2 Porting PVM-based communication to MPI-based . . . . . . 12
2.3 (Re-)enabling DDA to heterogeneous,

absorbing particles . . . . . . . . . . . . . . . . . . . . . . . . 13

3 Extracting radiation pressure from DDA:
Theory 16
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.2 Starting point and previous work . . . . . . . . . . . . . . . . 17
3.3 Evaluation of the scattering force I:

Integrating the Poynting vector of the scattered field . . . . . 19
3.4 Evaluation of the scattering force II:

a direct method . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.5 Calculating the force per dipole using Fast Fourier Transfor-

mations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.6 Connecting the integration and direct method . . . . . . . . . 23

4 Extracting radiation pressure from DDA:
simulating spherical particles 27
4.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . 27
4.2 The integration method . . . . . . . . . . . . . . . . . . . . . 28
4.3 The direct method . . . . . . . . . . . . . . . . . . . . . . . . 31

1



5 Radiation pressure calculations on aggregate particles:
preliminary results 35
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
5.2 Applying the DDA to light scattering by aggregate particles . 35

5.2.1 Experimental setup . . . . . . . . . . . . . . . . . . . . 35
5.2.2 Objections . . . . . . . . . . . . . . . . . . . . . . . . 38
5.2.3 Simulation results . . . . . . . . . . . . . . . . . . . . 41

5.3 The difference Csca,i − Csca,d . . . . . . . . . . . . . . . . . . 43
5.4 Literature survey . . . . . . . . . . . . . . . . . . . . . . . . . 46

6 Current state of affairs and future-work 48
6.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
6.2 Future-work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

6.2.1 DDA . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
6.2.2 Light scattering by and radiation pressure on aggre-

gate particles . . . . . . . . . . . . . . . . . . . . . . . 50
6.3 Final conclusions . . . . . . . . . . . . . . . . . . . . . . . . . 51

A Detailed calculations 56
A.1 Direct Radiation Pressure . . . . . . . . . . . . . . . . . . . . 56

A.1.1 Time-averaging the force per dipole . . . . . . . . . . 56
A.1.2 Differentiations . . . . . . . . . . . . . . . . . . . . . . 57

A.2 Relating the integrated and direct methods . . . . . . . . . . 59
A.2.1 Evaluating Iu(α) . . . . . . . . . . . . . . . . . . . . . 59
A.2.2 Reduction of integral expressions for Csca and ~Fsca . . 60

B Graphs :
Spherical particles 62
B.1 Errors vs. resolution . . . . . . . . . . . . . . . . . . . . . . . 63

B.1.1 m = 1.05 . . . . . . . . . . . . . . . . . . . . . . . . . 63
B.1.2 m = 1.14+0.38i . . . . . . . . . . . . . . . . . . . . . . 64
B.1.3 m = 1.33+0.01i . . . . . . . . . . . . . . . . . . . . . . 65
B.1.4 m = 1.68+0.03i . . . . . . . . . . . . . . . . . . . . . . 66
B.1.5 m = 1.7+0.156i . . . . . . . . . . . . . . . . . . . . . . 67
B.1.6 m = 1.81+0.48i . . . . . . . . . . . . . . . . . . . . . . 68
B.1.7 m = 2.5+1.4i . . . . . . . . . . . . . . . . . . . . . . . 69
B.1.8 m = 3.05+0.33i . . . . . . . . . . . . . . . . . . . . . . 70

B.2 Errors vs. Real part of the refractive index :
Spherical particles . . . . . . . . . . . . . . . . . . . . . . . . 71
B.2.1 Mie-error in Direct Extinction, Absorption

and Scattering Coefficient . . . . . . . . . . . . . . . . 72
B.2.2 Mie-error in Integrated Scattering Coefficient . . . . . 73
B.2.3 Modelling error in Scattering Coefficient . . . . . . . . 74
B.2.4 Mie-error in the Integrated Scattering force . . . . . . 75

2



B.2.5 Mie-error in Integrated
Radiation Pressure cross-section . . . . . . . . . . . . 76

B.2.6 Modelling error in Radiation Pressure cross-section . . 77
B.3 Errors vs. Imaginary part of the refractive index :

Spherical particles . . . . . . . . . . . . . . . . . . . . . . . . 78
B.3.1 Mie-error in Direct Extinction, Absorption

and Scattering Coefficient . . . . . . . . . . . . . . . . 79
B.3.2 Mie-error in Scattering Coefficient . . . . . . . . . . . 80
B.3.3 Modelling error in Scattering Coefficient . . . . . . . . 81
B.3.4 Mie-error in the Scattering force . . . . . . . . . . . . 82
B.3.5 Mie-error in Radiation Pressure cross-section . . . . . 83
B.3.6 Modelling error in Radiation Pressure cross-section . . 84

C Raw Numbers :
Spherical particles 85
C.1 DDA input-parameters . . . . . . . . . . . . . . . . . . . . . . 85
C.2 Raw data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

C.2.1 m = 1.05
x = 2.51994 . . . . . . . . . . . . . . . . . . . . . . . . 87

C.2.2 m = 1.05
x = 5.01954 . . . . . . . . . . . . . . . . . . . . . . . . 88

C.2.3 m = 1.05
x = 10.0502 . . . . . . . . . . . . . . . . . . . . . . . . 89

C.2.4 m = 1.14 + 0.38i
x = 2.51994 . . . . . . . . . . . . . . . . . . . . . . . . 90

C.2.5 m = 1.14 + 0.38i
x = 5.01954 . . . . . . . . . . . . . . . . . . . . . . . . 91

C.2.6 m = 1.14 + 0.38i
x = 10.0502 . . . . . . . . . . . . . . . . . . . . . . . . 92

C.2.7 m = 1.33 + 0.01i
x = 2.51994 . . . . . . . . . . . . . . . . . . . . . . . . 93

C.2.8 m = 1.33 + 0.01i
x = 5.01954 . . . . . . . . . . . . . . . . . . . . . . . . 94

C.2.9 m = 1.33 + 0.01i
x = 10.0502 . . . . . . . . . . . . . . . . . . . . . . . . 95

C.2.10 m = 1.68 + 0.03i
x = 2.52546 . . . . . . . . . . . . . . . . . . . . . . . . 96

C.2.11 m = 1.68 + 0.03i
x = 5.03617 . . . . . . . . . . . . . . . . . . . . . . . . 97

C.2.12 m = 1.68 + 0.03i
x = 10.056 . . . . . . . . . . . . . . . . . . . . . . . . 98

C.2.13 m = 1.7 + 0.156i
x = 2.52546 . . . . . . . . . . . . . . . . . . . . . . . . 99

3



C.2.14 m = 1.7 + 0.156i
x = 5.03617 . . . . . . . . . . . . . . . . . . . . . . . . 100

C.2.15 m = 1.7 + 0.156i
x = 10.056 . . . . . . . . . . . . . . . . . . . . . . . . 101

C.2.16 m = 1.81 + 0.48i
x = 2.52546 . . . . . . . . . . . . . . . . . . . . . . . . 102

C.2.17 m = 1.81 + 0.48i
x = 5.03617 . . . . . . . . . . . . . . . . . . . . . . . . 103

C.2.18 m = 1.81 + 0.48i
x = 10.056 . . . . . . . . . . . . . . . . . . . . . . . . 104

C.2.19 m = 2.5 + 1.4i
x = 2.50977 . . . . . . . . . . . . . . . . . . . . . . . . 105

C.2.20 m = 2.5 + 1.4i
x = 5.02511 . . . . . . . . . . . . . . . . . . . . . . . . 106

C.2.21 m = 2.5 + 1.4i
x = 10.0542 . . . . . . . . . . . . . . . . . . . . . . . . 107

C.2.22 m = 3.05 + 0.33i
x = 2.51808 . . . . . . . . . . . . . . . . . . . . . . . . 108

C.2.23 m = 3.05 + 0.33i
x = 5.02798 . . . . . . . . . . . . . . . . . . . . . . . . 109

D Graphs :
aggregate particles 110
D.1 Scale-factor=1 . . . . . . . . . . . . . . . . . . . . . . . . . . 110
D.2 Scale-factor=0.5 . . . . . . . . . . . . . . . . . . . . . . . . . 111
D.3 Scale-factor=0.25 . . . . . . . . . . . . . . . . . . . . . . . . . 112

E Tables :
aggregate particles 113
E.1 Scale-factor=1 . . . . . . . . . . . . . . . . . . . . . . . . . . 114

E.1.1 m=1.14+0.38i
aggregate 1 . . . . . . . . . . . . . . . . . . . . . . . . 114

E.1.2 m=1.7+0.03i
aggregate 1 . . . . . . . . . . . . . . . . . . . . . . . . 114

E.1.3 m=1.14+0.38i
aggregate 2 . . . . . . . . . . . . . . . . . . . . . . . . 115

E.1.4 m=1.7+0.03i
aggregate 2 . . . . . . . . . . . . . . . . . . . . . . . . 115

E.2 Scale-factor=0.5 . . . . . . . . . . . . . . . . . . . . . . . . . 117
E.2.1 m=1.14+0.38i

aggregate 1 . . . . . . . . . . . . . . . . . . . . . . . . 117
E.2.2 m=1.7+0.03i

aggregate 1 . . . . . . . . . . . . . . . . . . . . . . . . 117

4



E.2.3 m=1.14+0.38i
aggregate 2 . . . . . . . . . . . . . . . . . . . . . . . . 118

E.2.4 m=1.7+0.03i
aggregate 2 . . . . . . . . . . . . . . . . . . . . . . . . 119

E.3 Scale-factor=0.25 . . . . . . . . . . . . . . . . . . . . . . . . . 120
E.3.1 m=1.14+0.38i

aggregate 1 . . . . . . . . . . . . . . . . . . . . . . . . 120
E.3.2 m=1.7+0.03i

aggregate 1 . . . . . . . . . . . . . . . . . . . . . . . . 120
E.3.3 m=1.14+0.38i

aggregate 2 . . . . . . . . . . . . . . . . . . . . . . . . 121
E.3.4 m=1.7+0.03i

aggregate 2 . . . . . . . . . . . . . . . . . . . . . . . . 122

5



Chapter 1

Introduction

1.1 Radiation pressure
on Interstellar and Circumstellar Matter

An important branch in astrophysics is the study of interstellar and cir-
cumstellar matter. The main topics are the study of interstellar and circum-
stellar nebulae and the formation of planetary bodies from the circumstellar
nebulae. Important sources of observational data are the Infrared Space Ob-
servatory and the Very Large Telescope. This data is usually analyzed with
radiative transfer theory, which assumes the matter making up the nebulae
to have certain scattering-properties. These scattering properties depend on
the chemistry and the shape of the scattering particles. The properties and
dependencies of light scattering particles in general have been and still are
subject of investigation, see e.g. [1, 2, 3].

The matter in the nebulae exists of fluffy and porous particles, [4]. These
are thought to be aggregates of dust-grains. The formation of these aggre-
gates has until now been studied taking into account merely coagulation, see
e.g. [6, 7, 8]. Gravity becomes only important for kilometer-sized objects
and is therefore neglected. Radiation pressure calculations on fluffy/porous
particles and dust-aggregates have been done, [9, 10, 11, 12]. It is the goal
of this research to address the influence of radiation pressure on dust coag-
ulation.

Exact solutions to the problem of light scattering by a particular parti-
cle do exist for some mathematically convenient geometries, such as spheres
(MIE-theory) and infinitely long cylinders. In 1909 Debye used MIE-theory
to calculate radiation pressure on a sphere, [13]. For solving the Maxwell
equations for arbitrary geometries, one has to rely on approximative or nu-
merical techniques, see [3] for an extended overview. One such numeri-
cal technique for obtaining a solution in the frequency-domain, is the Dis-
crete Dipole Approximation (DDA) [3, 14]; others are the Digitized Green’s
Function method (DGF), [3, 15], the Volume-Integral Equation Formulation
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(VIEF), [3, 16] and the T-matrix method, [3, 17]. The DDA, DGF and VIEF
are all discretizations of the integral form of the Maxwell equations, which
makes them all examples of the general Method of Moments, [16]. These
numerical methods do not require the scattering particle to have any special
shape and are therefore well suited for treating dust-aggregates, which in
general have a fractal-structure. Here the DDA will be used.

For solutions in the time-domain there is the Finite-Difference Time-
Domain method, frequently used in engineering, [18].

1.2 Elastic Light Scattering

Studying elastic light scattering from a particle is done by considering a
plane harmonic wave incident on the particle. The behavior of the scattered
fields produced by other time-dependent incident radiation, can then after-
wards be constructed by Fourier transformation, see Bohren and Huffmann
[2]. This book offers a thorough and transparent description of scattering
theory and its applications. This paragraph merely resumes chapter 3 of the
book.

The grain-diameter dgrain for particles of interest is 0.01 µm < dgrain <
0.2 µm, see [5, 19] for grains in the interstellar medium and [20] for grains
in the solar system. The wave-length λ of the illuminating stellar light in
the interval 0.2 µm < λ < 0.8 µm. These ranges exclude the use of ap-
proximate theories like Rayleigh scattering (λ � d) or geometrical optics
(λ � d). They even so prohibit Rayleigh-Gans theory, which requires the
refractive index m to obey |m − 1| � 1 and kd|m − 1| ≈ 1 with k = 2π

λ
the wave-number. Read chapter 5,6 and 7 from [2] for a description of these
approximations.

Before any calculations, exact or approximate, can be done, a suitable
coordinate system has to be chosen. It is custom to choose the z-direction
parallel to the direction of propagation of the incoming wave, see fig 1.1.
In this diagram êx, êy and êz are the standard Cartesian unit vectors. The
angles θ, φ together with the unit vectors êr, êφ and êθ define the standard
spherical coordinate-system. For any scattering direction êr the scattering
plane is defined by êr and êz.

The EM-fields, inside the particle, denoted by subscript 1, as well
as outside the particle, subscript 2, must be solutions of the macroscopic
Maxwell equations

∇ · ~E = 0, (1.1)
∇ · ~H = 0, (1.2)
∇× ~E = iωµ ~H, (1.3)
∇× ~H = −iωε ~E. (1.4)
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Figure 1.1: scattering geometry; for an explanation of the symbols, see the
text

The boundary-conditions imposed on the particle boundary (with n̂ the
unit-vector directed outward and normal to the particle surface), are

( ~E1 − ~E2)× n̂ = 0,

( ~H1 − ~H2)× n̂ = 0.

The outside field is the sum of the incident and scattered field;

~E2 = ~Esca + ~Einc (1.5)
~H2 = ~Hsca + ~Hinc (1.6)

with
~Einc(~r) = ~E0.e

i(~k·~r−ωt)

~Hinc = k̂ × ~Einc (k̂ = ~k/k)

The components parallel and perpendicular to the scattering plane of
the incoming field, Einc,‖ and Einc,⊥ respectively and the scattered field,
Esca,‖ and Esca,⊥ respectively, are related through the amplitude scattering
matrix (

Esca,‖
Esca,⊥

)
=

eik(r−z)

−ikr

(
S2 S3

S4 S1

) (
Einc,‖
Einc,⊥

)
. (1.7)

Experiments measuring these matrix elements are rather difficult. Exper-
iments measuring the elements of the related Mueller-matrix pose slightly
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less problems, [3]. The Mueller-matrix connects the four Stokes-parameters
I, Q, U and V of the incoming and the scattered radiation. I is the power
of the radiation measured directly by a detector. The other three parame-
ters are constructed by taking the power of the radiation after it has passed
through a particular polarizer. Each parameter is the difference in power
transmitted by one pair of orthogonal polarizers. The Stokes-parameters of
the incoming and scattered wave, collected in so called Stokes-vectors, sinc

and ssca respectively, are connected through Mueller-matrix M

ssca = Msinc,

sinc =


Iinc

Qinc

Uinc

Vinc

 , ssca =


Isca

Qsca

Usca

Vsca

 , M =


S11 S12 S13 S14

S21 S22 S23 S24

S31 S32 S33 S34

S41 S42 S43 S44

 .

With ~Esca available, the second step is calculating

• the extinction cross-section Cext,

• the absorption cross-section Cabs,

• the scattering cross-section Csca

• and the asymmetry-parameter g.

The starting point for deriving these quantities is considering the flow of EM-
energy across a spherical surface enclosing the particle. The (time-averaged)
Poynting-vector on this surface A is

~S =
1
2
<e( ~E2 × ~H∗

2 ) = ~Sinc + ~Sext + ~Ssca (1.8)

~Sinc =
1
2
<e( ~Einc × ~H∗

inc)

~Sext =
1
2
<e( ~Einc × ~H∗

s + ~Es × ~H∗
inc)

~Ssca =
1
2
<e( ~Esca × ~H∗

sca)

• ~Sinc : power inserted by the incoming wave

• ~Sext : interaction between scattered and incoming field

• ~Ssca : power carried out by the scattered field.

Integrating over A one can write

Wabs = −
∫

A

~S · êrdA (1.9)

= Winc + Wext −Wsca,
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Winc = −
∫

A

~Sinc · êrdA, (1.10)

Wext = −
∫

A

~Sext · êrdA, (1.11)

Wsca =
∫

A

~Ssca · êrdA. (1.12)

If one assumes the medium surrounding the particle to be non-absorbing,
Winc vanishes. The absorption cross section is Cabs ≡ Wabs/I0, with I0 the
magnitude of ~Sinc. The expressions for the scattering and extinction cross
sections are similar and related through

Cext = Cabs + Csca. (1.13)

For obtaining explicit expressions for the cross sections we assume the
incident wave to propagate along the z-axis and to be x-polarized 1. Further-
more we choose A large enough to be able to use the far field approximations
in which the EM-waves are transverse,

~Esca = E0
eikr−z

−ikr
~X, (1.14)

~Hsca =
k

µω
êr × ~Esca,

with

~X =
(
S2 cos φ + S3 sinφ

)
êθ −

(
S4 cos φ + S1 sinφ

)
êφ, ~X⊥êr

Evaluation of (1.11) yields

Cext =
4π

k2
<e( ~X · êx)θ=0. (1.15)

Using (1.14) one can rewrite (1.12)

Csca =
∫

4π

| ~X|2

k2
dΩ (1.16)

=
∫

4π

dCsca

dΩ
dΩ

with dCsca/dΩ the differential scattering cross section. Derived quantities
are the phase function or scattering diagram

p ≡ 1
Csca

dCsca

dΩ
1the derivations and resulting expressions for y-polarized light are similar; expressions

for unpolarized light are obtained by taking the mean
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(
∫
4π pdΩ = 1) and the asymmetry parameter

~g ≡
∫

4π
dΩpn̂. (1.17)

(with n̂ = (sin θ cos φ, sin θ sinφ, cos θ)) This definition of the asymmetry
parameter is taken from Kimura [9] and can be interpreted as the mean
direction of the scattered light; the definition given by Bohren and Huffman
is just the component along the z-axis. The latter only tells how much light
is scattered in the z-direction.

The radiation pressure cross section Cpr is composed from three of the
above quantities

Cpr = Cext− < cos θ > Csca. (1.18)

This is a measure for the radiation pressure in the direction parallel to ~k.
This expression was rigorously derived by Debye, [13], for spherical particles
by integrating the Maxwell stress-tensor. For an interpretation of (1.18)
consider the waves to be streams of photons. The incoming photons transfer
an amount of momentum to the particle, proportional to Cext. Part of this
momentum leaves the particle, carried away by the scattering photons. The
momentum of the photons scattered in the forward direction is proportional
to < cos θ > Csca. For spherical particles the amount of momentum lost in
directions perpendicular to this forward direction is cylindrical symmetrical
and therefore amounts to zero; for particles whose scattered field does not
exhibit cylindrical symmetry, this cancellation does not occur.

1.3 Discrete Dipole Approximation

This description of the DDA is based on an overview by Draine and
Flatau, [14], and a publication by Draine [21]; for more details on DDA I
refer to these articles and [3].

In DDA the shape of the scattering particle is approximated by a set of
N polarizable volume-elements, with corresponding polarizabilities αj and
electric dipole moments ~Pj . The electric and magnetic fields at ~rj , radiated
by a dipole at ~rl, when excited by a plane harmonic wave are (omitting
e−iωt)

~Ejl = k2(n̂jl × ~Pl)× n̂jl
eikrjl

rjl
+

(3n̂jl(n̂jl · ~Pl)− ~Pl)
(

1
r3
jl

− ik

r2
jl

)
eikrjl

= Ajl · ~Pl, (1.19)

~Bjl = k2(n̂jl × ~Pl)
(

1− 1
ikrjl

)
eikrjl

rjl
, (1.20)
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with

~rjl = ~rj − ~rl

n̂jl = ~rjl/rjl

(see Jackson chapter 9, [22] and Lakhtakia [23]). The complex 3× 3 matrix
Ajl is commonly refered to as the geometrical factor and has properties
Ajl = Alj = AT

jl. This matrix is not Hermitian.
The dipole at ~rj , in volume-element j, is excited by the accumulated

fields of the scattered radiation due to other dipoles and the incident wave,
inducing a dipole moment ~Pj . The constant EM-fields in volume j are
related to ~Pl by

~Ej = α−1
j

~Pj

= ~E0e
i~k·~rj +

N∑
j 6=l

~Ejl, (1.21)

~Bj = ~B0e
i~k·~rj +

N∑
j 6=l

~Bjl. (1.22)

Hence finding the N dipole moments ~Pl means solving a system of 3N lin-
ear, complex equations of 3N complex variables. In principle any method
for solving a lineair system Ax = b will do. But the mere size of the (dense)
matrix involved in this problem, makes direct methods computationally pro-
hibitive. Therefore iterative methods are much more suitable for doing the
job; here a Conjugate Gradient method is used (see [24] for details on the
particular CG). First used by DeVoe in 1964 [25], DDA’s use was extended
by Purcell and Pennypacker by including retardation effects in 1973 [26].
The latter was used here with two computational enhancements :

1. If the polarizable elements are located on a rectangular grid, the
matrix-vector product (1.21) is actually a discrete convolution, [27].
Exploiting this feature the O(N2) complexity for regular matrix-vector
products can be reduced to O(NlogN) with Fast Fourier Transforma-
tion (FFT).

2. Parallelization of the above FFT-enhanced matrix-vector product, [28].

Also see chapter 2 for a more detailed discussion of these matters.
The various cross sections and asymmetry parameter in terms of the
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dipole moments are

Cabs =
4πk

| ~E0|2

N∑
j=1

{
=m[~Pj · (α−1

j )∗ ~P ∗
j ]− 2

3
k3 ~Pj · ~P ∗

j

}
, (1.23)

Cext =
4πk

| ~E0|2

N∑
j=1

=m[ ~E∗
inc,j · ~Pj ], (1.24)

dCsca

dΩ
=

k4

| ~E0|2

∣∣∣∣∣
N∑

j=1

[~Pj − n̂(n̂ · ~Pj)]e−ikn̂·~rj

∣∣∣∣∣
2

. (1.25)

Expressions for Csca and ~g follow from (1.16) and (1.17) respectively. Fur-
thermore the scattered electric field in the far field regime is given by

~E(~r) =
k2 eikr

r

N∑
j=1

[~Pj − n̂(n̂ · ~Pj)]e−ikn̂·~rj , (1.26)

~r = rn̂

1.4 Description of research

The following issues will be addressed:

• Earlier work on applying the DDA to radiation pressure calculations
by Kimura, [9], and Draine, [29], will be considered. The routine both
authors used, based on (1.18), will also be implemented here. An in-
tegration routine will be implemented on top of the already existing
DDA-code. Test-cases will be spherical particles, allowing for com-
parison to MIE-calculations. The scattering cross-section will also be
calculated by integration and compared to Csca = Cext − Cabs. This
will allow for a separation of the model-error in DDA and the error
due to numerical quadrature, and for an

• An alternative algorithm that will arrive at radiation pressure by first
calculating the force per dipole will be developed, implemented and
tested on the same cases as the integration-routine. Next to the ob-
vious experimental comparison, the two different ways for calculating
radiation pressure will be compared theoretically.

• Adaptation of the communication routines, currently implemented in
PVM, to MPI making the parallel DDA-code more portable, see e.g.
[30, 31] for detailed descriptions of PVM respectively MPI. Next to
that, the current FFT-enhanced CG-algorithm only allows for non-
absorbing particles to be simulated. This serious restriction will have
to be removed before any simulations can be done.
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• Finally the available DDA-code will be adapted to do simulations of
dust-aggregates. Some example aggregates will be tested and the force-
field resulting from the alternative algorithm will be visualized. The
shape of the force-field might indicate possible deformations in the
dust-aggregate due to the radiation pressure.
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Chapter 2

Adapting existing DDA-code
to absorbing, inhomogeneous
particles

2.1 Introduction

This chapter will focus on two issues. In the next section the trans-
lation of PVM-based communication to MPI-based communication will be
discussed. The last section of this chapter will deal with the correct use of
Fourier Transformation the in matrix-vector products used in the Conjugate
Gradient algorithm. But first the use of Fast Fourier Transformations and
parallelization in the DDA will be introduced.

The basic DDA-equations (1.21) can be cast into the form

~Einc =
(
I−AC

)
~E (2.1)

= B~E,

with 3N -vectors

~E = { ~E1, . . . , ~EN},
~Einc = { ~Einc,1, . . . , ~Einc,N},

and 3N × 3N -matrices

A =


0 A12 . . . A1N

A21
. . .

...
...

. . . A(N−1)N

AN1 . . . AN(N−1) 0

 ,

C =

 α1 . . . 0
...

. . .
...

0 . . . αN

 .
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It is also assumed that the polarization is isotropic, i.e. αj = αjI3, which
makes C diagonal. The dipole moments follow from ~Pj = αj

~Ej .
If (2.1) is solved with a Conjugate Gradient method, then for each iter-

ation matrix-vector product(s) involving the full matrix A and A† will have
to be evaluated. The memory-requirements are O(N2) and the complexity
per iteration is also O(N2). By locating the dipoles on a rectangular lattice,
the matrix-vector product B~E in (2.1) can be formulated as a discrete con-
volution. Denoting Fourier Transformation in three dimensions by F , the
convolutions in B~E can be evaluated by

B~E = ~E− F−1(F (A)F (C~E)). (2.2)

For non-rectangular particles the coupling constants belonging to lattice-
sites not occupied by the particle, are set to zero. This will increase the
number dipoles to NL. Because of the O(NL) memory-requirements for
storing F (A) and specifically the O(NLlogNL)-complexity of FFTs, see [27],
this increase will pay off.

Even with FFT, the DDA is limited by both processing speed and
memory-use. The bulk of the execution-time is spent on evaluating the
matrix-vector products in the iterative solver. Further the memory-use by
the DDA is O(NL) and its accuracy rises with the number of dipoles used
to represent the scattering particle, see e.g. [14, 21]. Since with distributed
computing the processing speed as well as the amount of memory can be
improved, it will increase DDA it’s applicability. The actual parallelization
is discussed in [28].

2.2 Porting PVM-based communication to MPI-
based

The message passing environment P(arallel) V(irtual) M(achine) was
introduced in DDA in 1995, [28]. The reason for also implementing the
communication-routines of the parallelized DDA-solver with yet another
message passing environment, M(essage) P(assing) I(nterface), next to PVM,
is the portability and standardization of MPI. MPI was designed to incor-
porate the best features of earlier message passing communication systems,
to allow it’s users to parallelize their programs as smoothly as possible, and
to be portable.

While replacing PVM-routines with MPI-routines, the standard global-
communications of MPI were used as much as possible, but the critical
transposition routine, was ported by merely replacing PVM-calls with cor-
responding MPI-calls. This transposition routine changes the decomposition
of the FFT-grid from decomposition in the z-direction into decomposition
in the x-direction during each Fourier-transformation and vice versa during
each inverse transformation, see [28]. Since these all-to-all communications

16



take the largest part of the communication time, the port has been done
effectively by replacing PVM-calls by their corresponding MPI-calls.

The scalability of the PVM- and MPI-version has been compared in fig.

Figure 2.1:

2.1. In this figure the time per iteration is shown as a function of the number
of processors and the number of dipoles in the DDA-simulation. These ex-
periments have been performed on a Parsytec CC. MPI clearly shows better
performance. This was due to the fact that this particular implementation
of MPI buffers its data less than PVM and is therefore no indication to a
better performance of MPI in general 1.

2.3 (Re-)enabling DDA to heterogeneous,
absorbing particles

The original fast DDA implementation, [28], was not able to produce
correct results for absorbing and/or coated spheres. This was caused by an
erroneous implementation of multiplication with the hermitian matrix.

The Conjugate Gradient algorithm used for solving the DDA-equations,
[24], requires both B and its hermitian B†. Using the definition of an her-
mitian matrix, B† expressed in terms of A and C is

B† = I− (AC)†,
= I−C†A†,

= I−C∗A∗.

The hermitian product, including Fourier Transformation, becomes

B†~E = ~E−C∗F−1
(
F (A∗)F (~E)

)
. (2.3)

1Private communication, F. van der Linde
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This formulation of the hermitian product deviates from the one originally
implemented

(B†~E)wrong = ~E− F−1
(
(F (A)∗F (C~E

)
. (2.4)

For Fourier-transforms in general the relation

F ∗
(
f(r)

)
= F

(
f∗(−r)

)
(2.5)

holds. Since the geometric factor obeys A(~rj−~rl) = A(~rl−~rj), the identity
F (A∗) = F ∗(A) is valid. For homogeneous, non-absorbing particles (2.4) is
therefore equal to (2.3); in that case C is the unit-matrix in 3N -dimensional
vector-space I3N times a real number, which makes the complex conjugation
of C = C∗ and which makes C∗ and A∗ commute. For weakly absorbing,
homogeneous particles, the complex conjugation of C in (2.3) does matter,
but the deviation from (2.3) is still relatively small, which still permits the
CGNR-algorithm to converge, only along a different, longer route through
iterant space. For heterogeneous, non-absorbing particles C∗ and A∗ do not
commute. Still, if the refractive indices do not differ to much, the CGNR-
algorithm will still converge. This is why the results of a simulation of a
concentric sphere with refractive indices m = 1.02 and m = 1.05 in [28] were
in close correspondence to MIE-calculations.

The hermitian multiplication (2.3) is not the one actually implemented.
Exploiting the identity A∗~E = (A~E∗)∗ reduces both memory-use and run-
time (one less matrix to initialize).

The radiation pressure calculations for absorbing particles prove this im-
plementation to be correct for homogeneous, absorbing particles, see chapter
4. For heterogeneous particles some coated spheres were simulated and com-
pared to MIE-results (see tables 2.1 and 2.2). The refractive indices of the
different layers of the coated spheres were chosen to have clearly distinct,
complex values, since this is what the original fast DDA implementation
could not deal with. The core and coat radii were chosen arbitrarily. The
errors in these cases are appreciable, 5 percent, but acceptable since the
refractive index, sphere 1, and size, sphere 2, are in the regime where the
DDA is known to experience difficulty.

case core refr. core coat refr. coat
index radius index radius

1 1.14 + 0.38i 3.517577 2.5 + 1.4i 5.02511
2 1.33 + 0.01i 7.039179 1.81 + 0.48i 10.05597

Table 2.1: sphere-characteristics
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case Qext,DDA−Qext,MIE

Qext,MIE
(perc.) Qsca,DDA−Qsca,MIE

Qsca,MIE
(perc.)

1 3.5 -0.80
2 3.0 5.2

Table 2.2: errors in percents
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Chapter 3

Extracting radiation pressure
from DDA:
Theory

3.1 Introduction

In this chapter an expression will be derived for calculating the radiation
pressure in the Discrete Dipole Approximation. This method will calculate
the forces per dipole; the total radiation pressure can then be obtained from
a trivial summation. This new method will be compared to another method,
based on integrating the Poynting vector of the scattered radiation.

Similar to the electro magnetic fields the radiation pressure will be con-
sidered as the sum of two parts; one arising from the incoming radiation,
~Finc, and the other arising from the scattered radiation, ~Fsca. ~Finc turns
out to be proportional to the extinction cross section Cext. Similar to the
scattering cross section there are two methods for determining the scatter-
ing force ~Fsca. One way for obtaining the scattering cross section is (1.16),
integrating the irradiated scattered intensity. ~Fsca can be obtained similarly
by integrating the Poynting vector.

The other method for calculating Csca is equation (1.13). It is preferable
for two reasons. It has a lower complexity, two O(N)-operations instead of
one for each scattering direction, and it will be shown to be the analytical
solution to (1.16) 1. This other method will be called direct as opposed to
the indirect integration-method, because of the extra quadrature error of the
latter. The force and cross section resulting from the direct methods will
get the subscript ’d’ for direct to distinguish them from integrated values,
labeled with subscript ’i’. A direct method for calculating the scattering
force does not yet exist and will be derived in this chapter. The analytical

1Precisely formulated the numerical value of (1.16) will be shown to converge to the
numerical value of (1.13) for rising accuracy of the numerical quadrature
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solutions of ~Fsca,i and Csca,i will also be shown to be exactly equal to ~Fsca,d

respectively Csca,d. Schematically this theoretical work can be summarized
by figure 3.1.

Figure 3.1: transition

3.2 Starting point and previous work

The starting point for the radiation pressure calculations will be the
electro-magnetic force on one dipole. As Gordon showed, [32], the force on
a dipole j in an electro-magnetic field, ~Ej = ~E(~rj , t) and ~Bj = ~B(~rj , t), is

~Fj = Re

(
~Pj · ∇j

)
Re

(
~Ej

)
+

1
c
Re

(
d~Pj

dt

)
×Re

(
~Bj

)
. (3.1)

If the time-dependence is harmonic, time-averaging of (3.1) leads to

< ~Fj >=
1
2
Re

(
(~P ∗

j · ∇j) ~Ej + ik ~P ∗
j × ~Bj

)
. (3.2)

See appendix (A.1.1) for a detailed derivation.
Draine [29] proceeded by separating the electric field into two parts

~Ej = ~Einc,j + ~Esca,j (3.3)

~Einc,j = ~E0e
i~k·~rj , (3.4)

~Esca,j =
∑
j 6=l

~Ejl, (3.5)

and similar expressions for ~Bj ; the force per dipole is separated in a similar
fashion

< ~Fj >=< ~Finc,j > + < ~Fsca,j > .
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The force due to the incoming field < ~Finc,j > is

< ~Finc,j > =
1
2
Re

(
[~P ∗

j · i~k] ~Einc,j + ik ~P ∗
j × (k̂ × ~Einc,j)

)
,

=
1
2
Re

(
i~k[~P ∗

j · ~Einc,j ]
)

,

=
1
2
~kIm

(
~Pj · ~E∗

inc,j

)
; (3.6)

here two the vector-identity

~A× ( ~B × ~C) = ~B( ~A · ~C)− ~C( ~A · ~B) (3.7)

was used. Accumulated for all dipoles and with the substitution of (1.24)
this yields (in cgs-units)

< ~Finc > =
∑

j

< ~Finc,j >

=
1
8π

Cext | ~E0|2 k̂, (3.8)

as has already been shown by Draine [29]. The next step will be deriving
an expression for the scattering force < ~Fsca,j >

< ~Fsca,j >=
1
2
Re

(
~P ∗

j · ∇j
~Esca,j + ik ~P ∗

j × ~Bsca,j

)
. (3.9)

Neither Draine nor Kimura, [9], followed this approach, because they were
not interested in the force per dipole. Instead they only calculated the
total scattering force. For a derivation Draine considered the conservation
of momentum. The photons of the incident field result in < ~Finc >, while
the outgoing photons of the scattered radiation give rise to < ~Fout >. Using
conservation of momentum, the resulting force on the particle < ~F > is
therefore

< ~F >=< ~Finc > − < ~Fout > .

Identification leads to < ~Fsca,i >= − < ~Fout >. The (time-averaged) trans-
port of momentum carried out by the scattered radiation, is obtained by
integrating the Poynting vector of the scattered field over a the total space-
angle

< ~Fout > =
∫

4π
r2dΩRe{ ~Esca × ~Bsca} (3.10)

=
∫

4π
r2dΩRe{ ~Esca × (n̂× ~Esca)}

=
k4

8π

∫
4π

dΩ n̂
∣∣∣ N∑

j=1

{~Pj − n̂(n̂ · ~Pj)} e−ikn̂·~rj

∣∣∣2.
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This expression was derived by again applying (3.7) and substituting the far
field approximation for ~Esca (1.26). The z-component of (3.10) is equal to

< Fout,z >= −|
~E0|2

8π
gz Csca,

so

< Fz >=
| ~E0|2

8π
Cpr.

3.3 Evaluation of the scattering force I:
Integrating the Poynting vector of the scat-
tered field

In this section the numerical quadrature of Csca,i and < ~Fout > will be
discussed. The integral expression for the scattering cross section is

Csca,i =
k4

| ~E0|2

∫
Ω

dΩ
∣∣∣ N∑

j=1

{~Pj − n̂(n̂ · ~Pj)} e−ikn̂·~rj

∣∣∣2. (3.11)

The integrand of < ~Fout > is the same as the one for Csca,i, save for the
extra unit vector n̂ in the scattering direction. Since the behavior of the
extra sines and cosines in n̂ is smooth, the integration error for each of the
three integrals making up < ~Fout >, is expected to behave like the error in
Csca,i.

The integral (3.11) is of the form

I =
∫ π

0
dθ

[ ∫ 2π

0
dφ f(φ, θ)

]
. (3.12)

As is suggested by (3.12),the result of the integration in the φ-domain will
be treated as the integrand for the integration in the θ-domain. Here the
Romberg-method will be used for the integration in the φ-domain as well as
in the φ-domain (read Numerical Recipes in C, [33] for a detailed description
of this and other integration method). It is basically a sophisticated version
of the trapezoidal rule,∫ xM

x1

dxf(x) ≈ h
[1
2
f1 + f2 + . . . +

1
2
fM

]
h =

xM − x1

M − 1
.

A straightforward and efficient way to reaching a certain level of accuracy
with this procedure, is making successive estimations with h → h

2 for each
new estimation (see fig 3.2). This makes the n’th estimate use 2n + 1
points. Convergence is checked for successive estimates sn and sn−1 by
testing whether |sn − sn−1| < ε or not, with ε some small constant. The

23



Figure 3.2: refinement scheme

Romberg-method does not merely use the trapezoidal estimate sn in the n-
th refinement stage, but combines the K previous estimates sn−1, . . . , sn−K

for an estimate to yield error-cancellation.
The book Numerical Recipes in C offers a standard routine for calculat-

ing one dimensional integrals with the Romberg-method. Both integrations
in the θ- as well as in the φ-domain are evaluated with this routine, i.e. ob-
taining one integrand-value for the θ-integration requires one full integration.
Some objections/questions can be raised to this rather crude approach.

1. The sampling of the integration intervals is uniform. This might cause
trouble with particles whose scattering intensity is strongly peaked
in some direction(s); there accurate sampling of the peak-direction(s)
might become computationally prohibitive rather soon.

2. This method does not refine the integration-grid simultaneously for
both integration-variables.

These (integration) matters will not be addressed here, since there is an-
other, direct method, see section 3.4.

Since a parallelized implementation is used and the dipole moments are
distributed, the scattered electric field values will be calculated in advance,
allowing the communication for the field-calculations to be done at once.
Doing the communication for calculating the field for each direction sepa-
rately, would mean spending much more time on communication.
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3.4 Evaluation of the scattering force II:
a direct method

Calculating the scattering force per dipole is more demanding in two
respects:

1. the procedure of working out (3.9) is straightforward but of consider-
able length.

2. The actual computation of < ~Fsca,d >=
∑N

j=1 < ~Fsca,j > is O(N2),
whereas (3.10) is O(N). It will be argued that < ~Fsca > is a convolu-
tion similar to (1.21), thereby reducing the complexity to O(N log N).

It is convenient to reformulate ~Ejl, equation (1.19), into

~Ejl = eikrjl

[
(
k2

rjl
− 1

r3
jl

+
ik

r2
jl

)~Pl + (
3
r3
jl

− 3ik

r2
jl

− k2

rjl
)n̂jl(n̂jl · ~Pl)

]
,(3.13)

= Ajl · ~Pl.

This shows the evaluation of ~P ∗
j ·∇j

~Ejl to consist of four non-trivial differen-
tiations. See appendix A.1.2 for the mathematical details and the resulting
expression for ~P ∗

j · ∇j
~Ejl.

The magnetic term expressed in dipole moments is

ik ~P ∗
j × ~Bj = ik3

∑
l 6=j

~P ∗
j ×

(
n̂jl × ~Pl

)(
1− 1

ikrjl

)
eikrjl

rjl
,

=
∑
l 6=j

(
ik3

rjl
− k2

r2
jl

)
(

(~P ∗
j · ~Pl)n̂jl − (~P ∗

j · n̂jl)~Pl

)
eikrjl(3.14)

Combining the previous results in this section, < ~Fsca,d > can be expressed
as

< ~Fsca,d > =
1
2

N∑
j=1

∑
l 6=j

Re ~Gjl (3.15)

~Gjl = eikrjl

[(
(~P ∗

j · ~Pl)n̂jl + ~P ∗
j (n̂jl · ~Pl) + (~P ∗

j · n̂jl)~Pl

−5(~P ∗
j · n̂jl)n̂jl(n̂jl · ~Pl)

)(
3
r4
jl

− 3ik

r3
jl

− k2

r2
jl

)

+
(

(~P ∗
j · ~Pl)n̂jl − (~P ∗

j · n̂jl)n̂jl(n̂jl · ~Pl)
)(

ik3

rjl
− k2

r2
jl

)]
.
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3.5 Calculating the force per dipole using Fast
Fourier Transformations

The computational burden in evaluating < ~Fsca,d > comes from the
double summation in (3.15). This burden can be relieved by using Fast
Fourier Transformation. In order to make this more clear, the complex
3-vector ~Gjl in (3.15) is expressed in terms of complex 3× 3 matrices

~Gjl = ~P ∗
j ·Mjl,m · ~Pl êm. (3.16)

(at the right hand side the Einstein summation convention is used).
The complex 3× 3 matrices Mjl,m depend only on k and ~rjl. They are

defined by

Mjl,m = eikrjl

[

(Ujl,m + Vjl,m + Wjl,m − 5Tjl,m)
(

3
r4
jl

− 3ik

r3
jl

− k2

r2
jl

)

+(Ujl,m −Tjl,m)
(

ik3

rjl
− k2

r2
jl

)]
(3.17)

Tjl,m = n̂jln̂jlnjl,m

Ujl,m = 1njl,m

Vjl,m = n̂jl
~∆m

Wjl,m = ~∆mn̂jl

with ∆m,n = δmn. The m-th column of matrix Vjl,m is n̂jl, its other columns
contain zeros. Similarly the m-th row of matrix Wjl,m is n̂jl and its other
rows contain zeros. Just as the geometrical factors Ajl the matrices Mjl,m

are symmetrical. The matrices Tjl,m and Ujl,m are both symmetrical on
their own. While Vjl,m and Wjl,m are not, their sum Vjl,m + Wjl,m is
symmetrical. Therefore each of the matrices Mjl,m is symmetrical. Contrary
to the geometrical factors they are anti-symmetrical in the pair of indices j
and l, since the unit vectors n̂jl have odd powers, 1 and 3, whereas in the
geometrical factors they have even powers, 0 and 2. Introducing

P = {~P1, . . . , ~PN} ∈ C

Mm =


0 M12,m . . . M1N,m

M21,m
. . . . . .

...
...

. . . . . . MN−1,N,m

MN1,m . . . MN,N−1,m 0


equation (3.15) can be written as

< ~Fsca,d >= (P∗ ·Mm ·P)êm (3.18)
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As an intermediate step the scattering force on dipole j can be calculated
by

< ~Fsca,j >= P ∗
j,n(Mm ·P)3j+nêm. (3.19)

Again the Einstein summation convention is used.
Because the dipoles are arranged in a rectangular grid and their coordi-

nates merely appear in the form ~rjl = ~rj−~rl, (3.18) is a discrete convolution.
Discrete convolutions can be evaluated with O(N log N)-complexity rather
then O(N2)-complexity [27]. Implementing (3.15) with FFT is straightfor-
ward, in principle.

3.6 Connecting the integration and direct method

In this section the integrals (3.11) and (3.10) will be solved analytically.
First both will be cast into a different form :

< ~Fout > =
k4

8π

N∑
j,l

∫
4π

dΩ n̂ Ijl(n̂), (3.20)

=
N∑
j,l

< ~FI,jl >

= − < ~Fsca,i >,

Csca,i =
k4

| ~E0|2

N∑
j,l

∫
4π

dΩIjl(n̂) (3.21)

with

Ijl(n̂) =
(

~P ∗
j · ~Pl − (~P ∗

j · n̂)(n̂ · ~Pl)
)

eikn̂·~rjl ,

~rjl = ~rj − ~rl.

The reversal of summation and integration is of no concern, since the number
of dipoles N is large but finite. The relation

∣∣∣ N∑
j=1

{~Pj − n̂(n̂ · ~Pj)} e−ikn̂·~rj

∣∣∣2 =
N∑
j,l

Ijl(n̂)

follows easily from working out the left hand side; further, one should notice
that Ijl(n̂) = I∗lj(n̂), which will cause the complex parts of each integral-
term jl and lj in the double summation to cancel.

The actual evaluation of (3.20) and (3.21) is complicated by the expo-
nential factor

exp
(
ikn̂ · ~rjl

)
= exp

(
ik(sin θ cos φ rjl,x + sin θ sinφ rjl,y + cos θ rjl,z)

)
,
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which arises for j 6= l. The complexity of the integrals (3.20) and (3.21) can
be reduced by considering each integral-term separately and aligning the z-
axis for the spherical coordinates parallel to ~rjl. This will reduce the complex
exponent ikn̂ · ~rjl to ikrjl cos θ. Working out in full detail (3.20) and (3.21)
will show that it is possible to separate each term into a θ- and φ-dependent
factor. The integration of the φ-dependent parts is straightforward, the θ-
dependent parts need some more attention.

All θ-dependent integrals are of the form

Θ =
∫ π

0
dθ sin θf(cos θ)eikrjl cos θ, (3.22)

where f is function of cos θ. Working out (3.20) and (3.21) in full detail,
will also show that only the φ-dependent parts, whose corresponding θ-
dependent parts have no odd powers of sin θ, do not vanish. So there is no
case where f contains odd powers of

√
1− cos2 θ, but only even powers and

will therefore merely be a polynomial in cos θ. This calls for a substitution
t = cos θ, which reduces (3.22) to

Θ =
∫ 1

−1
dtf(t)eikrjlt (3.23)

The integral

Iu(α) =
∫ 1

−1
dt tu eiαt u ∈ N, α ∈ R,

will be solved in appendix A.2.1.
With the above expressions at hand, writing down the solutions to (3.20)

and (3.21) is a matter of accurate administration. Similar to previous math-
ematical details, for this case they will be treated in appendix A.2.2.

First the scattering force will be discussed. Introducing the dummy
variables

ajl = eikrjl ,

b1,jl = 3
r4
jl
− 3ik

r3
jl
− k2

r2
jl

,

b2,jl = ik3

rjl
− k2

r2
jl

,

~c1,jl =

 P ∗
j,x Pl,z + P ∗

j,z Pl,x

P ∗
j,y Pl,z + P ∗

j,z Pl,y

P ∗
j,x Pl,x + P ∗

j,y Pl,y − 2P ∗
j,z Pl,z

 ,

~c2,jl = (P ∗
j,x Pl,x + P ∗

j,y Pl,y) êz,

the integrated scattering force becomes

< ~FI,jl > =
k4

8π

∫
Ω

dΩ n̂ Ijl(n̂)

= −1
2

[
Im(a b1)Im(~c1) + Im(a b2)Im(~c2)

]
jl

. (3.24)
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The imaginary part of < ~FI,jl > has already been omitted; save for being
cancelled by the imaginary part of < ~FI,lj >, it will not be of any importance
in the next steps. After inserting n̂jl = êz in ~Gjl in (3.15), the direct
scattering force expressed in the same dummy variables is

< ~Fjl > =
1
2
Re ~Gjl

=
1
2

∑
j 6=l

Re(a b1 ~c1 + a b2 ~c2)jl

=
1
2

∑
j 6=l

[
Re(a b1)Re(~c1)− Im(a b1)Im(~c1)

+Re(a b2)Re(~c2)− Im(a b2)Im(~c2)
]

jl

. (3.25)

It is clear that
− < ~FI,jl >6=< ~Fjl >,

but
− < ~FI,jl > − < ~FI,lj >=< ~Fjl > + < ~Flj > . (3.26)

This is true since ~c1,jl = −~c∗1,lj and ~c2,jl = −~c∗2,lj . Therefore < ~Fsca,d >

and < ~Fsca,i > are exactly equal, i.e. the numerical result of the integration
method will converge to that of the direct method. At first sight this feature
is rather surprising; the direct scattering force uses the full expressions for
the electric fields, but the integrated scattering force uses the far field. A
starting point for an explanation might be offered by Jackson [22], chapter
9. In his derivation of the scattered field of a single dipole he invoked the
far field approximation. This could mean the DDA already is a far field
approximation. This idea has not been properly investigated.

The integrated scattering cross section can be treated analogously. With
the additional dummy variables

p1,jl = k2

r2
jl
− ik3

rjl
+ ik

r3
jl

,

p2,jl = −3k2

r2
jl

+ ik3

rjl
− 3ik

r3
jl

,

q1,jl = ~P ∗
j · ~Pl,

q2,jl = P ∗
j,zPl,z.

the integrated scattering cross section becomes

CI,jl =
4π

| ~E0|2


2k4

3 |~Pj |2 j = l[
Re(a p1)Re(q1) + Re(a p2)Re(q2)

]
jl

j 6= l
(3.27)
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(again the imaginary part of CI,jl has been dropped for j 6= l). The direct
method for calculating the scattering cross section is

Csca = Cext − Cabs,

=
4πk

| ~E0|2

N∑
j=1

[
Im(~Pj · ~E∗

inc,j − ~Pj(α−1
j )∗ ~P ∗

j ) +
2k3

3
|~Pj |2

]
.(3.28)

By substituting

Im(ab∗) = Re(ia∗b)
~Einc,j − α−1

j
~Pj = −

∑
l 6=j Ajl · ~Pl

n̂jl = êz

the direct scattering cross section becomes

Csca =
∑
j,l

Cjl

Cjl =
4π

| ~E0|2



2k4

3 |~Pj |2 j = l[
Re(a p1)Re(q1)− Im(a p1)Im(q1)

+Re(a p2)Re(q2)− Im(a p1)Im(q1)
]

jl

j 6= l

(3.29)

Again it is clear that
CI,jl 6= Cjl,

but
CI,jl + CI,lj = Cjl + Clj , (3.30)

since q1,jl = q∗1,lj and q2,jl = q∗2,lj . Therefore Csca,d and Csca,i are exactly
equal, i.e. again the numerical result of the integration method will converge
to that of the direct method. This is a rediscovery of work by Markel [34],
who used it for an alternative derivation of the absorption cross section. The
equality Csca,d = Csca,i is less surprising then < ~Fsca,d > and < ~Fsca,i >,
since the expressions for Cext, Cabs, and Csca are all derived in the far field
approximation.

Although the derivations of both equalities (3.26) and (3.30) are quite
similar, their implications are not. In practical computation < ~Fsca,i >

will always converge to < ~Fsca,d > for rising accuracy, even if the set of
dipole moments is not the correct solution (or a set of random complex
numbers for that matter). But by using (1.21) in (3.29), the correctness of
the dipole moments is assumed. This implies that if Csca,i does not converge
to Csca,d, the set of dipole moments cannot be the correct solution to the
DDA-equations. This feature will be used and elaborated in chapter 5.
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Chapter 4

Extracting radiation pressure
from DDA:
simulating spherical particles

4.1 Experimental Setup

Both the integration and direct method have been tested on a number of
spherical particles with different size-parameters, x = {2.5, 5, 10}, and for
relative refractive indices m listed in table 4.1. The DDA input-parameters
for each case are tabulated in appendix C.1. Due to a lack of time, the

m material
1.05 Human cells
1.14 + 0.38i H2O at 10K illuminated

by λ = 0.1µ-radiation
1.33 + 0.01i dirty ice
1.68 + 0.03i Amorphous silicate illuminated

by radiation with 0.4µ < λ < 2.0µ
1.7 + 0.156i
1.81 + 0.48i H2O at 10K illuminated

by λ = 0.15µ-radiation
2.5 + 1.4i graphite
3.05 + 0.33i Amorphous silicate illuminated

by λ = 90µ-radiation

Table 4.1: relative refractive indices

direct method for calculating ~Fsca,d has not been implemented with the
O(N log N)-complexity FFT suggested in section 3.5, but instead with the
direct sumation of O(N2)-complexity. Therefore the application will meet
memory-bounds in an earlier stage than when implemented with FFT; the
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initially distributed arrays with dipole moments and their coordinates are
needed as a whole by each node with the direct method. Compare with the
memory overhead in the original parallel DDA implementation.

Before focusing on the radiation pressure related data, the convergence
of the CG-method is mentioned, see appendix C.1. Compare the number of
iterations needed for the spheres with refractive indices m4 = 1.68 + 0.03i,
m5 = 1.7 + 0.156i and m6 = 1.81 + 0.48i (for each size-parameter). It
seems that while the real parts Re(m) are approximately equal, the num-
ber of iterations, needed for convergence, drops with rising Im(m). The
DDA-literature does not mention such behavior. This feature will not be
investigated here, but its origin should at some point be searched for.

4.2 The integration method

For each case the scattering coefficient and the scattering force were in-
tegrated for five different final stages of refinement, n = {4, 5, 6, 7, 8}. In
each case nθ = nφ = n and Kθ = Kφ = K 1 were used. The minimal re-
quired rate of convergence was chosen small enough to use all the previously
calculated values for the scattered field, ε = 10−9. K was set to n, based
on the assumption that extrapolation yields the best result when all the
available information is used. For each case Cext and Cabs were calculated
to obtain Csca,d. Second Csca,i and ~Fsca,i were integrated for each case to all
the stages of refinement mentioned above; finally ~Frp,i followed from Cext

and ~Fsca,i. The discussion of ~Fsca,d is postponed to the next section.
The following error metrics are calculated as a function of n for each

case, and plotted in appendix B.1 :

• The integrated scattering efficiency extracted from DDA compared to
values generated by MIE-code 2.

ε(Qsca)MIE =
[
(Qsca,i)DDA − (Qsca)MIE

]
/(Qsca)MIE

• Comparison of the integrated and the direct scattering efficiency Qsca,i

and Qsca,d. This is an internal check that can be done independently
from the particle-shape and composition. It is therefore an important
test for the quality of values resulting from simulations of scattering
particles whose analytical solutions are not known, see the discussion
in section 5.2.3. Next to that it is a means for testing the accuracy of
the integration algorithm.

ε(Qsca)DDA =
[
Qsca,i,DDA − Qsca,d,DDA

]
/Qsca,d,DDA

1see section 3.3 for the meaning of K
2All MIE-values were generated by the algorithm published in [2]. Although MIE-

theory is formally exact, actual numbers resulting from MIE-theory can only be approxi-
mate, since the formal solutions are all infinite expansions.
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• Comparison of Fsca,i,z extracted from DDA compared to values gener-
ated by MIE-code.

ε(Fsca)MIE =
[8πFsca,i,z,DDA

~E2
incπa2

eff

− (gQsca)MIE

]
/(gQsca)MIE

aeff is the radius of the equivalent volume sphere with a volume V =
N Vdip.

• Comparison of Frp,i,z extracted from DDA compared to values gener-
ated by MIE-code.

ε(Frp)MIE =
[
Qext,DDA −

8πFsca,i,z,DDA

~E2
incπa2

eff

− Qpr,MIE

]
/Qpr,MIE

• In the case of a spherical particle, the fraction

ε(Frp)i =
[√

F 2
rp,i,x,DDA + F 2

rp,i,y,DDA

]
/Frp,i,z,DDA

is a means for testing the accuracy of the integration algorithm and
the DDA, since Frp,x,MIE = Frp,y,MIE = 0.

In fig. 4.1 these fractions are plotted for the case of m = 1.14 + 0.38i and
x = 5. Similar plots for the other cases are printed in appendix B.1. In

Figure 4.1: Fractional errors for m = 1.14 + 0.38i and x = 5

appendices B.2 and B.3 the measured quantities are plotted as a function
of the real and imaginary part of the relative refractive index respectively
for a more complete overview. They also contain plots of the MIE-errors in
Qext and Qabs.

Fig. 4.1 is exemplary for the other cases, in the sense that it confirms two
expectations about the integration procedure. First, the integrated scatter-
ing cross section is expected to converge to the direct scattering cross section
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for rising n, i.e. ε(Qsca)DDA → 0, see section 3.6. The plots of ε(Qsca)DDA

for each case firmly confirm this expectation. Second, due to likeness of the
integrands in (3.11) and (3.10) the behavior of ε(Fsca)MIE is expected to be
similar to ε(Qsca)MIE . It can be said that for all cases the observed behav-
ior of ε(Fsca)MIE is much more flat than ε(Qsca)MIE ’s and that ε(Fsca)MIE

(hardly) changes for n = (6, 7, 8) (possibly the factor cos θ makes the inte-
grand more smooth). Still, the behavior of ε(Fsca)MIE tends to exhibit the
same irregularities, (x = 10), and curvature, (x = 2.5 and x = 5), for lower
n.

By comparing the MIE-errors in Qext and Frp,z,i, appendices B.2.1 and
B.2.5 respectively, it can be concluded that these errors are of the same or-
der for n = 6, which corresponds to roughly 22n ≈ 4.0e3 integration points.
Further refinement of the integration grid does not result in more accurate
values for Fsca,z,i, i.e. (gzCsca)i, and therefore not of Frp,z. As can be ex-
pected the accuracy grows worse for coarse integration grids, even so that for
n = 4 a significant number of values are totally unacceptable, therefore the
result for n = 4 are not plotted in the graphs. See for example the value of
(gzCsca)i for the particles (x = 10,m = 1.05) and (x = 10,m = 1.33+0.01i).

From the plots of ε(Fsca)MIE and ε(Frp)MIE in B.2.4 and B.2.5 respec-
tively, one can observe a tendency for the MIE-errors to rise with larger m
and at the same time to drop for rising x. The former tendency of rising er-
rors for larger |m| is a common feature of DDA. The latter can be explained
from the difference in shape between the real sphere and its counterpart in
the DDA-simulation. In the simulations above the number of dipoles per
wavelength was kept constant for each refractive index. Therefore the num-
ber of dipoles in the spherical particle is Ndip ∝ x3, see appendix C.1, so
for larger x the shape of simulated sphere is closer to the shape of the real
sphere. This behavior was first described and explained by Draine [21].

The difference between the values of (gxCsca)i and (gyCsca)i for each case
is striking. The value of (gyCsca)i remains at a (roughly) constant, low value
(typically of order 10−7) for rising n. (gxCsca)i starts at an absolute value
5 percent of (gzCsca)i for n = 4 and decays slowly. The only difference be-
tween the two is in their integrands; for (gxCsca)i a factor sin θ cos φ is added
to the differential scattering cross section, for (gxCsca)i a factor sin θ sin φ.
A last remark concerning the integration method is made on the behavior
of the ratio ε(Frp)i

3 plotted as a function of Im(m), see appendix B.3.6;
for non-absorbing spheres this ratio is > 10 percent for n = 5 (n = 4 even
worse), while for absorbing spheres ε(Frp)i is 2 percent when n = 5. These
two observations concerning the components perpendicular to the direction
of the incident beam, will not be investigated any further here (studying
the differential scatttering cross section would be the first step). The direct
method for calculating the scattering force offers a fruitfull alternative to

3De facto this comes down to the ratio Fsca,x,i/Frp,z,i
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the integration method.

4.3 The direct method

The direct method for evaluating the scattering force (3.15) was shown
to be the exact solution to (3.10). In table 4.2 the results of the O(N2)-
implementation of (3.15) are compared to those obtained by numerical
quadrature to the highest accuracy (n = 8) of (3.10) and MIE-results.
Although not all cases could be simulated with the direct method, the re-
sults in table 4.2 can be considered a firm numerical confirmation of the
final results of section 3.6, as is the behavior of the ratio ε(Qsca)DDA, see
appendix B.2.3. Also notice that both the (gyCsca)d and (gxCsca)d are of the
same order as (gyCsca)i. Since the direct method delivers more information,
i.e. the forces per dipole, and it is the exact solution of the integral in the
the integration method, the direct method is preferable from a modeling
point .

When comparing execution time the O(N2) direct method is no match
for the integration method. For the case (x = 5,m = 1.14 + 0.38i) executed
on a single workstation, the execution of the direct O(N2) method took 22
min to complete, whereas the integration method finished in 6 min (n = 6).
Both timings include the runtime for the DDA-kernel of about 2.5 minutes.
Clearly the direct method needs to be optimalized before it can be seriously
useful.

A rough estimate for the execution time of the direct method with FFT-
optimalization can be extracted by considering the profiling of the DDA-
kernel. The initialization time for the Fourier transformed matrix A (see
chapter 2) and the time per CG-iteration were both 8 seconds. Assuming

• the initialization time for each of the matrices Mx, My and Mz in
(3.18) is equal to that for A,

• each iteration is dominated by the two matrix vector products in-
volved,

• the execution time for the FFT-enhanced direct method is determined
by the three matrix initializations and three matrix vector products,

the execution time for obtaining the radiation pressure per dipole on the
(x = 5,m = 1.14 + 0.38i)-sphere will probably be about 40 s. The FFT-
optimized direct method should definitely be implemented for two reasons.

1. It yields more information,

2. Even if the execution time for the direct method, estimated above, is
too optimistic, it will likely be less than for the integration method.

35



x m −fz,MIE −fz,d −fz,i Cpr,MIE Cpr,d Cpr,i

2.5 1.05 0.371524 0.371659 0.37166 0.122651 0.122112 0.12211
1.14+0.38i 8.24625 8.27892 8.27892 26.9337 26.9879 26.9879
1.33+0.01i 16.7049 16.6745 16.6745 8.64969 8.53591 8.53591
1.68+0.03i 52.2132 53.1363 53.1363 30.6572 30.0432 30.0432
1.7+0.156i 33.7644 35.0417 35.0417 35.8229 35.8576 35.8576
1.81+0.48i 20.9415 21.8652 21.8652 38.626 39.307 39.307
2.5+1.4i 18.9673 20.1332 20.1332 38.489494 39.8698 39.8698
3.05+0.33i 21.3637 23.0295 23.0296 37.605915 38.3417 38.3417

5 1.05 8.57554 8.57815 8.57815 0.859150 0.863781 0.86379
1.14+0.38i 63.8590 63.7802 63.7802 105.156 105.065 105.065
1.33+0.01i 222.436 223.542 223.542 53.8230 53.4137 53.4134
1.68+0.03i 60.2681 62.5525 62.5525 112.658 111.251 111.251
1.7+0.156i 73.1439 73.6662 73.6662 127.300 127.694 127.694
1.81+0.48i 83.2464 84.2083 84.2083 123.102 124.179 124.179
2.5+1.4i 87.5410 88.88566 88.8856 121.662 123.694 123.694

10 1.05 150.276 150.258 150.258 4.656049 4.66638 4.66626
1.14+0.38i 315.490 315.302 315.302 384.379 384.237 384.236
1.33+0.01i 438.904 441.835 441.835 262.641 263.107 263.106

x m −fx,d −fx,i −fy,d −fy,i

2.5 1.05 3.1e-09 0.0018 1.7e-09 1.6e-09
1.14+0.38i -2.1e-08 0.036 8.6e-08 2.9e-08
1.33+0.01i 6.3e-07 0.071 -1.9e-07 2.7e-07
1.68+0.03i 1.8e-06 0.18 1.4e-06 2.4e-06
1.7+0.156i 9.3e-07 0.12 -2.6e-07 1.8e-06
1.81+0.48i 1.0e-06 0.079 1.9e-06 8.3e-07
2.5+1.4i -1.3e-06 0.092 2.4e-06 8.6e-07
3.05+0.33i 3.9e-06 0.095 -3.5e-06 3.1e-07

5 1.05 6.5e-08 0.017 3.7e-08 2.0e-08
1.14+0.38i 3.2e-08 0.14 1.6e-06 1.2e-06
1.33+0.01i 1.6e-05 0.45 9.8e-06 1.0e-05
1.68+0.03i 4.9e-06 0.30 8.0e-06 1.1e-05
1.7+0.156i 3.7e-07 0.17 2.7e-06 1.4e-06
1.81+0.48i 6.1e-07 0.20 6.72e-07 -1.8e-07
2.5+1.4i -4.7e-06 0.29 -1.1e-05 -1.9e-07

10 1.05 1.2e-06 0.15 6.1e-07 7.1e-07
1.14+0.38i -4.6e-06 0.43 3.5e-06 -3.4e-06
1.33+0.01i 1.0e-04 1.1 9.1e-05 7.8e-05

Table 4.2: ~f = ~gCsca and Cpr

Finally some pictures of the forces per dipole are shown, see figures 4.2, 4.3
and 4.4. In these figures only bisections of the spheres along the yz-plane are
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Figure 4.2: Force per dipole for the sphere m = 1.05, x = 2.5

displayed, the forces in the other halves are mirror images of the displayed
halves. In all three cases the largest forces occur on the interface between
sphere and medium. From [21, 36] it is known that the largest errors in the
internal field occur exactly on this interface. The question whether these
errors in the internal field are transferred to the force per dipole at the same
place, can be answered by comparing the forces per dipole to the force field
resulting from MIE-theory. Probably the work of Debye [13] can be helpfull
in accomplishing this.
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Figure 4.3: Force per dipole for the sphere m = 1.33 + 0.01i, x = 2.5

Figure 4.4: Force per dipole for the sphere m = 1.14 + 0.38i, x = 2.5
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Chapter 5

Radiation pressure
calculations on aggregate
particles:
preliminary results

5.1 Introduction

A quick glance at the title of this MsC thesis might suggest that it is
primarily devoted to aggregate particles. As is often the case with first im-
pressions, this one is deceiving. While previous chapters dealt with spherical
particles, chapter 4, or no specific geometry at all, chapters 2 and 3, only
this one will specifically consider DDA-based radiation pressure calculations
on aggregate particles.

The primary aim of this chapter is to consider the behavior and validity
of the DDA when applying it to fluffy and/or aggregate particles. It is with
this idea in mind that some simulations have been performed and will be
discussed. The literature investigation at the end of this chapter will also
focus on this subject.

5.2 Applying the DDA to light scattering by ag-
gregate particles

5.2.1 Experimental setup

Because of its general and flexible nature, several different implementa-
tions of the DDA exist. There is no conclusive argument for determining
the best; this strongly depends on the problem being considered. The im-
plementation used here determines the coupling constants from the relative
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refractive index by the Lattice Dispersion Relation (LDR) [37], instead of
the classic Clausius-Mossoti relation. It uses the Conjugate Gradient Nor-
mal Residue method to solve the linear system of equations, describing the
electric field inside the particle. By arranging the dipoles on a rectangu-
lar grid, the matrix-vector products can (and will) be evaluated with Fast
Fourier Transformation.

A dust particle is modeled by an aggregate of spherical grains. Besides
by the coordinates of these grains, the aggregate is characterized by

• λ :
wavelength,

• mg(λ) :
relative refractive index belonging to λ, for the constituting material
of grain g,

• rgrain,g :
radius of grain g,

• dbox :
side length of the cubic box circumscribing the aggregate. A quick and
easy estimate for dbox is

dbox = 2 max(ri,x,max − ri,x,min, ri,y,max − ri,y,min, ri,z,max − ri,z,min)
i ∈ {1, . . . , Ngrain}

From now on all grains are taken to be identical. The mapping of the grains
on the dipole grid is determined by four parameters.

1. Dgrain :
Number of dipoles per grain. Here Dgrain will be set to one (this will
also be discussed in 5.2.2).

2. ddip :
Dipole-spacing.

3. Dλ = λ
ddip Re(m) :

Number of dipoles per wavelength. This parameter is not directly
involved in mapping the grains to the dipoles, but it is crucial in the
discretization of wave-phenomena; for accurate discretization of the
internal field, one should take Dλ > 10, read [21, 37, 14, 38].

4. DL :
side length of the dipole-lattice circumscribing the aggregate.
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The iteration of the CGNR-procedure is continued, as long as

(I−AC)~E− ~Einc

~Einc

> ε0

where ε0 is called the stop-criterium.
The center of the dipole representing the grain is selected to be as close as

possible to the original grain-center. It is clear that if the grid is too coarse,
i.e. the dipole-spacing is too large, this can lead to several grains being
represented by one dipole. This is prevented in the presented simulations
by monitoring the number of grains in the projected aggregate.

The above quantities are related through

Dgraind3
dip =

4π

3
r3
grain, (5.1)

(equivalent volume sphere)

Dλ =
λ

ddip Re(m)
≥ 10, (5.2)

DL =
⌈

dbox

ddip

⌉
. (5.3)

Inserting (5.1) in (5.2) yields

Dλ =
(3Dgrain

4π

)1/3 λ

rgrain

1
Re(m)

≥ 10. (5.4)

Two different aggregates were considered. Both were supplied by Carsten
Dominik, who uses bigger versions of these aggregates to study dust-coagulation
in interstellar clouds [6, 7, 8]. Aggregate 1 was made up of 51 grains (see
figure 5.1 to get an idea of its structure) and aggregate 2 of 101 grains, all
grains having a radius rgrain = 0.1µm. Both aggregates were simulated with
ma = 1.14 + 0.38i and mb = 1.7 + 0.03i. The latter corresponds to amor-
phous silicate illuminated by 0.25µm < λ < 2µm, which the aggregates were
originally modeled after. The reason for also using the former ma, actually
corresponding to ice at 10K, was simply not to restrict the simulations to

41



Figure 5.1: Aggregate 1,51 grains

weakly absorbing material. In all cases λ = 0.8µm was used.

ddip = 0.16(Dgrain)−1/3µm,

dbox,1 = 1.6µm,

dbox,2 = 3.4µm,

Dλ,a = 4.4(Dgrain)1/3,

Dλ,b = 2.9(Dgrain)1/3,

DL,1 =
⌈
9.85(Dgrain)1/3

⌉
,

DL,2 =
⌈
20.76(Dgrain)1/3

⌉
,

ε0 = 10−12.

For Dgrain = 1, Dλ clearly disobeys Dλ > 10. The same simulations have
therefore also been done with the grain-size as well as the grain-coordinates
rescaled with factors f = 0.5 and f = 0.25, increasing Dλ,a to 8.7 and 17.4
respectively, and Dλ,b to 5.8 and 11.7 respectively. This mounts up to twelve
different aggregates.

5.2.2 Objections

As has already been said the main objective of this chapter is to explore
the behavior and the validity of the DDA in the realm of fluffy/aggregate
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particles. For this reason the DDA was used in its standard configuration,
CG-FFT with the Lattice Dispersion Relation for setting the polarizabilities,
while in the discussion of the results, directions for possible improvements
will be given.

Before considering the actual results, several objections can be raised
to using the standard configuration of the DDA. First of all, the DDA in
general is known to make the largest errors on the interface, the boundary
between the scattering material and the medium, see e.g. [21]. Using only
one dipole per grain, all dipoles will be on the interface, so one should be
cautious while interpreting the resulting data. Second, the use of the LDR is
not justified, since this way for calculating the coupling constant was derived
assuming λ � ddip, [37]; a demand that is not satisfied in these simulations.
Kimura resolved this issue by replacing the LDR with the a1-term method
proposed by Okamoto [39]. This method derives the polarizability of each
monomer from MIE-theory. A similar method has been proposed by Dungey
and Bohren [40].

Furthermore representing the aggregate on a rectangular grid, can be
criticized from two points of view. From a modeling point of view one can
raise the point of deformation; the simulated aggregate is one whose grains
are slightly shifted from the original grain-centers. How will this affect the
scattered and internal field ? The answer to this question is terra incognita.
The fraction of the total number of sites N on the cubic grid belonging to the
vacuum, i.e. voids, might become so large that the gridless O(N2

non−void)
algorithm is going to be faster than the O(N log N) Fast Fourier Trans-
form. The rigorous approach for the latter issue will be reintroducing the
O(N2

non−void) method for matrix-vector multiplication and simply compare
the execution times to the O(N log N). Here merely a complexity-analysis of
matrix-vector multiplication with both methods will be done, thereby deriv-
ing a crude method for comparing execution time for the O(N log N)-method
and the O(N2

non−void)-method. Let us denote the number of Flops (floating
point operations) for the O(N log N)-implementation by vgrid and for the
O(N2

grain)-implementation by vgridless. First vgridless will be calculated. Ma-
trix vector multiplication of a complex 3Nnon−void×3Nnon−void-matrix and a
complex 3Nnon−void-vector takes 9N2

non−void complex scalar multiplications
and 3Nnon−void(3Nnon−void− 1) complex scalar additions, which mounts up
to vgridless ≈ 72N2

non−void Flops 1.
It is stated, that a Fast Fourier Transform of a linear array of l com-

plex numbers takes (2l) log(2l) two-point Fourier Transforms (see [33] for
a clear description of FFT and [27] for its implementation in the DDA).
Furthermore it is stated, that one two-point Fourier Transform consists of
one complex scalar multiplication and one complex scalar addition, i.e. 8

11 complex scalar multiplication = 4 real multiplications + 2 real additions→ 6 Flops;
1 complex scalar addition = 2 real additions → 2 Flops
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Flops. With the assumptions below, vgrid will be estimated:

• The rectangular grid is cubic and the side length of the cube is a power
of 2, i.e. 3

√
N = Nx = Ny = Nz = l = 2a, a ∈ N.

• The Fourier transformed interaction matrix is stored in memory, as
are the trigonometric function values used in each FFT.

• The operation-count of the bit-reversal immediately preceding the ac-
tual transformation can be neglected (an array of length l involves
at most l/2 exchanges of array-elements; this will be assumed to be
overruled by the operation-count of the actual transformation itself).

The complex 3D FFT of a 3-vector field on the cubic grid takes vgrid = 3×3×
8×(2l)2×(2l) log(2l) = 4.48N(3+log N) Flops 2. In the Fourier domain the
convolution will take 8N×(9 complex multiplications+6 complex additions) =
48.11NFlops. One FFT, one convolution in the Fourier domain, and one
inverse FFT mount up to vgrid = 48N(35 + 8 log N)Flops.

Bearing in mind the curve in figure 5.2 represents the equality vgrid =

Figure 5.2: FFT complexity comparison

vgridless, the interpretation of this figure should be as follows. For a particle
discretized with Nnon−void dipoles, which needs a cubic grid with N sites to
facilitate FFT, the gridless O(N2

non−void) is more efficient if the point with
coordinates (N,Nnon−void) lies below the curve describing vgrid = vgridless

and vice versa. This idealized approach should not be applied too rigorously
since

1. the Temperton FFT-algorithm, which is used here, does not demand
the sides of the grid to be a power of two but allows for array-lengths
that can be factorized into powers of two, three and five,

2Here log means 2 log
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2. and the bit-reversal operation is not included.

But from the positions of the aggregates 1 and 2 in figure 5.2 one can still
conclude that both will most likely be better off with O(N2

non−void) matrix
vector multiplication.

5.2.3 Simulation results

The light scattering simulations for each of the twelve different aggre-
gates, were conducted with both X- and Y-polarized incident light. The
behavior of the residue convergence, differences between direct and inte-
grated scattering cross section, and direct and integrated scattering force
were similar for both the X- and Y-polarization. Therefore only the results
for Y-polarization have been included here.

Alas the behavior of the residue convergence and the differences between
direct and integrated scattering cross section are not yet trustworthy. First
of all did the residues for aggregate 2 with refractive index ma not converge,
for none of the three rescaling-factors 1, 0.5 and 0.25, as did the simulation
of aggregate 2 with mb and rescaling-factor 1 (see the convergence-schemes
in appendix E). Furthermore, the comparison of the integrated and direct
scattering cross section is not positive either. The comparison of the direct
and integrated scattering force does yield good results, but this is however
the least meaningful result (which will be explained later in this subsection).

In appendix D the following quantities have been plotted for each case :

ε(Csca)DDA =
Csca,i − Csca,d

Csca,d
, (5.5)

ε(Fsca,x)DDA =
Fsca,i,x − Fsca,d,x

~F 2
sca,d

, (5.6)

ε(Fsca,y)DDA =
Fsca,i,y − Fsca,d,y

~F 2
sca,d

, (5.7)

ε(Fsca,z)DDA =
Fsca,i,z − Fsca,d,z

~F 2
sca,d

. (5.8)

Save for the cases of simulating aggregate 1 with rescaling factor 0.5
and both the refractive indices, the ratios ε(Csca)DDA do not converge to
zero but to percentages in the range of 50− 150% (for the case of aggregate
2, m = 1.7 + 0.03i and scale-factor 0.25, ε(Csca)DDA it even converged to
360%) 3. In 1998 Kimura [9] also reported a difference between Csca,d and

3The simulations, resulting in the data presented in the tables of appendix E, were
performed in single precision. Repeating them in double precision only caused some
changes in the least significant decimals
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Csca,i. After Draine, [21], he argued that if absorption dominates scattering,
i.e. Cabs → Cext, Cabs and Cext have to be calculated to high precision to
get a reasonable accuracy in Csca = Cext − Cabs. In practical computation
he used the (ad hoc) formula

Csca =
Csca,i + Csca,df

2
a

1 + f2
a

,

fa = 100
Csca,i

Cext
.

In table 5.1 ε(Csca)DDA and Cabs/Cext are compared. Although Kimura’s ex-
planation might receive some support from aggregate 1 with scaling-factors
1 and 0.25, it can hardly be called conclusive. Alas he did not print the
differences between direct and integrated scattering cross section. Based on
the calculations in section 3.6 another explanation is offered here.

The ratios ε(Fsca,x)DDA, ε(Fsca,y)DDA, and ε(Fsca,z)DDA all converge to

scale-factor 1 0.5 0.25
(%) Cabs

Cext
ε(Csca) Cabs

Cext
ε(Csca) Cabs

Cext
ε(Csca)

grain 1 98 124 90 0.4 88 122
m = 1.14 + 0.38i

grain 1 49 85 18 0.4 14 88
m = 1.7 + 0.03i

grain 2 - - - - - -
m = 1.14 + 0.38i

grain 2 - - 18 52 21 362
m = 1.7 + 0.03i

Table 5.1: Illustration of Kimura’s argument.

zero for rising integration-accuracy, but this means nothing with regard to
the correctness of the scattering force. Starting from equation (3.10) it was
shown that ~Fout (= −~Fsca,i) can be expressed as sum of N(N − 1) integrals
~FI,jl. After solving each of these integrals and comparing them term-wise
to (3.15), ~Fsca,d and ~Fsca,i were shown to be formally equal, see steps (3.24)-
(3.26).

Similarly to ~Fout, Csca,i was expressed as sum of N(N − 1) integrals
CI,jl. After expanding the N terms in the operational expression for Csca,d

to N(N − 1), using

~Einc,j − α−1
j

~Pj = −
∑
l 6=j

Ajl · ~Pl, (5.9)

Csca,d and Csca,i were shown to be formally equal, again by term-wise com-
parison, see steps (3.28) to (3.29). The use of (5.9), by which the dipole
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Figure 5.3: Aggregate illuminated by X-polarized light m = 1.7 + 0.03i,51
grains

moments are assumed to be correct, implies that if Csca,i does not converge
to Csca,d, the dipole moments are not correct. The combination of this rea-
soning and the fact that the residues do converge, points in the direction of
an ill conditioned matrix B = I−AC (see chapter 2). This discussion will
be continued in section 5.3.

For what it is worth, the forces per dipole are displayed for the case of
aggregate 1 with refractive index mb and without rescaling in figures 5.3 and
5.4. Notice the strongest forces are approximately aligned (anti-)parallel to
the polarization of the incoming radiation. Also notice that almost all of
these strongest forces appear in pairs of equal size and opposite direction.
The corresponding grains seem to attract each other.

5.3 The difference Csca,i − Csca,d

As has been argued in section 3.6, the integrated and direct scattering
cross section are equal, if the correct dipole moments are used. In this
section the question of what will happen, if the dipole moments are not
correct, will be discussed. Suppose the 3N -vector ~P is the solution to the
linear system (C−1 −A)~P = ~Einc

4. By iteration ~Per = ~P + ~Q is obtained.

4Equation (2.1) is recovered by substituting ~P = C~E.
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Figure 5.4: Aggregate illuminated by Y-polarized light m = 1.7 + 0.03i,51
grains

The leftover residue belonging to ~Per is

~r = (C−1 −A)~Per − ~Einc

= (C−1 −A)~Q.

The integrated and direct scattering cross section resulting from ~Per are
labeled with er. Writing

C̃sca,d =
| ~E0|2

4π
Csca,d

=
[
Im(~P · ~E∗

inc − ~P(C−1)∗~P∗) +
2k3

3
|~P|2

]
(5.10)

instead of the expression in section 3.6 using summation notation, it is
straightforward to show that C̃sca,d,er can be expanded to

C̃sca,d,er = k
[
Im(~Per · ~E∗

inc − ~Per(C−1)∗~P∗
er) +

2k3

3
|~Per|2

]
= C̃sca,d + k

[
2k3

3
(~P∗ · ~Q + ~Q∗ · ~P + ~Q∗ · ~Q)

−Im

{
~Q · (A~P)∗ + (~P + ~Q) · (A~Q)∗

}]

+Im

{
(~P + ~Q) ·~r∗

}
.
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Returning to the summation notation from section 3.6, C̃sca,d,er becomes

C̃sca,d,er = C̃sca,d +
N∑

j=1

2k4

3
(~P ∗

j · ~Qj + ~Q∗
j · ~Pj + ~Q∗

j · ~Qj)

−
∑
j 6=l

Re

{
ik( ~Q∗

j ·Ajl · ~Pl + (~Pj + ~Qj)∗ ·Ajl · ~Ql)
}

−
N∑

j=1

Im

{
k(~Pj + ~Qj) · ~r∗j

}
.

The exercise of working out the integral in C̃sca,i,er is equal to that for
working out Csca,i in section 3.6, with the transitions ~P ∗

j → ~P ∗
er,j and ~Pl →

~Per,l.

C̃sca,i,er =

[
2k4

3

N∑
j=1

|~Per,j |2

+
∑
j 6=l

{
Re(a p1)jlRe(~Per,j · ~Per,l) + Re(a p2)jlRe(Per,j,zPer,l,z)

}]
,

= C̃sca,i +
2k4

3

N∑
j=1

(~P ∗
j · ~Qj + ~Q∗

j · ~Pj + ~Q∗
j · ~Qj)

+
∑
j 6=l

{
Re(a p1)jlRe(qer,1,jl) + Re(a p2)jlRe(qer,2,jl)

}
. (5.11)

Analogous to q1,jl and q2,jl in section 3.6 the dummy variables qer,1,jl and
qer,2,jl are

qer,1,jl = ~P ∗
j · ~Ql + ~Q∗

j · ~Pl + ~Q∗
j · ~Ql,

qer,2,jl = P ∗
j,zQl,z + Q∗

j,zPl,z + Q∗
j,zQl,z.

Following the same procedure as in section 3.6 that leads to the equality
Csca,i = Csca,d, the difference final result becomes

Csca,i,er − Csca,d,er = − 4πk

| ~E0|2

N∑
j=1

Im

{
(~Pj + ~Qj) · ~r∗j

}
. (5.12)

For two cases (5.12) has been calculated

1. aggregate 1, m = 1.7 + 0.03i, and scale-factor=0.5,

(5.12) → 1.75535e− 17
Csca,d = 5.54837e− 10
Csca,i = 5.53274e− 10
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2. aggregate 2, m = 1.7 + 0.03i, and scale-factor=0.5,

(5.12) → −2.66299e− 16
Csca,d = 9.05444e− 10
Csca,i = 1.37888e− 09

The numbers Csca,i are not listed in appendix E. They are extrapolations
from the values listed in the corresponding tables in appendix E for Res →
∞, assuming the convergence of the integration-procedure behaves like ∝
2−Res, which is true for the tabulated values in both cases. It is clear
that (5.12) severely underestimates the difference Csca,i − Csca,d in both
simulations.

There is yet a third way to calculate the scattering cross section,

C̃sca,3 =
8πk

3| ~E0|2

N∑
j=1

|~Pj |2 −
4πk

| ~E0|2
∑
j 6=l

Re(ik ~P ∗
j ·Ajl · ~Pl).

Provided the integration-procedure is correct, C̃sca,i will always converge to
this C̃sca,3 for the same reason ~Fsca,i will always converge to ~Fsca,d, even for
a set of incorrect dipole moments. So if C̃sca,i converges to C̃sca,3 also, then
this is an even stronger indication the CGNR-procedure does not yield the
correct results and another solution method should be used.

5.4 Literature survey

Although there is a significant amount of work on applying the DDA to
aggregate particles and on radiation pressure calculations on aggregate par-
ticles, none of it will be addressed here. The short literature investigation
presented here, will focus entirely on the (troublesome) convergence of the
CGNR-method and on the validity of the DDA when applied to aggregates
of spheres.

The DDA has been applied to fluffy/aggregate particles previously by
Kimura and Rahola, see e.g. [9, 41]. Neither of these workers reported
convergence-troubles such as the ones displayed by the simulations presented
here. Kimura did not mention which iterative method he used, but based on
his references he probably used Draine’s public-domain code, which employs
the “stabilized bi-conjugate gradient method” [42].

Rahola used the Q(uasi)M(inimal)R(esidue) method, instead of the CGNR-
method, combined with FFT. In a second publication [43], he analyzed the
spectrum of the DDA coefficient-matrix for a spheudosphere. Virtually all
eigenvalues turned out to be on a line segment in the complex plane, which
he took to account for the good performance of the QMR. In a third publi-
cation [44] he also analyzed the spectrum of the DDA coefficient-matrix for
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a D(iffusion)L(imited)A(ggregation)-cluster. Again the bulk of the eigen-
values were on a line segment in the complex plane, but compared to the
speudosphere the number of eigenvalues not on this line segment was much
larger. This larger variance of the eigenvalues might account for the trou-
blesome convergence displayed here.

The validity of the DDA will be discussed by comparison to the rig-
orous solution of the Maxwell equations for aggregates of spheres, [45, 46]
(this rigorous solution has received a firm experimental foundation, see e.g.
[47, 48, 49, 46] and references therein). Both articles deal with aggregates of
two touching spheres. While Flatau et al, [45], obtained a good agreement,
Xu and Gustafson, [46], report a failure of the DDA in accuracy combined
with a much longer execution time for the DDA. Close inspection of the
latter article shows the reason for the failure. For accurate results from the
DDA one should take Dλ > 10. Due to a lack of memory Xu and Gustafson
performed some of their DDA-simulations without obeying this rule, simula-
tions whose results consequently deviate from the rigorous solution and the
laboratory experiments. For two-sphere aggregates the DDA and the rigor-
ous solution are in close agreement, if Dλ > 10 is obeyed. For larger spheres
and refractive indices this implies more dipoles, which obviously increases
the memory-use and execution-time for the DDA. So if Xu and Gustafson
claim the DDA to be much slower (100-1000 times) than the rigorous solu-
tion without supporting execution-times, this can well be true.

But for our purpose simulations of two-sphere aggregates can merely
be preliminary benchmarks; the numbers of grains in aggregate 1 and 2 are
modest. The rigorous solution has been verified with laboratory experiments
for aggregates containing up to 27 spheres [48], but the DDA has not yet
been tested in this region. There is a lot of work still to be done.
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Chapter 6

Current state of affairs and
future-work

6.1 Conclusions

In chapter 3, a method for calculating radiation pressure in the DDA was
derived, without the need for integration and with the possibility to extract
the radiation pressure per dipole. It was also shown the O(N2)-complexity
of this method could be reduced to O(N log N). The radiation pressure re-
sulting from this new, direct method was shown to be formally equal to the
already existing method for calculating the radiation pressure, which inte-
grates the impulse of the scattered radiation. Analogously, the two already
existing methods for calculating the scattering cross section, by integration
of the scattered intensity and by the subtracting the extinction and ab-
sorption cross section, were also shown to be formally equal. With the aid
of Fast Fourier Transformation the direct method for calculating radiation
pressure will probably take comparable or even less computing time, than
the integration method. Combining this to the extra information delivered
by the direct method, the radiation pressure per dipole, radiation pressure
calculations in the DDA should preferably be done with new method, see
section 4.3.

Tests simulating a range of absorbing spheres, chapter 4, were used to
demonstrate the validity of the new radiation pressure method and the
equivalence of the integration and direct methods, for both the radiation
pressure and the scattering cross section. The overall conclusion for DDA-
based radiation pressure calculations on spherical particles is that, compared
to MIE-theory, the error in the radiation pressure cross section is compara-
ble to the error in the extinction cross section.

The next step of applying the DDA to aggregate particles proved to
be more cumbersome. First of all the integrated scattering cross section
did not converge to the direct one. This can probably be attributed to ill
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conditioning of the DDA-matrix.

6.2 Future-work

As has already been announced in the title of this thesis, it is merely
an exploration of DDA-based radiation pressure calculations on aggregate
particles. Therefore the subject of future-work will receive more attention
than the preceding conclusions.

6.2.1 DDA

First of all the benchmarks on spherical particles were not exhaustive;
the radiation pressure per dipole was only verified by comparing the accumu-
lated radiation pressure for all dipoles to the radiation pressure cross section
resulting from MIE-code. As has already been argued, the work of Peter
Debye, [13], might serve as guide for also verifying the radiation pressure
per dipole; discretizing the integration of the Maxwell Stress Tensor in the
same way the integral equation leading to the DDA-equations is discretized,
will probably solve this problem.

An urgent matter is the insertion of Fast Fourier Transformation in the
direct calculation of radiation pressure, especially since the advent of the
“Fastest Fourier Transform in the West”(FFTW). This is a C-package for
Fast Fourier Transformation, developed at MIT by Matteo Frigo and Steven
G. Johnson; it includes subroutines for parallel, and multi-dimensional FFT
under MPI 1. They claim their portable package to be superior to other
public-domain FFT-codes and support their claim by a set of benchmarks.
Embedding this package into the current fDDA-code (not just into the radia-
tion pressure algorithm but also in the CG-procedure) will probably increase
its performance and portability.

Furthermore the use of CGNR for solving the DDA-equations should be
reconsidered. Considering the discrepancy between integrated and direct
scattering cross section from a purely algebraic level, it means the dipole
moments resulting from CG iterations, do not satisfy the DDA-equations, al-
though the residue does converge. The Q(uasi)M(inimal)R(esidue) method
is thought to be more robust, and needs only one matrix-vector product
per iteration, [41]. Another option is directly calculating the inverse by
LU-factorization; usually the number of dipoles, i.e. matrix-size, prohibits
such an approach, but for the 51-grain and 101-grain aggregates considered
in chapter 5, resulting in complex 150 × 150-matrix and 300 × 300-matrix
respectively, the problem-size of LU-factorization must be within reach.

1Available for free from http://www.fftw.org/
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6.2.2 Light scattering by and radiation pressure on aggregate
particles

After the problems with solving the DDA-equations have been eradicated
(DDA-simulations of porous/aggregate particles by other workers [9, 41] in-
dicate this must be possible), the accuracy of the DDA must be addressed.
An internal check would be increasing the number of dipoles per grain;
Dgrain = 8, 32, . . .. For using more than 32 dipoles per grain, probably only
aggregate 1 or even smaller ones can be used. Using 32 dipoles per grain
means replacing each grid-point by a small 43 grid, i.e. rescaling the num-
ber of grid-points with a factor 64. The next step will be Dgrain = 136, i.e.
replacing each grid-point by a 63 grid and thereby rescaling the number of
grid-points with a factor 216. In figure 6.1 the FFT-complexity comparison

Figure 6.1: Each star in the (Nnon−void, N)-plane represents aggregate 1
discretized with the number accompanying each is the number of dipoles
per grain it represents

displayed in figure 5.2 is redrawn, this time for aggregate 1 with Dgrain > 1
as described above. This illustrates that when increasing the number of
dipoles per grain, eventually any aggregate will benefit from FFT, since
Nnon−void ∝ N for a particular aggregate.

By raising the number of dipoles per grain, the aggregate-deformation
resulting from projecting the aggregate on a rectangular grid will decrease.
But still the grain will be shifted. It might therefore be useful to recover the
O(N2

non−void)-method not just for execution-time comparison but also for
comparison of the scattered fields (that is with multiple dipoles per grain).

Next to these DDA-specific checks the scattered field should also be com-
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pared to another independent solution, the rigorous solution of the Maxwell
equations for multiple spheres a.k.a. multipole expansion method or ex-
tended Mie-theory. This method has received experimental verification for
up to 27-sphere aggregates [48]. Of course direct comparison to experiments
of light scattering resulting from aggregate particles would be the best check,
but these are not available at the moment. Therefore comparison to ex-
tended MIE-theory seems to be the most reliable test at the moment.

It might be possible the DDA fails this test, or that the accuracy de-
mands, i.e. large grids, render it computationally prohibitive/much more
demanding than extended MIE-theory itself. In these cases replacing the
DDA by extended MIE-theory might be an option. A serious drawback is
that this approach will take us back to where we started; the mathematical
apparatus for radiation pressure calculations has (to our knowledge) not yet
been developed for extended MIE-theory. But this drawback might be less
serious than it appears to be, because it descends from MIE-theory. MIE-
theory from which Debye rigorously derived expressions for the radiation
pressure cross section of a single sphere.

6.3 Final conclusions

The main part of this thesis is devoted to extracting radiation pressure
from DDA-simulations. As the title of this thesis already suggests, it is
merely a first exploration of applying the resulting expressions to aggregate
particles. Not just because of the new means for extracting radiation pres-
sure, but also because there is not yet an established recipe for applying
the DDA to aggregate particles (assuming self-consistent results can be ob-
tained); how should the polarizabilities be determined, and what number
of dipoles per spherical grain should be used, are questions that need to
be answered. Comparing the DDA to extended MIE-theory for two-sphere
aggregates is a first step to answering these questions, but it cannot possibly
provide a conclusive answer.
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Appendix A

Detailed calculations

A.1 Direct Radiation Pressure

A.1.1 Time-averaging the force per dipole

The time-dependent force per dipole (3.1) reads

~Fj(t) = Re

(
e−iωt ~Pj · ∇j

)
Re

(
e−iωt ~Ej

)
+Re

(
d(e−iωt ~Pj)

dt

)
×Re

(
e−iωt ~Bj

)
.

Assuming the dipoles are at rest 1
c

d(e−iωt ~Pj)
dt equals (−ik)e−iωt ~Pj . Separating

all variables in real and imaginary parts the time-dependent force becomes

~Fj(t) =
(

cos ωtRe(~Pj)− sinωtIm(~Pj)
)
·

∇j

(
cos ωtRe( ~Ej)− sinωtIm( ~Ej)

)
−k

(
cos ωtRe(i ~Pj)− sinωtIm(i ~Pj)

)
×(

cos ωtRe( ~Bj)− sinωtIm( ~Bj)
)

.

The time-averaged force becomes

2 < ~Fj > = Re(~Pj · ∇j)Re( ~Ej) + Im(~Pj · ∇j)Im( ~Ej)

−Re(ik ~Pj)×Re( ~Bj)− Im(ik ~Pj)× Im~Bj).
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Using the relation

Re(~α)×Re(~β) + Im(~α)× Im(~β) =

êo εopq

(
Re(αp)Re(βq) + Im(αp)Im(βq)

)
=

εopq

(
Re(α∗

pβq)
)

=

Re( ~α∗ × ~β)

and (ik ~P )∗ = −ik ~P ∗, yields

< ~Fj >=
1
2
Re

(
~P ∗

j · ∇j
~Ej + ik ~P ∗

j × ~Bj

)
.

Here the Einstein-summation convention for double indices is used and εopq

is the Levi-Civita tensor, which obeys

εopq =


0 if at least two indices are the same,
1 if o, p, q is an even permutation of 1, 2, 3,
−1 if o, p, q is an odd permutation of 1, 2, 3.

A.1.2 Differentiations

For easy reference the distance vector and its corresponding unit vector
are given again:

~rjl = ~rj − ~rl,

n̂jl = ~rjl/rjl.

Working out ~P ∗
j · ∇j

~Ejl means doing three differentiations of the form

(~P ∗
j · ∇j)f(rjl) = (~P ∗

j · ∇jrjl)f
′
(rjl)

resulting in a scalar and one resulting in a vector-value. For the first three
particular cases the scalar functions and their derivatives are

(eikx)
′

= ikeikx,

g(x) = k2

x −
1
x3 + ik

x2 ,

g
′
(x) = −k2

x2 + 3
x4 − 2ik

x3 ,

h(x) = 3
x3 − 3ik

x2 − k2

x ,

h
′
(x) = − 9

x4 + 6ik
x3 + k2

x2 .

The differentiation of the vector function can be simply rewritten to

(~P ∗
j · ∇j)n̂jl(n̂jl · ~Pl) = n̂jl(~P ∗

j · ∇j)(n̂jl · ~Pl) + (n̂jl · ~Pl)(~P ∗
j · ∇j)n̂jl. (A.1)
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The differentiations in (A.1) can decomposed into

(~P ∗
j · ∇j)njl,u =

1
rjl

(~P ∗
j · ∇j)rjl,u −

rjl,u

r2
jl

(~P ∗
j · ∇j)rjl

=
1
rjl

(
P ∗

j,u − (~P ∗
j · n̂jl)njl,u

)
u ∈ {x, y, z}. (A.2)

Inserting expressions in (A.1) yields

(~P ∗
j · ∇j)[n̂jl(n̂jl · ~Pl)] =

1
rjl

[
(~P ∗

j · ~Pl)n̂jl + ~P ∗
j (n̂jl · ~Pl)

−2(~P ∗
j · n̂jl)n̂jl(n̂jl · ~Pl)

]
.

In full detail the vector ~P ∗
j · ∇j

~Ejl reads

~P ∗
j · ∇j

~Ejl = ~P ∗
j · ∇j

{
eikrjl{g(rjl) ~Pl + h(rjl) n̂jl(n̂jl · ~Pl}

}
. (A.3)

= (~P ∗
j · ∇je

ikrjl){g(rjl) ~Pl + h(rjl) n̂jl(n̂jl · ~Pl}

+(~P ∗
j · ∇jg(rjl)) eikrjl ~Pl

+(~P ∗
j · ∇jh(rjl)) eikrjl n̂jl(n̂jl · ~Pl)

+h(rjl) eikrjl ~P ∗
j · ∇j [n̂jl(n̂jl · ~Pl)].

Using (~P ∗
j · ∇jrjl) = ~P ∗

j · n̂jl (A.3) becomes

~P ∗
j · ∇j

~Ejl = eikrjl

[

(~P ∗
j · ~Pl)n̂jl

h

rjl

+(~P ∗
j · n̂jl)n̂jl(n̂jl · ~Pl) {(ik −

2
rjl

)h + h
′}

+(~P ∗
j · n̂jl)~Pl {ikg + g

′}

+ ~P ∗
j (n̂jl · ~Pl)

h

rjl

]
,
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= eikrjl

[

(~P ∗
j · ~Pl)n̂jl

( 3
r4
jl

− 3ik

r3
jl

− k2

r2
jl

)
−(~P ∗

j · n̂jl)n̂jl(n̂jl · ~Pl)
(
5(

3
r4
jl

− 3ik

r3
jl

− k2

r2
jl

) +
ik3

rjl
− k2

r2
jl

)
+(~P ∗

j · n̂jl)~Pl

( 3
r4
jl

− 3ik

r3
jl

− 2k2

r2
jl

+
ik3

rjl

)
+~P ∗

j (n̂jl · ~Pl)
( 3
r4
jl

− 3ik

r3
jl

− k2

r2
jl

)]
.

A.2 Relating the integrated and direct methods

A.2.1 Evaluating Iu(α)

The evaluation of Iu(α) comes down to multiple partial integration.
There is a straightforward relation between the cases of Iu and Iu−1

Iu(α) =
∫ 1

−1
dt tu eiαt,

=
tueiαt

iα

∣∣∣t=1

t=−1
− u

iα

∫ 1

−1
dt tu−1 eiαt,

=
eiα + e−iα (−1)u+1

iα
− uIu−1(α)

iα
for 1 ≤ u.

Iu(α) is expanded for u ≤ 3

I0 = (eiα − e−iα)(iα)−1,

I1 = (eiα + e−iα)(iα)−1

−(eiα − e−iα)(iα)−2,

I2 = (eiα − e−iα){(iα)−1 + 2(iα)−3}
−(eiα + e−iα)2(iα)−2,

I3 = (eiα + e−iα){(iα)−1 + 6(iα)−3}
−(eiα − e−iα){3(iα)−2 + 6(iα)−4}.
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For further use some combinations are calculated and cast into a different
form

I0 + I2 = 4Re(eiα{ 1
α2
− i

α
+

i

α3
}),

I0 − 3I2 = 4Re(eiα{−3
α2

+
i

α
− 3i

α3
}),

I1 = 2iIm(eiα{−i

α
+

1
α2
}),

I3 − I1 = 4iIm(eiα{− 3
α4

+
3i

α3
+

1
α2
}).

A.2.2 Reduction of integral expressions for Csca and ~Fsca

Before the integrals are solved the dyadic

N(φ, t) = n̂n̂

=

 cos2 φ s2(t) sinφ cos φ s2(t) cos φ ts(t)
sinφ cos φ s2(t) sin2 φ s2(t) sinφ ts(t)
cos φ ts(t) sinφ ts(t) t2


(with s(t) =

√
1− t2) is introduced. The integral-terms in (3.20) read in

full detail

~FI,jl =
k4

8π

∫ 2π

0
dφ

∫ 1

−1
dt eikrjlt s(t) cos φ

s(t) sin φ
t

 [
(~P ∗

j · ~Pl)− (~P ∗
j )T ·N(φ, t) · ~Pl

]
. (A.4)

In the first term on the right hand side of (A.4) only the z-component does
not vanish. The second term on the right hand side of (A.4) consists of 27
integrals; a sum of 9 for each spatial direction. Piecewise evaluation of the
φ-dependent parts shows only of those integrals 7 not to vanish,

• x-direction : the terms corresponding to N13 and N31,

• y-direction : the terms corresponding to N23 and N32,

• z-direction : the terms corresponding to the diagonal-elements of N .

This reduces ~FI,jl to

~FI,jl =
k4(I3(krjl)− I1(krjl))

8

 P ∗
j,x Pl,z + P ∗

j,z Pl,x

P ∗
j,y Pl,z + P ∗

j,z Pl,y

P ∗
j,x Pl,x + P ∗

j,y Pl,y − 2P ∗
j,z Pl,z


+

k4I1(krjl)
4

 0
0
P ∗

j,x Pl,x + P ∗
j,y Pl,y

 . (A.5)
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For j = l the complex exponential factor reduces to 1. The first term on
the right hand side of (A.4) vanishes because

∫
4π dΩn̂ = 0. Returning to the

notation (~P ∗
j N(φ, t)~Pj) = (~P ∗

j · n̂)(n̂ · ~P ∗
j ) it is clear that

(~P ∗
j · n̂)(n̂ · ~Pj) =

(
Re(~Pj) · n̂

)2
+

(
Im(~Pj) · n̂

)2
.

This way the evaluation of the second term comes down to two integrations of
the form

∫
dΩn̂

(
~a·n̂

)2, with ~a a constant real vector. By choosing z-axis ‖ ~a,
the dot product ~a · n̂ reduces to az cos θ.

∫
dΩn̂

(
~a · n̂

)2 = a2
z

∫ π

0
dθ

∫ 2π

0
dφ sin θ cos2 θ

 sin θ cos φ
sin θ sinφ
cos θ

 .

Because cos φ and sinφ are anti-symmetrical on the interval 0 ≤ φ ≤ 2π
and sin θ cos3 θ is anti-symmetrical on the interval 0 ≤ θ ≤ π, all three
components vanish, so ~FI,jj = 0.

Similarly (3.21) reads in full detail

CI,jl =
k4

~E2
inc

∫ 2π

0
dφ

∫ 1

−1
dt eikrjlt

[
(~P ∗

j · ~Pl)− (~P ∗
j )T ·N(φ, t) · ~Pl

]
.(A.6)

For j = l the first term on the right hand side of (A.6) equals 4π. In the
second term only the integrals corresponding to the diagonal elements of
N(φ, t) do not vanish. Using

∫ π/2
0 dθ sin3 θ = 2/3 it readily follows that

CI,jj = 8πk4

3 |~P 2
j |. For j 6= l piecewise evaluation of the φ-dependent parts,

will again show a number of terms to vanish. The second term on the right
hand side of (A.6) is again a sum of 9 integrals, of which only the ones
corresponding to the diagonal elements do not vanish;

CI,jl =
πk4

~E2
inc

[
2~P ∗

j · ~PlI0(krjl) − (P ∗
j,xPl,x + P ∗

j,yPl,y)(I0(krjl)− I2(krjl)),

− 2P ∗
j,zPl,zI2(krjl)

]
=

πk4

~E2
inc

[
~P ∗

j · ~Pl(I0(krjl) + I2(krjl))

+P ∗
j,zPl,z(I0(krjl)− 3I2(krjl))

]
.
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Appendix B

Graphs :
Spherical particles
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B.1 Errors vs. resolution

B.1.1 m = 1.05
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B.1.2 m = 1.14+0.38i
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B.1.3 m = 1.33+0.01i
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B.1.4 m = 1.68+0.03i
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B.1.5 m = 1.7+0.156i
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B.1.6 m = 1.81+0.48i
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B.1.7 m = 2.5+1.4i
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B.1.8 m = 3.05+0.33i
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B.2 Errors vs. Real part of the refractive index :
Spherical particles
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B.2.1 Mie-error in Direct Extinction, Absorption
and Scattering Coefficient
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B.2.2 Mie-error in Integrated Scattering Coefficient
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B.2.3 Modelling error in Scattering Coefficient
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B.2.4 Mie-error in the Integrated Scattering force
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B.2.5 Mie-error in Integrated
Radiation Pressure cross-section
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B.2.6 Modelling error in Radiation Pressure cross-section
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B.3 Errors vs. Imaginary part of the refractive
index :
Spherical particles
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B.3.1 Mie-error in Direct Extinction, Absorption
and Scattering Coefficient
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B.3.2 Mie-error in Scattering Coefficient
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B.3.3 Modelling error in Scattering Coefficient
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B.3.4 Mie-error in the Scattering force
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B.3.5 Mie-error in Radiation Pressure cross-section
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B.3.6 Modelling error in Radiation Pressure cross-section
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Appendix C

Raw Numbers :
Spherical particles

C.1 DDA input-parameters

m #dip
λ box- #dip in #CG-

size sphere iterations
1.05 15 12 912 6
1.14 + 0.38i 11
1.33 + 0.01i 19
1.68 + 0.03i 20 16 2176 46
1.7 + 0.156i 37
1.81 + 0.48i 37
2.5 + 1.4i 30 24 7208 72
3.05 + 0.33i 40 32 17256 266

Table C.1: x = 2.5

m #dip
λ box- #dip in #CG-

size sphere iterations
1.05 15 24 7208 8
1.14 + 0.38i 21
1.33 + 0.01i 39
1.68 + 0.03i 20 32 17256 160
1.7 + 0.156i 102
1.81 + 0.48i 70
2.5 + 1.4i 30 48 57856 132
3.05 + 0.33i 40 64 137376 497

Table C.2: x = 5
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m #dip
λ box- #dip in #CG-

size sphere iterations
1.05 15 48 57856 13
1.14 + 0.38i 40
1.33 + 0.01i 125
1.68 + 0.03i 20 64 137376 716
1.7 + 0.156i 233
1.81 + 0.48i 145
2.5 + 1.4i 30 96 436400 277

Table C.3: x = 10

C.2 Raw data

In the table headings in this appendix the names Fsca,x, Fsca,y and Fsca,z

will be used heavily. The printed numbers are not the actual forces but
8πFsca,x/ ~E2

inc, 8πFsca,y/ ~E2
inc and 8πFsca,z/ ~E2

inc respectively.

90



C.2.1 m = 1.05
x = 2.51994

Quantity Mie-value
Qext 0.024771
Qsca 0.024771
gz 0.751806
Qpr 0.006148

Table C.4: Mie-values

Cross-section Efficiency
Extinction 0.49377 0.02475
Absorption -6.84086e-10 -3.42909e-11
Scattering 0.49377 0.02475

Table C.5: Direct DDA

Res Csca (conv.) Qsca

4 0.49023 (7.742e-05) 0.02457
5 0.49213 (1.48053e-05) 0.02467
6 0.49295 (1.62086e-06) 0.02471
7 0.49336 (2.02542e-07) 0.02473
8 0.49357 (2.53261e-08) 0.02474
Res −Fsca,x (conv.) −Fsca,y (conv.)
4 0.02815 (0.00054) 5.37808e-09 (0.00348)
5 0.01414 (3.35795e-05) 2.19918e-09 (0.00121)
6 0.00709 (4.258e-06) 2.12642e-09 (0.00052)
7 0.00355 (5.3019e-07) 1.53124e-09 (0.00011)
8 0.00178 (6.61511e-08) 1.57986e-09 (3.03485e-05)
Res −Fsca,z (conv.)
4 0.37126 (0.00045)
5 0.37166 (3.95467e-06)
6 0.37166 (8.64701e-09)
7 0.37166 (1e-09)
8 0.37166 (1e-09)

Table C.6: Integrated DDA
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C.2.2 m = 1.05
x = 5.01954

Quantity Mie-value
Qext 0.119193
Qsca 0.119193
gz 0.908937
Qpr 0.010854

Table C.7: Mie-values

Cross-section Efficiency
Extinction 9.44194 0.11928
Absorption -5.517e-09 -6.96988e-11
Scattering 9.44194 0.11928

Table C.8: Direct DDA

Res Csca (conv.) Qsca

4 9.42155 (0.00214) 0.11903
5 9.439 (7.0198e-06) 0.11925
6 9.44194 (1.87847e-07) 0.11927
7 9.44137 (1.43755e-08) 0.11928
8 9.44165 (1.81862e-09) 0.11928
Res −Fsca,x (conv.) −Fsca,y (conv.)
4 0.26957 (0.00596) 1.04189e-07 (0.00048)
5 0.1378 (0.0001) 9.12076e-08 (0.00061)
6 0.06884 (6.65764e-08) 5.58974e-08 (0.00071)
7 0.03442 (5.637e-08) 4.11783e-08 (4.61392e-05)
8 0.01721 (7.11368e-09) 1.97213e-08 (9.60308e-05)
Res −Fsca,z (conv.)
4 8.58811 (0.00183)
5 8.57686 (5.22551e-06)
6 8.57816 (1.48829e-07)
7 8.57815 (1e-09)
8 8.57815 (1e-09)

Table C.9: Integrated DDA
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C.2.3 m = 1.05
x = 10.0502

Quantity Mie-value
Qext 0.488248
Qsca 0.488248
gz 0.969948
Qpr 0.014673

Table C.10: Mie-values

Cross-section Efficiency
Extinction 154.924 0.48822
Absorption -4.47582e-08 -1.41049e-10
Scattering 154.924 0.48822

Table C.11: Direct DDA

Res Csca (conv.) Qsca

4 181.53 (0.0145) 0.57207
5 154.169 (0.00069) 0.48585
6 154.908 (4.65725e-06) 0.48817
7 154.917 (1.36341e-08) 0.4882
8 154.92 (1.51599e-09) 0.4882
Res −Fsca,x (conv.) −Fsca,y (conv.)
4 3.23191 (0.01346) 1.29621e-06 (0.00855)
5 1.14127 (0.0016) 6.37116e-07 (0.00031)
6 0.58629 (2.70036e-05) 2.49528e-07 (0.00133)
7 0.29307 (1e-09) 6.35689e-07 (0.00017)
8 0.14656 (1.30359e-08) 7.13795e-07 (6.09368e-06)
Res −Fsca,z (conv.)
4 175.38 (0.01459)
5 149.667 (0.00067)
6 150.254 (3.81588e-06)
7 150.258 (6.04181e-09)
8 150.258 (1e-09)

Table C.12: Integrated DDA

93



C.2.4 m = 1.14 + 0.38i
x = 2.51994

Quantity Mie-value
Qext 1.76346
Qsca 0.546803
gz 0.755954
Qpr 1.3501

Table C.13: Mie-values

Cross-section Efficiency
Extinction 35.2668 1.76781
Absorption 24.3687 1.22152
Scattering 10.8981 0.54629

Table C.14: Direct DDA

Res Csca (conv.) Qsca

4 10.8422 (0.0003) 0.54348
5 10.8753 (1.14984e-05) 0.5451
6 10.8867 (1.02063e-06) 0.54571
7 10.8924 (1.28131e-07) 0.546
8 10.8953 (1.60058e-08) 0.54614
Res −Fsca,x (conv.) −Fsca,y (conv.)
4 0.57847 (0.0004) 1.80285e-07 (0.00156)
5 0.2891 (1.37209e-05) 8.7656e-08 (0.00156)
6 0.14468 (1.78171e-06) 7.00047e-08 (0.00016)
7 0.07239 (2.22169e-07) 9.01538e-08 (6.13436e-05)
8 0.03621 (2.77568e-08) 2.94377e-08 (1.72176e-05)
Res −Fsca,z (conv.)
4 8.26455 (0.00073)
5 8.27904 (6.49422e-06)
6 8.27892 (1.40821e-08)
7 8.27892 (1e-09)
8 8.27892 (1e-09)

Table C.15: Integrated DDA
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C.2.5 m = 1.14 + 0.38i
x = 5.01954

Quantity Mie-value
Qext 2.13525
Qsca 0.90648
gz 0.889992
Qpr 1.32849

Table C.16: Mie-values

Cross-section Efficiency
Extinction 168.845 2.1331
Absorption 97.2676 1.22883
Scattering 71.5777 0.90427

Table C.17: Direct DDA

Res Csca (conv.) Qsca

4 72.0047 (0.00069) 0.90967
5 71.4397 (3.12743e-05) 0.90253
6 71.522 (1.12713e-06) 0.90357
7 71.5499 (9.50292e-08) 0.90392
8 71.5639 (1.19837e-08) 0.9041
Res −Fsca,x (conv.) −Fsca,y (conv.)
4 2.12916 (0.00571) 1.48463e-06 (0.00807)
5 1.09465 (0.00012) 7.19215e-07 (0.00066)
6 0.54849 (3.02595e-06) 1.16483e-06 (0.00015)
7 0.27465 (4.23414e-07) 1.08877e-06 (3.32902e-05)
8 0.13744 (5.27771e-08) 1.15979e-06 (6.86203e-06)
Res −Fsca,z (conv.)
4 64.6807 (0.00023)
5 63.7467 (5.74976e-05)
6 63.7805 (5.18239e-07)
7 63.7802 (1e-09)
8 63.7802 (1e-09)

Table C.18: Integrated DDA
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C.2.6 m = 1.14 + 0.38i
x = 10.0502

Quantity Mie-value
Qext 2.20555
Qsca 1.06837
gz 0.930602
Qpr 1.21132

Table C.19: Mie-values

Cross-section Efficiency
Extinction 699.538 2.2045
Absorption 361.028 1.13774
Scattering 338.51 1.06676

Table C.20: Direct DDA

Res Csca (conv.) Qsca

4 362.904 (0.01374) 1.14364
5 340.252 (0.00026) 1.07226
6 338.18 (5.99567e-06) 1.06573
7 338.392 (1.53507e-07) 1.0664
8 338.451 (1.06573e-08) 1.06659
Res −Fsca,x (conv.) −Fsca,y (conv.)
4 8.2973 (0.00988) -3.42784e-06 (0.0129)
5 3.35069 (0.00091) -3.25753e-06 (0.00137)
6 1.70966 (2.0534e-05) -3.19076e-06 (7.96573e-05)
7 0.85662 (5.71209e-07) -3.26184e-06 (2.96599e-05)
8 0.42884 (7.89414e-08) -3.39118e-06 (6.27089e-06)
Res −Fsca,z (conv.)
4 338.998 (0.01443)
5 317.717 (0.00026)
6 315.203 (7.78662e-06)
7 315.302 (7.68237e-08)
8 315.302 (1e-09)

Table C.21: Integrated DDA
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C.2.7 m = 1.33 + 0.01i
x = 2.51994

Quantity Mie-value
Qext 1.27094
Qsca 1.17828
gz 0.710664
Qpr 0.433581

Table C.22: Mie-values

Cross-section Efficiency
Extinction 25.2105 1.26372
Absorption 1.8354 0.092
Scattering 23.3751 1.17172

Table C.23: Direct DDA

Res Csca (conv.) Qsca

4 23.2253 (0.00011) 1.16421
5 23.3066 (1.3426e-05) 1.16828
6 23.3408 (1.43188e-06) 1.17
7 23.3579 (1.7901e-07) 1.17085
8 23.3665 (2.23729e-08) 1.17128
Res −Fsca,x (conv.) −Fsca,y (conv.)
4 1.13422 (0.00041) 5.37229e-07 (0.00034)
5 0.56657 (1.15808e-05) 3.68656e-07 (0.00042)
6 0.28346 (1.54943e-06) 3.23219e-07 (9.96699e-05)
7 0.14181 (1.93471e-07) 2.9058e-07 (6.79699e-05)
8 0.07093 (2.41415e-08) 2.74588e-07 (5.13449e-06)
Res −Fsca,z (conv.)
4 16.6547 (0.00051)
5 16.6747 (4.48661e-06)
6 16.6745 (9.5191e-09)
7 16.6745 (1e-09)
8 16.6745 (1e-09)

Table C.24: Integrated DDA
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C.2.8 m = 1.33 + 0.01i
x = 5.01954

Quantity Mie-value
Qext 3.49011
Qsca 3.29449
gz 0.852981
Qpr 0.679971

Table C.25: Mie-values

Cross-section Efficiency
Extinction 276.955 3.4989
Absorption 15.4418 0.19508
Scattering 261.514 3.30382

Table C.26: Direct DDA

Res Csca (conv.) Qsca

4 261.42 (0.00106) 3.30264
5 260.835 (8.9958e-06) 3.29525
6 261.203 (1.37859e-06) 3.2999
7 261.358 (1.44831e-07) 3.30186
8 261.436 (1.81687e-08) 3.30284
Res −Fsca,x (conv.) −Fsca,y (conv.)
4 7.00737 (0.00498) 1.09921e-05 (0.00723)
5 3.5978 (0.00012) 1.00892e-05 (3.17901e-05)
6 1.80404 (3.73196e-06) 9.07789e-06 (1.83252e-05)
7 0.90368 (5.06337e-07) 1.01274e-05 (4.67748e-06)
8 0.45229 (6.31453e-08) 1.00164e-05 (2.5644e-06)
Res −Fsca,z (conv.)
4 225.36 (0.00084)
5 223.467 (3.32399e-05)
6 223.542 (3.29266e-07)
7 223.542 (1e-09)
8 223.542 (1e-09)

Table C.27: Integrated DDA
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C.2.9 m = 1.33 + 0.01i
x = 10.0502

Quantity Mie-value
Qext 2.21083
Qsca 1.83546
gz 0.75357
Qpr 0.827681

Table C.28: Mie-values

Cross-section Efficiency
Extinction 704.94 2.22153
Absorption 118.993 0.37499
Scattering 585.948 1.84654

Table C.29: Direct DDA

Res Csca (conv.) Qsca

4 479.701 (0.00317) 1.51172
5 596.913 (0.00076) 1.8811
6 584.587 (2.05985e-05) 1.84225
7 585.429 (3.51197e-07) 1.8449
8 585.687 (2.69143e-08) 1.84572
Res −Fsca,x (conv.) −Fsca,y (conv.)
4 15.346 (0.00618) 6.50252e-05 (0.00775)
5 8.6059 (0.00044) 7.78566e-05 (0.00086)
6 4.27163 (6.21146e-06) 7.15877e-05 (3.04437e-05)
7 2.1365 (1.31557e-07) 7.18547e-05 (7.8116e-06)
8 1.06846 (1.30347e-08) 7.77523e-05 (1.97002e-06)
Res −Fsca,z (conv.)
4 340.203 (0.00462)
5 454.887 (0.00099)
6 441.513 (2.95823e-05)
7 441.836 (1.78548e-07)
8 441.835 (1e-09)

Table C.30: Integrated DDA
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C.2.10 m = 1.68 + 0.03i
x = 2.52546

Quantity Mie-value
Qext 4.13589
Qsca 3.72906
gz 0.698795
Qpr 1.53004

Table C.31: Mie-values

Cross-section Efficiency
Extinction 83.1795 4.15132
Absorption 8.0025 0.39939
Scattering 75.177 3.75193

Table C.32: Direct DDA

Res Csca (conv.) Qsca

4 74.2716 (0.00014) 3.70675
5 74.7512 (2.50849e-05) 3.73068
6 74.9641 (2.77363e-06) 3.74131
7 75.0705 (3.46227e-07) 3.74662
8 75.1238 (4.32445e-08) 3.74928
Res −Fsca,x (conv.) −Fsca,y (conv.)
4 2.87104 (0.00048) 2.71261e-06 (0.00066)
5 1.44089 (2.98042e-05) 2.49835e-06 (13)
6 0.72249 (3.71408e-06) 2.54929e-06 (1.06258e-05)
7 0.36184 (4.62978e-07) 2.56951e-06 (2.72319e-05)
8 0.18108 (5.77876e-08) 2.42661e-06 (8.38604e-06)
Res −Fsca,z (conv.)
4 53.06 (0.00066)
5 53.137 (5.62084e-06)
6 53.1363 (1.17085e-08)
7 53.1363 (1e-09)
8 53.1363 (1e-09)

Table C.33: Integrated DDA
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C.2.11 m = 1.68 + 0.03i
x = 5.03617

Quantity Mie-value
Qext 2.17025
Qsca 1.52516
gz 0.495933
Qpr 1.41388

Table C.34: Mie-values

Cross-section Efficiency
Extinction 173.803 2.18126
Absorption 49.5644 0.62204
Scattering 124.239 1.55922

Table C.35: Direct DDA

Res Csca (conv.) Qsca

4 123.975 (0.00431) 1.55591
5 122.172 (5.75921e-05) 1.53328
6 123.258 (8.60883e-06) 1.54691
7 123.748 (9.6651e-07) 1.55306
8 123.993 (1.20694e-07) 1.55614
Res −Fsca,x (conv.) −Fsca,y (conv.)
4 4.48351 (0.00578) 1.14778e-05 (0.00437)
5 2.31198 (0.00013) 1.27007e-05 (0.00018)
6 1.18429 (2.42656e-05) 1.16102e-05 (1.89386e-05)
7 0.59927 (2.95847e-06) 1.25065e-05 (7.24435e-06)
8 0.30144 (3.67456e-07) 1.10523e-05 (2.47521e-07)
Res −Fsca,z (conv.)
4 65.8741 (0.00659)
5 62.461 (0.00021)
6 62.5531 (1.43955e-06)
7 62.5525 (2.40375e-09)
8 62.5525 (1e-09)

Table C.36: Integrated DDA

101



C.2.12 m = 1.68 + 0.03i
x = 10.056

Quantity Mie-value
Qext 2.16995
Qsca 1.33216
gz 0.788128
Qpr 1.12004

Table C.37: Mie-values

Cross-section Efficiency
Extinction 690.188 2.17255
Absorption 264.106 0.83134
Scattering 426.082 1.34121

Table C.38: Direct DDA

Res Csca (conv.) Qsca

4 369.193 (0.00273) 1.16213
5 431.686 (0.00056) 1.35885
6 424.478 (1.66261e-05) 1.33616
7 425.388 (5.22605e-07) 1.33902
8 425.732 (4.93887e-08) 1.3401
Res −Fsca,x (conv.) −Fsca,y (conv.)
4 9.62081 (0.01125) 5.70742e-05 (0.00789)
5 6.12646 (0.00085) 7.53558e-05 (0.00063)
6 3.05794 (7.48262e-07) 7.25221e-05 (1.20014e-05)
7 1.53809 (1.49939e-06) 7.49466e-05 (2.35742e-06)
8 0.77133 (1.80624e-07) 7.43216e-05 (9.0996e-08)
Res −Fsca,z (conv.)
4 295.496 (0.00455)
5 345.523 (0.00056)
6 337.572 (2.29938e-05)
7 337.781 (1.50939e-07)
8 337.779 (1e-09)

Table C.39: Integrated DDA
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C.2.13 m = 1.7 + 0.156i
x = 2.52546

Quantity Mie-value
Qext 3.47295
Qsca 2.29734
gz 0.733504
Qpr 1.78784

Table C.40: Mie-values

Cross-section Efficiency
Extinction 70.8992 3.53844
Absorption 23.6167 1.17866
Scattering 47.2825 2.35978

Table C.41: Direct DDA

Res Csca (conv.) Qsca

4 46.8396 (0.00024) 2.33767
5 47.0824 (2.00135e-05) 2.34979
6 47.1824 (2.06958e-06) 2.35478
7 47.2325 (2.58863e-07) 2.35728
8 47.2575 (3.23154e-08) 2.35853
Res −Fsca,x (conv.) −Fsca,y (conv.)
4 1.90524 (0.00036) 2.4868e-06 (0.00473)
5 0.95261 (1.5267e-05) 2.04895e-06 (0.0004)
6 0.47676 (1.8804e-06) 1.87604e-06 (1.60904e-05)
7 0.23855 (2.34936e-07) 1.84633e-06 (2.17093e-05)
8 0.11933 (2.93358e-08) 1.78732e-06 (5.46393e-06)
Res −Fsca,z (conv.)
4 34.9824 (0.00075)
5 35.0422 (6.57816e-06)
6 35.0417 (1.42029e-08)
7 35.0417 (1e-09)
8 35.0417 (1e-09)

Table C.42: Integrated DDA
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C.2.14 m = 1.7 + 0.156i
x = 5.03617

Quantity Mie-value
Qext 2.5156
Qsca 1.1526
gz 0.796435
Qpr 1.59763

Table C.43: Mie-values

Cross-section Efficiency
Extinction 201.36 2.5271
Absorption 108.444 1.361
Scattering 92.9154 1.1661

Table C.44: Direct DDA

Res Csca (conv.) Qsca

4 94.369 (0.00268) 1.18435
5 92.227 (9.11848e-05) 1.15746
6 92.6131 (4.07428e-06) 1.16231
7 92.7641 (3.97424e-07) 1.1642
8 92.8398 (4.98162e-08) 1.16516
Res −Fsca,x (conv.) −Fsca,y (conv.)
4 2.65228 (0.00079) 2.24297e-06 (0.0097)
5 1.35879 (0.00011) 1.83108e-06 (0.00023)
6 0.68798 (1.31231e-05) 1.63193e-06 (5.70268e-05)
7 0.34621 (1.62533e-06) 1.71741e-06 (3.06832e-05)
8 0.17367 (2.02422e-07) 1.39613e-06 (4.34135e-06)
Res −Fsca,z (conv.)
4 76.57 (0.00329)
5 73.5733 (0.00016)
6 73.6669 (1.24189e-06)
7 73.6662 (2.42027e-09)
8 73.6662 (1e-09)

Table C.45: Integrated DDA
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C.2.15 m = 1.7 + 0.156i
x = 10.056

Quantity Mie-value
Qext 2.38667
Qsca 1.19189
gz 0.90293
Qpr 1.31047

Table C.46: Mie-values

Cross-section Efficiency
Extinction 760.926 2.39522
Absorption 381.271 1.20015
Scattering 379.655 1.19507

Table C.47: Direct DDA

Res Csca (conv.) Qsca

4 382.513 (0.01207) 1.20406
5 383.687 (1.37413e-05) 1.20776
6 379.076 (1.19137e-05) 1.19324
7 379.446 (2.38165e-07) 1.19441
8 379.549 (1.6605e-08) 1.19473
Res −Fsca,x (conv.) −Fsca,y (conv.)
4 9.04827 (0.0061) 5.64316e-06 (0.0006)
5 4.0334 (0.00046) 2.73334e-06 (0.00208)
6 2.04573 (1.47984e-05) 4.02304e-06 (5.25643e-05)
7 1.02585 (7.70024e-07) 4.14139e-06 (6.80991e-06)
8 0.51374 (1.00104e-07) 3.85614e-06 (6.92359e-06)
Res −Fsca,z (conv.)
4 347.174 (0.01315)
5 348.4 (1.35379e-05)
6 343.204 (1.47821e-05)
7 343.372 (1.19359e-07)
8 343.371 (1e-09)

Table C.48: Integrated DDA
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C.2.16 m = 1.81 + 0.48i
x = 2.52546

Quantity Mie-value
Qext 2.9729
Qsca 1.43051
gz 0.730612
Qpr 1.92775

Table C.49: Mie-values

Cross-section Efficiency
Extinction 61.1721 3.05298
Absorption 31.641 1.57914
Scattering 29.5312 1.47384

Table C.50: Direct DDA

Res Csca (conv.) Qsca

4 29.2552 (0.00044) 1.46007
5 29.414 (2.07571e-05) 1.46799
6 29.4724 (1.93763e-06) 1.47091
7 29.5018 (2.42944e-07) 1.47237
8 29.5164 (3.03455e-08) 1.47311
Res −Fsca,x (conv.) −Fsca,y (conv.)
4 1.25044 (0.00034) 1.14162e-06 (0.00362)
5 0.62668 (2.44055e-05) 8.40309e-07 (0.00017)
6 0.31395 (2.85324e-06) 7.43893e-07 (0.00022)
7 0.15717 (3.5657e-07) 8.62613e-07 (2.15323e-05)
8 0.07864 (4.45181e-08) 8.29497e-07 (3.9682e-06)
Res −Fsca,z (conv.)
4 21.8122 (0.00104)
5 21.8657 (9.34724e-06)
6 21.8652 (2.0855e-08)
7 21.8652 (1e-09)
8 21.8652 (1e-09)

Table C.51: Integrated DDA
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C.2.17 m = 1.81 + 0.48i
x = 5.03617

Quantity Mie-value
Qext 2.58971
Qsca 1.24205
gz 0.841157
Qpr 1.54496

Table C.52: Mie-values

Cross-section Efficiency
Extinction 208.387 2.61529
Absorption 108.91 1.36683
Scattering 99.4775 1.24846

Table C.53: Direct DDA

Res Csca (conv.) Qsca

4 100.834 (0.00103) 1.26548
5 99.0799 (6.95983e-05) 1.24347
6 99.3129 (2.29437e-06) 1.24639
7 99.3949 (2.0133e-07) 1.24742
8 99.4361 (2.5292e-08) 1.24794
Res −Fsca,x (conv.) −Fsca,y (conv.)
4 3.0379 (0.00297) 8.16726e-07 (0.00472)
5 1.56034 (0.00012) 3.98198e-07 (0.0035)
6 0.78547 (7.54184e-06) 8.64815e-08 (0.00074)
7 0.3942 (9.6307e-07) -2.92383e-07 (0.00015)
8 0.19748 (1.20108e-07) -1.77086e-07 (1.58335e-05)
Res −Fsca,z (conv.)
4 86.5772 (0.00155)
5 84.1272 (0.00011)
6 84.209 (9.48517e-07)
7 84.2083 (1.84809e-09)
8 84.2083 (1e-09)

Table C.54: Integrated DDA
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C.2.18 m = 1.81 + 0.48i
x = 10.056

Quantity Mie-value
Qext 2.39239
Qsca 1.24785
gz 0.877034
Qpr 1.29798

Table C.55: Mie-values

Cross-section Efficiency
Extinction 762.668 2.4007
Absorption 366.298 1.15302
Scattering 396.37 1.24768

Table C.56: Direct DDA

Res Csca (conv.) Qsca

4 405.574 (0.01233) 1.27665
5 399.507 (5.68715e-05) 1.25755
6 395.624 (9.63558e-06) 1.24533
7 396.073 (2.77405e-07) 1.24675
8 396.222 (2.28281e-08) 1.24721
Res −Fsca,x (conv.) −Fsca,y (conv.)
4 10.862 (0.00726) 4.53917e-06 (0.03386)
5 4.72345 (0.00056) -2.12709e-07 (0.03944)
6 2.40295 (1.76921e-05) -2.04671e-07 (0.00148)
7 1.20556 (8.87077e-07) -7.80734e-07 (0.00022)
8 0.60389 (1.1569e-07) -3.41398e-07 (3.79167e-05)
Res −Fsca,z (conv.)
4 359.015 (0.01365)
5 353.57 (6.04061e-05)
6 348.86 (1.31842e-05)
7 349.018 (1.10907e-07)
8 349.017 (1e-09)

Table C.57: Integrated DDA
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C.2.19 m = 2.5 + 1.4i
x = 2.50977

Quantity Mie-value
Qext 2.90351
Qsca 1.523
gz 0.629343
Qpr 1.94502

Table C.58: Mie-values

Cross-section Efficiency
Extinction 60.0031 3.03218
Absorption 29.4528 1.48836
Scattering 30.5503 1.54382

Table C.59: Direct DDA

Res Csca (conv.) Qsca

4 30.0987 (0.00043) 1.521
5 30.3529 (3.17659e-05) 1.53385
6 30.4514 (3.16121e-06) 1.53883
7 30.5008 (3.95691e-07) 1.54132
8 30.5255 (4.94097e-08) 1.54257
Res −Fsca,x (conv.) −Fsca,y (conv.)
4 1.45392 (0.00045) 1.211e-06 (0.00318)
5 0.73259 (4.51901e-05) 9.19595e-07 (8.24679e-05)
6 0.36796 (5.36511e-06) 7.79416e-07 (3.72099e-06)
7 0.18444 (6.68877e-07) 8.37289e-07 (6.7231e-07)
8 0.09234 (8.34745e-08) 8.55396e-07 (9.71756e-07)
Res −Fsca,z (conv.)
4 20.0756 (0.0012)
5 20.1337 (1.09469e-05)
6 20.1332 (2.38344e-08)
7 20.1332 (1e-09)
8 20.1332 (1e-09)

Table C.60: Integrated DDA
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C.2.20 m = 2.5 + 1.4i
x = 5.02511

Quantity Mie-value
Qext 2.6371
Qsca 1.5076
gz 0.731954
Qpr 1.53361

Table C.61: Mie-values

Cross-section Efficiency
Extinction 212.58 2.67967
Absorption 93.3199 1.17634
Scattering 119.26 1.50333

Table C.62: Direct DDA

Res Csca (conv.) Qsca

4 119.985 (0.00088) 1.51246
5 118.515 (4.93093e-05) 1.49394
6 118.924 (3.36429e-06) 1.4991
7 119.092 (3.43185e-07) 1.50121
8 119.176 (4.29714e-08) 1.50227
Res −Fsca,x (conv.) −Fsca,y (conv.)
4 4.40775 (0.00205) 8.76254e-07 (0.00471)
5 2.26902 (0.00013) -6.30351e-07 (0.00331)
6 1.1452 (1.0068e-05) -1.06153e-07 (0.00278)
7 0.57545 (1.26999e-06) -3.35503e-07 (0.00011)
8 0.28846 (1.5827e-07) -1.9099e-07 (2.52723e-05)
Res −Fsca,z (conv.)
4 91.3955 (0.00154)
5 88.7973 (0.00012)
6 88.8863 (9.80852e-07)
7 88.8856 (1.96488e-09)
8 88.8856 (1e-09)

Table C.63: Integrated DDA
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C.2.21 m = 2.5 + 1.4i
x = 10.0542

Quantity Mie-value
Qext 2.43333
Qsca 1.46995
gz 0.766244
Qpr 1.30699

Table C.64: Mie-values

Cross-section Efficiency
Extinction 776.231 2.44425
Absorption 314.427 0.99009
Scattering 461.805 1.45416

Table C.65: Direct DDA

Res Csca (conv.) Qsca

4 465.149 (0.0109) 1.46469
5 463.615 (1.24455e-05) 1.45986
6 460.165 (7.32886e-06) 1.449
7 461.065 (4.76357e-07) 1.45183
8 461.431 (4.84642e-08) 1.45299
Res −Fsca,x (conv.) −Fsca,y (conv.)
4 15.8539 (0.00555) -5.18443e-06 (0.00034)
5 7.26463 (0.00034) -7.34697e-06 (0.00025)
6 3.69614 (1.7803e-05) -8.2178e-06 (1.92731e-05)
7 1.85763 (1.31623e-06) -9.41714e-06 (1.28402e-05)
8 0.93131 (1.67507e-07) -9.49512e-06 (2.57578e-06)
Res −Fsca,z (conv.)
4 366.585 (0.01348)
5 363.106 (3.76633e-05)
6 358.008 (1.39121e-05)
7 358.179 (1.16791e-07)
8 358.178 (1e-09)

Table C.66: Integrated DDA
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C.2.22 m = 3.05 + 0.33i
x = 2.51808

Quantity Mie-value
Qext 2.96033
Qsca 1.62098
gz 0.661626
Qpr 1.88785

Table C.67: Mie-values

Cross-section Efficiency
Extinction 61.3713 3.08088
Absorption 28.4049 1.42594
Scattering 32.9664 1.65494

Table C.68: Direct DDA

Res Csca (conv.) Qsca

4 32.6305 (0.00037) 1.63807
5 32.8219 (2.21372e-05) 1.64768
6 32.8939 (2.13979e-06) 1.6513
7 32.9301 (2.68068e-07) 1.65311
8 32.9482 (3.34868e-08) 1.65402
Res −Fsca,x (conv.) −Fsca,y (conv.)
4 1.51576 (0.0002) 6.04848e-07 (0.00312)
5 0.75902 (2.11736e-05) 1.91759e-07 (0.00244)
6 0.38001 (2.2455e-06) 2.286e-07 (8.01217e-05)
7 0.19018 (2.81749e-07) 3.18726e-07 (7.80373e-05)
8 0.09514 (3.51995) 3.14334e-07 (5.93582e-06)
Res −Fsca,z (conv.)
4 22.9817 (0.00092)
5 23.0299 (8.04735e-06)
6 23.0296 (1.58757e-08)
7 23.0296 (1e-09)
8 23.0296 (1e-09)

Table C.69: Integrated DDA
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C.2.23 m = 3.05 + 0.33i
x = 5.02798

Quantity Mie-value
Qext 2.54196
Qsca 1.4047
gz 0.740107
Qpr 1.50233

Table C.70: Mie-values

Cross-section Efficiency
Extinction 205.253 2.58436
Absorption 93.0056 1.17104
Scattering 112.248 1.41332

Table C.71: Direct DDA

Res Csca (conv.) Qsca

4 112.84 (0.00083) 1.4207
5 111.531 (4.67011e-05) 1.40429
6 111.923 (3.42667e-06) 1.40923
7 112.085 (3.52944e-07) 1.41127
8 112.166 (4.41919e-08) 1.41229
Res −Fsca,x (conv.) −Fsca,y (conv.)
4 3.88531 (0.00119) 2.09538e-06 (0.00016)
5 1.99714 (0.00012) 1.51476e-06 (0.00115)
6 1.00905 (1.10929e-05) 1.81699e-06 (7.68474e-05)
7 0.50729 (1.38803e-06) 1.62076e-06 (3.96822e-06)
8 0.25435 (1.72927e-07) 1.46507e-06 (4.06829e-06)
Res −Fsca,z (conv.)
4 86.3769 (0.00149)
5 83.9724 (0.00011)
6 84.0549 (9.5635e-07)
7 84.0542 (1.88975e-09)
8 84.0542 (1e-09)

Table C.72: Integrated DDA
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Appendix D

Graphs :
aggregate particles

D.1 Scale-factor=1
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D.2 Scale-factor=0.5
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D.3 Scale-factor=0.25
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Appendix E

Tables :
aggregate particles

In each section of this appendix the values of

• extinction cross section Cext,

• absorption cross section Cabs,

• integrated scattering cross section Csca,i, integrated to various levels
of accuracy (Res = 4, 5, 6, 7, 8),

• integrated scattering force ~Fsca,i, idem Csca,i,

• direct scattering cross section Csca,d = Cext − Cabs (listed with the
integrated scattering cross section as Res = 0),

• direct scattering force ~Fsca,d, idem Csca,d,

are tabulated for one simulation, together with the list of residue-norms.
The fraction #dip

λ printed below the table should be divided by Re(m) to
obtain Dλ. The entry epsilon-b at beginning of each of these lists, is
the convergence-criterium. In the cases where this convergence-criterium is
not met, only the list of residue-norms is printed. The convergence lists
of simulations that did not converge, have been reduced by removing all
entries, accept the first for each decade, the smallest of the entire list, and
the last one before breaking the iteration procedure.
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E.1 Scale-factor=1

E.1.1 m=1.14+0.38i
aggregate 1

Cext 1.61788e-09
Cabs 1.58645e-09
Res Csca gxCsca gyCsca gzCsca

Direct 3.143e-11 -4.97346e-12 -1.18572e-12 4.93266e-11
4 6.97495e-11 -1.83191e-12 -1.11682e-12 4.91268e-11
5 6.96956e-11 -3.12986e-12 -1.20939e-12 4.90062e-11
6 7.01021e-11 -4.06325e-12 -1.19549e-12 4.91739e-11
7 7.02865e-11 -4.5165e-12 -1.19056e-12 4.92502e-11
8 7.03796e-11 -4.74459e-12 -1.18814e-12 4.92884e-11

Table E.1: #dip
λ = 3.67, Y-polarized, scale-factor=1

epsilon*b = 5.0999999344e-11
r0 = 1.3989786648e+00
r01 = 2.5345050e-02
r02 = 3.539146326430e-04
r03 = 5.950194973757e-06
r04 = 9.490999942734e-08
r05 = 1.237968659334e-09
r06 = 2.258893617741e-11

E.1.2 m=1.7+0.03i
aggregate 1

Cext 2.74247e-10
Cabs 1.35098e-10
Res Csca gxCsca gyCsca gzCsca

Direct 1.39149e-10 -1.65008e-11 -2.41869e-12 1.6831e-10
4 2.5674e-10 -3.57879e-12 -1.77075e-12 1.68057e-10
5 2.56029e-10 -9.15849e-12 -2.46121e-12 1.67755e-10
6 2.57189e-10 -1.28714e-11 -2.4199e-12 1.68039e-10
7 2.57701e-10 -1.46808e-11 -2.41942e-12 1.68175e-10
8 2.5796e-10 -1.55897e-11 -2.41906e-12 1.68242e-10

Table E.2: #dip
λ = 2.46, Y-polarized, scale-factor=1
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epsilon*b = 5.0999999344e-11
r0 = 3.1209305310e+00
r01 = 8.8256599e-01
r02 = 1.335122803221e-01
r03 = 3.096676099105e-02
r04 = 6.165507852188e-03
r05 = 1.249561194707e-03
r06 = 2.510717302584e-04
r07 = 5.984819602303e-05
r08 = 1.216753913280e-05
r09 = 1.899363928129e-06
r10 = 3.473279067347e-07
r11 = 5.308646503288e-08
r12 = 6.431987362399e-09
r13 = 1.046042918829e-09
r14 = 1.641644602493e-10
r15 = 2.114554148891e-11

E.1.3 m=1.14+0.38i
aggregate 2

epsilon*b = 1.0099999893e-10
r0 = 1.6588472856e+00
r01 = 4.0541729e-02
r02 = 1.295207226715e-03
r03 = 1.109511213887e-04
r04 = 1.515907259518e-05
r05 = 3.151829491045e-06
r06 = 9.113787693000e-07
r07 = 3.322655459828e-07
r08 = 1.484807837816e-07
r09 = 7.761775169460e-08
r16 = 8.935475410193e-09
r26 = 5.534462621541e-09
r47 = 9.877107655772e-09

E.1.4 m=1.7+0.03i
aggregate 2

epsilon*b = 1.0099999893e-10
r0 = 3.7006620609e+00
r01 = 6.5071597e-01
r02 = 1.021557692532e-01
r03 = 1.822531742284e-02
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r04 = 3.226423829426e-03
r05 = 6.706763483086e-04
r06 = 1.310360938556e-04
r07 = 3.284151843767e-05
r08 = 9.279390475601e-06
r09 = 3.006387382112e-06
r10 = 1.160057730259e-06
r11 = 5.173424750184e-07
r12 = 2.470090823658e-07
r13 = 1.208626996956e-07
r14 = 6.458613316005e-08
r18 = 7.184735885106e-09
r24 = 9.417046565950e-10
r62 = 1.316780300709e-10
r83 = 2.360200661663e-10
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E.2 Scale-factor=0.5

E.2.1 m=1.14+0.38i
aggregate 1

Cext 1.4804e-09
Cabs 1.32834e-09
Res Csca gxCsca gyCsca gzCsca

Direct 1.5206e-10 -1.02795e-12 2.0189e-12 1.06419e-10
4 1.48998e-10 9.65076e-12 2.18215e-12 1.0612e-10
5 1.50182e-10 4.35252e-12 1.97198e-12 1.06302e-10
6 1.50775e-10 1.67913e-12 2.00401e-12 1.0636e-10
7 1.51071e-10 3.29613e-13 2.01132e-12 1.0639e-10
8 1.51219e-10 -3.48113e-13 2.01511e-12 1.06404e-10

Table E.3: #dip
λ = 8.7, Y-polarized, scale-factor=0.5

epsilon*b = 5.0999998212e-11
r0 = 1.9374739169e+00
r01 = 6.4570154e-02
r02 = 8.328533992574e-04
r03 = 1.099472017468e-05
r04 = 1.714494313344e-07
r05 = 3.266324228924e-09
r06 = 5.834538918178e-11
r07 = 6.999463729543e-13

E.2.2 m=1.7+0.03i
aggregate 1

Cext 6.7543e-10
Cabs 1.20593e-10
Res Csca gxCsca gyCsca gzCsca

Direct 5.54837e-10 2.94406e-12 9.91752e-12 3.87606e-10
4 5.46619e-10 4.13592e-11 1.02133e-11 3.87735e-10
5 5.49977e-10 2.21982e-11 9.7509e-12 3.87743e-10
6 5.51639e-10 1.26352e-11 9.8562e-12 3.87674e-10
7 5.5246e-10 7.80447e-12 9.88646e-12 3.8764e-10
8 5.52867e-10 5.37816e-12 9.90195e-12 3.87623e-10

Table E.4: #dip
λ = 5.8, Y-polarized, scale-factor=0.5
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epsilon*b = 5.0999998212e-11
r0 = 4.3222399052e+00
r01 = 1.1835147e+00
r02 = 2.036420329269e-01
r03 = 4.562863170179e-02
r04 = 1.020680199621e-02
r05 = 2.172126182518e-03
r06 = 3.971544392488e-04
r07 = 7.610316946197e-05
r08 = 1.691313511831e-05
r09 = 2.811671513663e-06
r10 = 4.980304675147e-07
r11 = 9.263532967270e-08
r12 = 1.320085424477e-08
r13 = 2.153429053838e-09
r14 = 2.953411407300e-10
r15 = 3.656725060823e-11

E.2.3 m=1.14+0.38i
aggregate 2

epsilon*b = 1.0099999911e-10
r0 = 2.9878565672e+00
r01 = 7.6831177e-02
r02 = 3.702837508207e-03
r03 = 2.801502607551e-04
r04 = 3.861994090414e-05
r05 = 7.315866097051e-06
r06 = 1.806378834812e-06
r07 = 5.619952018190e-07
r08 = 2.084745603525e-07
r09 = 8.948871791942e-08
r13 = 8.317286128134e-09
r21 = 8.899730347394e-10
r50 = 2.156824394982e-10
r71 = 2.526121702283e-10
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E.2.4 m=1.7+0.03i
aggregate 2

Cext 1.10575e-09
Cabs 2.00306e-10
Res Csca gxCsca gyCsca gzCsca

Direct 9.05444e-10 1.56501e-10 7.4594e-11 1.02723e-09
4 1.40567e-09 2.18242e-10 7.27434e-11 1.04871e-09
5 1.39364e-09 1.86974e-10 7.37448e-11 1.03921e-09
6 1.38629e-09 1.71788e-10 7.41605e-11 1.0332e-09
7 1.3826e-09 1.64158e-10 7.43774e-11 1.03022e-09
8 1.38074e-09 1.60333e-10 7.44857e-11 1.02872e-09

Table E.5: #dip
λ = 5.8, Y-polarized, scale-factor=0.5

epsilon*b = 1.0099999911e-10
r0 = 6.6655006540e+00
r01 = 9.2107831e-01
r02 = 1.417535690650e-01
r03 = 2.368181899570e-02
r04 = 3.859185644004e-03
r05 = 7.614934051506e-04
r06 = 1.691984071170e-04
r07 = 4.109684568530e-05
r08 = 1.147915607035e-05
r09 = 3.608868280471e-06
r10 = 1.262424874060e-06
r11 = 4.684318028704e-07
r12 = 1.756921266605e-07
r13 = 6.918031067297e-08
r14 = 2.744993924933e-08
r15 = 1.087870686370e-08
r16 = 4.475661076032e-09
r17 = 1.918983209565e-09
r18 = 8.570631879541e-10
r19 = 4.056070121182e-10
r20 = 1.997588934693e-10
r21 = 1.035217468926e-10
r22 = 5.662904066792e-11
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E.3 Scale-factor=0.25

E.3.1 m=1.14+0.38i
aggregate 1

Cext 1.38845e-09
Cabs 1.21547e-09
Res Csca gxCsca gyCsca gzCsca

Direct 1.7298e-10 1.8396e-12 5.02819e-12 1.05345e-10
4 3.68437e-10 3.45393e-11 4.59948e-12 1.05038e-10
5 3.76214e-10 1.87898e-11 4.84884e-12 1.052e-10
6 3.80163e-10 1.04672e-11 4.93853e-12 1.05273e-10
7 3.82133e-10 6.19246e-12 4.98354e-12 1.05309e-10
8 3.83117e-10 4.02588e-12 5.00605e-12 1.05327e-10

Table E.6: #dip
λ = 17.4, Y-polarized, scale-factor=0.25

epsilon*b = 5.1000000179e-11
r0 = 2.0311202805e+00
r01 = 6.2757357e-02
r02 = 6.186748000641e-04
r03 = 8.413555822644e-06
r04 = 1.494094150514e-07
r05 = 3.143997969574e-09
r06 = 4.211338076390e-11

E.3.2 m=1.7+0.03i
aggregate 1

Cext 6.66041e-10
Cabs 9.43095e-11
Res Csca gxCsca gyCsca gzCsca

Direct 5.71732e-10 1.56204e-11 1.74117e-11 3.29356e-10
4 1.03531e-09 1.05843e-10 1.59193e-11 3.28523e-10
5 1.05599e-09 6.23703e-11 1.67944e-11 3.28957e-10
6 1.06646e-09 3.94195e-11 1.71019e-11 3.29157e-10
7 1.07168e-09 2.76286e-11 1.72568e-11 3.29257e-10
8 1.07428e-09 2.1652e-11 1.73342e-11 3.29306e-10

Table E.7: #dip
λ = 11.7, Y-polarized, scale-factor=0.25
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epsilon*b = 5.1000000179e-11
r0 = 4.5311515276e+00
r01 = 9.6943698e-01
r02 = 2.066140401764e-01
r03 = 4.488373397686e-02
r04 = 9.554615881839e-03
r05 = 2.106894547975e-03
r06 = 3.898128499342e-04
r07 = 7.706273718533e-05
r08 = 1.577852319098e-05
r09 = 2.634935817106e-06
r10 = 4.753922713029e-07
r11 = 9.260070120377e-08
r12 = 1.391540643731e-08
r13 = 2.156460280842e-09
r14 = 3.114401719425e-10
r15 = 3.657389779717e-11

E.3.3 m=1.14+0.38i
aggregate 2

In this case the the stop-criterium was set to ε0 = 10−24 instead of
ε0 = 10−12. In this case the convergence rate for Y- and X-polarization was
slowing down, but for the Y-polarization ε0 = 10−12 could just be reached
while the X-polarization just could not, it started diverging just before ε0 =
10−12. Instead of increasing ε0 for the convergence of the X-polarization
to be accepted, ε0 was decreased in order to see when it would start to
diverge. Based on the clearly divergent behavior for both polarizations, it
was decided both were to be discarded.

epsilon*b = 1.0099999827e-22
r0 = 2.7676454618e+00
r01 = 6.9511520e-02
r02 = 4.763508654762e-03
r03 = 3.610146425035e-04
r04 = 4.609791269519e-05
r05 = 8.972398055627e-06
r06 = 2.174529100429e-06
r07 = 6.261421091410e-07
r08 = 2.156482136375e-07
r09 = 8.632447200459e-08
r13 = 5.761711234988e-09
r18 = 7.460370726365e-10
r28 = 9.266533682699e-11
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r73 = 1.727052469354e-11
r94 = 1.902537065418e-11

E.3.4 m=1.7+0.03i
aggregate 2

Cext 7.43483e-10
Cabs 1.57168e-10
Res Csca gxCsca gyCsca gzCsca

Direct 5.86315e-10 2.22736e-10 1.34996e-10 1.29158e-09
4 2.65799e-09 4.03766e-10 1.23579e-10 1.28826e-09
5 2.68357e-09 3.15397e-10 1.30353e-10 1.29023e-09
6 2.6948e-09 2.69885e-10 1.32657e-10 1.2909e-09
7 2.70017e-09 2.46516e-10 1.33828e-10 1.29124e-09
8 2.70279e-09 2.34678e-10 1.34412e-10 1.29141e-09

Table E.8: #dip
λ = 11.7, Y-polarized, scale-factor=0.25

epsilon*b = 1.0099999827e-10
r0 = 6.1742393946e+00
r01 = 6.9470854e-01
r02 = 1.232153567486e-01
r03 = 2.242373906691e-02
r04 = 4.412929987473e-03
r05 = 1.082635345238e-03
r06 = 3.190131175188e-04
r07 = 1.067411406627e-04
r08 = 4.127924178637e-05
r09 = 1.760251322679e-05
r10 = 8.425251985480e-06
r14 = 9.918838888658e-07
r20 = 9.274586711757e-08
r27 = 7.574545999740e-09
r35 = 8.928030947031e-10
r47 = 9.271399680329e-11
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