
 

￼
1

Development of Tooling Support for the Testing of
Java Programs

Rebecca Simmonds

September 2011

 MSc Internet Technologies and Enterprise
Computing

Industrial Supervisors: Mr Andrew Dinn and Mr
Jonathan Halliday

Academic Supervisor: Professor Santosh Shrivastava

Abstract

Testing Java programs can be a problematic task. Developers
commonly use additional test classes, these can produce errors or
camouflage existing ones. The testing tool considered in this paper is
Byteman. It addresses testing through the use of advice injection. Advice
injection is used to alter code at runtime without modifying the original
source code. It provides a mechanism of injecting code into Java programs.
The injected code may then be used to trace code execution or alter the
behaviour of a program. The tool also uses fault injection, this injects
erroneous input into the program to test fault-handling capability. This
paper outlines a tool, which provides the integration of the Byteman tooling
with an integrated development environment. Prior to this project Byteman
provided users with no IDE support. This increased the complexity of
Byteman and offered users little support for development. A structured
editor was developed for the manipulation of Byteman’s script language.
The editor recognises the Byteman rule scripts, as well as providing
additional features to help simplify and quicken their development.
Byteman provides command scripts which are executed in the command
line. The tool provides integration of the command scripts with the IDE,
removing the complexity of terminal execution. The new tooling provides
support or new developers and practical tooling that current user have been
without. It decreases the learning curev and provides simpler and quicker
development in a popular IDE.

￼
2

Acknowledgements

I would like to thank my supervisors Mr Andrew Dinn, Mr Jonathan
Halliday and Professor Santosh Shrivastava for for their advice, support and
assistance throughout the year. I would also like to thank the family and
friends who have helped me throughout this year.

￼
3

Declaration

I declare that the work within this dissertation represents my own
work unless otherwise stated. The word count for this dissertation is 17,779
words.

Signed ……………………………………..	 	 Date……………………………………… 

￼
4

Table of Figures

Figure 1: Example structure of a basic rule.	 9
.......................................
Figure 2: Sample rule taken from an application support case [2].	 15
...........
Figure 3: Command to install the Byteman agent and submit scripts.	 16
.......
Figure 4: The command for executing parsing.	 16
..................................
Figure 5: Command for the live installation of the Byteman agent.	 17
..........
Figure 6: Command for the submission of Byteman rules.	 17
.....................
Figure 7: Eclipse SDK [4].	 19
..
Figure 8: The debug model [16].	 25
...
Figure 9: Diagram of plug-in structure.	 31
...
Figure 10: Example of an Eclipse editor.	 33
..
Figure 11: Example error and syntax highlighting from Eclipse.	 34
..............
Figure 12: Example error message within Eclipse	 34
...............................
Figure 13: Eclipse example of content assist.	 35
....................................
Figure 14: Example of available perspective in Eclipse.	 36
........................
Figure 15: Eclipse example of views.	 36
..
Figure 16: Example template from Eclipse.	 37
......................................
Figure 17: Example of a debug view, including a breakpoint in Eclipse.	 39
.....
Figure 18: Grammar section for Java	 40
..
Figure 19: Grammar section for Byteman rules	 41
..................................
Figure 20: Terminal rule in grammar	 41
...
Figure 21: Example code for errors.	 42
...
Figure 22: Content assist options list	 43
..
Figure 23: Template Byteman Rule	 43
...
Figure 24: Wizard for creating a Byteman file	 43
...................................
Figure 25: Wizard to enter details of the new file	 44
..............................
Figure 26: Extension used for the wizard	 44
...
Figure 27: Byteman install GUI	 45
...
Figure 28: Byteman submit GUI	 45
...
Figure 29: Launch configuration for Byteman rules	 46
.............................
Figure 30: Menu items.	 47
...
Figure 31: Rules displayed in the console.	 47
..
Figure 32: GUI for deleting a specified rule.	 47
.....................................
Figure 33: Console displaying the uninstalled rules.	 48
............................
Figure 34: GUI for filtering by script name.	 48
......................................
Figure 35: GUI for filtering by rule name.	 48
..
Figure 36: The console output for filtering.	 48
......................................

￼
5

Table of Contents

Abstract	 2
..
Acknowledgements	 3
...
Declaration	 4
..
Table of Figures	 5
...
Table of Contents	 6
...
1 Introduction	 7
...

1.1 Overview of Byteman	 8
...
1.2 Limitations of Byteman	 9
..
1.3 Problem Solution	 10
...
1.4 Aims and Objectives	 12
...
1.5 Dissertation Structure	 14
..

1 Background Research	 15
...
2.1 Byteman	 15
...
2.2 Command Scripts	 16
..

2.2.1 bmcheck	 16
...
2.2.2 bminstall	 17
...
2.2.3 Bmsubmit	 17
..

2.3 Development Research	 17
...
2.3.1 Why a Plug-in?	 18
..
2.3.2 Which IDE?	 18
...
2.3.3 Software Support 	 21
..
2.3.4 Features for the Plug-in	 22
...

2.4 Research Conclusion	 27
..
3 Requirements	 28
..

3.1 Requirements Specification	 28
..
3.1.1 Functional Requirements	 28
..
3.1.2 Non-Functional Requirements	 29
..
3.1.3 Hardware and Software requirements	 29
................................

4 Design	 30
..
4.1 Overview	 30
..
4.2 System Design	 30
..

4.2.1 Plug-in	 30
..
4.3 Software Decisions	 31
..

4.3.1 Languages	 31
..
4.4 Feature Design	 32
...

4.4.1 Structured Editing	 32
..
4.4.2 Perspective	 35
..
4.4.3 Byteman Rule Template	 36
...
4.4.4 RCP	 37
...
4.4.5 Installation and Submission	 37
...
4.4.6 Additional Byteman Support	 38
..
4.4.7 Debugger	 39
...

5 Implementation	 40
...
5.1 System Overview	 40
..
5.2 Grammar and Parser	 40
..
5.3 Editor and Features	 41
...
5.4 Integration of Command Scripts	 44
...

￼
6

1 Introduction

The aim of this project is to provide tooling support for the testing of
Java programs. The mechanism the project will focus on is Byteman.
Byteman is a tool, which makes it much easier for developers to write unit,

5.5 Additional Byteman Support	 46
..
5.6 Debugger	 49
..

6 Testing	 49
..
6.1 Testing Strategy	 50
..

Full System Test	 50
..
7 Results	 52
..

7.1 Unit testing	 52
...
7.2 Integration Testing	 53
..
7.3 System Testing	 53
...

8 Evaluation	 54
..
8.1 Discussion	 54
...

9 Conclusion	 56
...
9.1 Achievements	 56
..
9.2 Problems	 57
..
9.3 Learning Outcomes	 57
..
9.4 Future Work	 58
..
9.5 Concluding Remarks	 58
...

10 Glossary	 59
...
11 References	 60
..
12 Appendix	 62
..

Appendix A	 62
..
Appendix B	 63
..

1. Installing the plug-in	 65
..
1.1 Pre-requisites	 65
..
1.2.Installation	 65
...

2 Starting the plug-in	 66
...
2.1 Opening the perspective	 66
...
2.2 Opening Views	 66
...
2.3 Opening a new .btm File	 66
...

3 Features in the Editor	 69
..
3.1 Content Assist	 69
..
3.2 Error Messages	 69
...

4 Added Features to the IDE	 71
...
4.1 Installing the Byteman Agent	 71
..
4.2 Submitting a Byteman Rule	 71
..
4.3 Viewing All Rules	 71
...
4.4 Deleting All Rules	 72
..
4.5 Deleting Selected Rules	 72
...
4.6 Filtering Injection State by Script Name	 72
...................................
4.7 Filtering Injection State by Rule Name	 73.....................................

￼
7

integration and system tests during application development, to monitor
trace and debug deployed applications.

The project will improve the usability of Byteman by integrating the
rule language with a Java integrated development environment. A plug-in
will be developed to provide the functionality in the IDE. The project will
research how Byteman is used and identify usability problems. An analysis of
these limitations will assist in defining how Byteman can be used within an
IDE. A design will be derived from this research resulting in the development
of a prototype.

1.1 Overview of Byteman

Commonly, programs are tested using custom coded unit, integration
and system tests. Another frequent means of testing is through the use of a
debugger, in which the user can add breakpoints to analyse certain aspects
of the program. A more specialised technique of testing Java programs is
JUnit testing. This is a testing framework that can be used to assert
validation of methods. These can lead to tests becoming over-complicated
or camouflaging erroneous results. These testing methods also provide no
method of installing a test into a live program, without stopping it. Within
this context a live program is a Java program already executing in the JVM.
This is a disadvantage, as some live programs cannot be stopped without
causing major problems and disruptions.

Byteman addresses testing through the use of advice injection. This
provides the developer with a mechanism for altering code at runtime,
while preserving the original source code. Injected code may simply be used
to trace execution, may change the control flow or break the application in
order to validate fault-handling capabilities [1].

Byteman employs a rule language to organise Java code fragments,
which are to be injected into the program being tested. Advice injection
provides accurate, precision testing by reusing and testing the actual code
within the system. The organisation of these rules uses an event, condition
and action structure [1]. This allows for the developer to control and
analyse sections of a Java program and its behaviour.

Figure one displays the fundamental structure of Byteman rules,
demonstrating the components that constitute a rule. The event section is
the trigger point specifying the point where the code should be injected.
The injection code includes a condition specified in the IF clause. The code
in the action, following the DO keyword, is only executed when this
condition evaluates to true.

Byteman operates as an agent program executing in the same JVM as
the  
user's application. The agent can be installed from the Java command line
when the application is run, or after the application has started using a
command script. The agent loads rules from a script file and injects them
into the specified classes. Scripts can be identified on the Java command
line or they may be uploaded and unloaded later so long as the application
keeps running. This makes Byteman ideal for monitoring and debugging
long-running applications such as internet services [2].

￼
8

RULE <NAME OF THE RULE>

CLASS <NAME OF THE JAVA CLASS (EVENT)>

METHOD <NAME OF THE TRIGGER METHOD (EVENT)>

IF <CONDITION>

DO <ACTION>

ENDRULE

Figure 1: Example structure of a basic rule.

Byteman is operated either by passing arguments to the command line
or  
by executing shell command scripts. There is a command script to install the
agent into a live program, another to upload or unload rules and one which
queries the injection state of the agent, displaying which of the loaded
rules have been injected and if any errors occurred during injection. A
separate script can be used to parse and typecheck rules offline. All of these
commands operate in a terminal and generate text output [1].

1.2 Limitations of Byteman

It has been identified that Byteman has certain limitations. These are
restrictions within the Byteman development cycle. This cycle begins with
the editing and generation of the script. This then leads on to the detection
and correction of the rules. This will then conclude with the deployment of
the rule into a Java program.

A high level concern for Byteman is the absence of IDE support.
Currently Byteman provides no support for development within an IDE. The
demographic for Byteman is mainly Java users. They are accustomed to
exceptionally strong tool support through the use of an IDE. This results in
Byteman being more complex to use.

 Currently, Byteman rules must be edited in a plain text editor which  
does not recognise the structure or meaning of the rule text. Most Java  
developers expect their code editors to automatically generate content,  
highlight keywords, auto-complete symbol names and notify syntactic and  
semantic errors in their code. All of this is standard to developers who use
IDEs. This provides a huge disadvantage to Byteman, and emphasises the
complexity in using the tool.

A similar problem arises with the Byteman command scripts. Error  
messages are displayed in the command line and are not meaningful,
providing little support for debugging. The error messages simply specify a
line number for the error. The script also offers no method of identifying
syntax errors. This can be confusing when using multiple rules, and time
consuming identifying the line number for each error. The script is executed
in the command line resulting in the user alternating between this and the
editor. This results in the user detecting and correcting the error in the
editor, then executing the script in the command line to identity if the
correction was valid. This process must be completed until the error is

￼
9

removed. This is another time consuming and complex process when
debugging. The parser is also used for runtime error checking with the same
limitations apparent there.

Byteman is developed around several scripts, which necessitate the use
of a command line interface for execution. This results in increased
complexity when loading and unloading. This is because the developer must
manually execute each script separately, remembering the different
commands for each. This can be time consuming and commands easily
forgotten.

Output about the agent’s state is only available through the command
line. This output includes all current information about injection state (all
rules installed). This makes it difficult to identify relevant information, as it
is unorganised and can wrap around lines in the interface.

	 Byteman rules reference Java classes and methods and the injected
code  
may even reference method parameters and local variables by name.
Currently the rule and class must be viewed in separate editors. A
consequence of this is more error prone code, which is because the
developer must alternate between both. This can be a tasking responsibility
when there are multiple scripts and classes. The developer must then
validate the correct class, variables, methods and behaviour is specified in
the rule script. This involves identifying the class being tested manually
(from possibly thousands of classes) then recognising the specific element
you are validating. There is no computerised aid for this task and the
developers must rely exclusively on their own ability.

	 These limitations make Byteman a less appealing development tool
and could therefore decrease the uptake of Byteman. The motivation for
this project is to provide support for Byteman and make these limitations
obsolete, generating a more attractive, quicker and simpler tool.

1.3 Problem Solution

This project’s main aim is to remove the previously stated limitations.
The strategy proposed to solve this problem is to integrate Byteman within
an IDE. This will result in modification of a current IDE, by adding a plug-in,
to include appropriate features. The features must offer support for
development. The project must provide automation, simplicity and
increased speed when developing Byteman rules.

The solution should offer assistance that will enable a more moderate
learning curve for new users and an easier form of development for existing
ones. The final project should enable Byteman with functions that currently
do not exist. To provide these capabilities a design of corrective features is
necessary.

The plug-in should be easily deployable and portable. This will
increase its use and flexibility for users. It must also consider cross platform
use, including a variety of different operating systems. As the system is kept
within one IDE it will provide both languages within one application. This
will remove the need to alternate between multiple applications.

	 The initial capability to be provided will be a structured editor. The
editor will create a structured mechanism for simple and efficient

￼
10

development. It should recognise and customise .btm files. It will provide
simpler error detection and correction. It will also offer a relationship
between the Byteman rule and the Java class. These features remove
limitations such as the absence of IDE support and the missing structured
editor. It also gets rid of the disassociation of Java and Byteman, therefore
making alternating between class and rule easier.

The IDE must replace the Byteman command scripts with simple
dialogues  
allowing the user to install the agent into a running program, upload
or unload rule scripts and check the injection state of loaded rules.
The command outputs can be presented in a more organised format
and filtered, where necessary, to enable specific information to be
located more easily. These capabilities will support the elimination of
previously stated limitations, make Byteman easier to use and result in a
more effective and less complex testing tool.

￼
11

1.4 Aims and Objectives

The objectives have been organised taking into account that some of the
features are more advanced and necessitate all prerequisite objectives to
be completed beforehand. Low-level internal components will be addressed
early in the project, to allow the most possible time for these technically
challenging pre-requisites. Integration with the IDE’s GUI will follow with
features of increasing complexity added as time permits.

Aim:

The aim is to design and implement an IDE plug-in to provide tooling
support for the generation and modification of Byteman rules. This will
result in the automation of Byteman rule generation and provide features to
aid in execution and correction of these rules.

Objectives:

1. To carry out research to identify an appropriate IDE.

• This should include their plug-in creation capabilities, support
of different languages and available software support.
Advantages and disadvantages of each will be demonstrated.

2. To research Byteman, available software support and features for the
plug-in.

• This includes research into the identification of current
features to provide design concepts for the system.

3. The design of the low level components.

• These elements need to be completed to advance onto other
features. This includes elements which are the foundation to
the editor such as the grammar and parser.

4. To design features within the editor.

• Design of the features to enable suitable development support
in the editor.

5. To create a Grammar and Parser.

• Development of a grammar to describe rules for the language.
This will facilitate the generation of a parser.

6. To provide structured Editing of Byteman Rules.

￼
12

• A back-end parse tree needs to be created to treat the code as
a rule and not plain text, with a grammar generated to
identify the rule parts. The grammar must include Byteman
and Java rules.

• Syntax and error highlighting must be provided for rules.

7. To provide additional features of the structured editor (advanced).

• Code completion for Byteman and Java.

• Error markers and specific custom error messages.

• Byteman template generation.

• Individual GUI components presenting specific Byteman

information  
displays and controls.

• A GUI component which groups together all Byteman GUI
components.

8. To create a relationship between Byteman rules and the referenced
Java code (advanced).

• This should enable the user to select a class or methods
specified in the rule and then open the corresponding or
containment class.

9. To implement the installation of the Byteman agent and submission of
rules into a live program (advanced).

• Facilitate the automation of installing the Byteman agent into
a live Java program.

• The previous point will allow rule loading and unloading into a
live program.

• Enable display of injection state.

• Provide filtering of displayed state per rule or rule script.

10.To provide the implementation of a debugger (advanced).

• Checking the code for errors by appending break points for the
user to halt the code and step through it.

￼
13

1.5 Dissertation Structure

The remainder of the document is structured as follows: Section two
contains research into Byteman, Byteman command scripts and
development options. This will analyse these areas and draw conclusions on
the progress of the project. The requirements of the plug-in are included in
section three. The design decisions made for the development of the plug-in
are provided in section four. Section five outlines the implementation of the
system, providing screen shots and a description. The implementation was
then tested using an appropriate testing strategy. These tests are presented
in a results section, which displays whether tests were passed and how each
section of the strategy concluded. The system is then evaluated and a
conclusion drawn.

￼
14

1 Background Research

Information needed to be identified to provide a suitable solution.
This is a new field of research so identifying the correct scope and
components was essential. The sources used mainly focused on Byteman,
other languages’ support systems and development of the final system.

2.1 Byteman

	

Byteman’s development cycle consists of editing, validation and
deployment. This section will identify this in more detail. The initial stage
in the development of a Byteman rule is writing a script. To enable this,
syntax of the rule language must be understood. Rules consist of an event,
condition and action. The event specifies a class or interface, a method and
a location in the method where advice is to be injected. The condition and
action provide the injected code. The injected rule is triggered when
control reaches the trigger point, the location identified in the event. The
code specified in the condition is executed. If it evaluates to true, the code
in the action is executed, otherwise it is skipped [1, 2].

An example rule is demonstrated within figure two, which is taken
from an application server support case. This rule is used to test if the
commit() method in a transaction is active. The CLASS and METHOD
section of the rules specify the trigger point in which the rule will be
injected. The CLASS specifies no package name, therefore any classes with
this name and method will execute the advice. The location for this rule is
AT ENTRY which means this rule is triggered when the method is entered.
This rule uses a BIND clause to introduce and initialise a Byteman rule
variable, status, which is an integer. $0 is a parameter variable referring to
the TransactionImple object which is the target of the commit()call.
The e xp re s s i on u sed a s t he i n i t i a l i s e r c a l l s t he me thod
Transaction.getStatus(), which returns the current status of the
transaction. The variable status can now be used within the condition and
action. The IF condition evaluates whether the status is active, if not then
the condition is true. The condition ensures the rule only fires when the
transaction is not active. The traceStack call in the action prints a
message string and at most 15 stackframes, showing who committed the
inactive transaction [2].

RULE trace inactive transaction at commit

CLASS TransactionImple

METHOD commit()

AT ENTRY

BIND status : int = $0.getStatus()

IF status != javax.transaction.Status.STATUS_ACTIVE

DO traceStack("inactive commit" + $this +

" status= " + status, 15)

ENDRULE

Figure 2: Sample rule taken from an application support case [2].

￼
15

	 The Byteman agent can be installed and rules submitted as the Java
program itself is started. This is achieved with an additional argument
appended to the Java start up command. The argument that is used to
specify this is demonstrated in figure three. This configures the JVM to load
the Byteman agent and one or more rule script files. The listener option can
be used to open the agent listener allowing the injected rule state to be
queried and rules to be unloaded and reloaded while the program is running
[1].

JAVA_OPTS=”javaagent:<location of byteman.jar>=script:
<script1>,...,script:<scriptN>,listener:true”

Figure 3: The argument to install the Byteman agent and submit scripts.

Injected code can halt an application at a specified point, monitor
performance, and identify the behaviour at different sections of a program.
It is presently widely utilized within the JBoss community for unit,
integration and system testing [2]. Byteman provides the tracing of
execution of specific code paths and displaying of the application’s state. It
also provides fault injection, which allows the user to test the system when
erroneous input is provided. This is essential when testing a system, to allow
for user faults or malfunctions. Byteman makes it easy to monitor and
measure system performance, providing the information required to tune an
application.

2.2 Command Scripts

	 Byteman provides command scripts to aid deployment and rule
validation. Inputs are supplied as command line arguments and the output is
plain text.

2.2.1 bmcheck

	 The first of these scripts is bmcheck. This provides offline parsing and
type-checking. The script uses the Byteman JAR, which contains a class that
exposes a rule parser and type checker [1]. The command that is used to
execute the offline parsing is demonstrated in figure four.

sh bmcheck.sh [-cp classpath] [-p package] * script1 […
scriptN]

	

Figure 4: The command for executing parsing.

	 The output from this command displays whether there is a parse or
type error. It also provides the user with ambiguous error output and only
the line number of the error.

￼
16

	 Online parsing and type-checking is performed by the agent when it 
tries to inject rules into loaded classes. Injection is not performed 
if parse or type errors arise. Errors may also be viewed using the bmsubmit
command (see Section 2.2.3).

2.2.2 bminstall

	 Support for the installation of the Byteman agent into live Java
programs is provided by bminstall. The script will communicate with the
JVM to provide installation of the Byteman agent into the program already
executing in the JVM. The script is installed through the command line, the
first step of this is to open the correct directory of the script. The developer
must then enter the correct command shown in figure five. The developer
must identify the process into which the agent will be installed, either by its
process ID, or by the name of its main Java 
class. The command will only provide output if the installation is not
successful displaying the error.

sh bminstall.sh <process id or program name>

Figure 5: Command for the live installation of the Byteman agent.

	 The script requires alteration for different operating systems, e.g.
Mac OS X. This is because the engine uses VM-Attach (a tool within the JVM),
this is in different locations in different operating systems due to the JDK
used.

2.2.3 Bmsubmit

This is a script used to provide the ability to load and unload rules
into a live Java program at any point during its execution. The agent’s
listener is used to listen for rules being submitted. Therefore a listener must
be opened for the submit script to work. bminstall opens the listener
automatically. If the agent is installed using the javaagent argument
listener:true must be provided. The listener also provides injection
state output, detailing the status of all currently submitted rules. This state
can be listed by running bmsubmit with no arguments. To execute the
submission script the user must navigate to the directory it is contained in
through the command line. The user must then execute the command
demonstrated in figure six. They must know the absolute path of the script
containing the rule.

	

sh bmsubmit.sh <script1 , … , scriptN>

Figure 6: Command for the submission of Byteman rules.

2.3 Development Research

	

￼
17

Research into development is necessary to provide a suitable
solution. This will provide support and assistance for the design and
implementation of the prototype.

2.3.1 Why a Plug-in?

	 To create support for a language there are different concerns, which
must be considered when deciding on the method of implementation. There
are two methods available for the creation of Byteman support.

	 The first method is creating a new IDE which would have the
advantage of being specific to Byteman. However to edit Byteman and Java
both IDEs would have to be loaded. This would not provide a solution to the
limitation of no relationship between the respective tooling. The new IDE
would have to provide support for Java, which is not within the scope of the
project. To summarise, generating an IDE would lead to a lot of complex
development and disadvantages.

	 The second method is a plug-in, which would be appended to a
current IDE. Many users develop in multiple languages using one IDE. A plug-
in would allow different language support within one application. This is
advantageous for developers, enabling simpler, easier development. The
only disadvantage to this method is that its availability would be limited to
a singular IDE. However some plug-ins can be converted to be used within
more than one [3].

The most suitable method is to create a plug-in, due to the flexibility
and simplicity it will provide the user. To increase the popularity and
usability a plug-in is desirable. Its structure will allow a portable system,
which can be deployed easily.

	

2.3.2 Which IDE?

The two IDEs compared were Eclipse and IntelliJ IDEA. This choice
was based on the availability and popularity of the two IDEs amongst
developers, particularly JBoss developers.

2.3.2.1 Eclipse

Eclipse’s architecture is composed of plug-ins. Figure seven displays
this and the ease with which plug-ins merge with the IDE [4]. Eclipse is
designed for the creation and addition of plug-ins providing an appropriate
platform for this project [4].

As figure seven also demonstrates, there is a plug-in development
environment (PDE) provided to assist plug-in developers. It provides an aid
in creating plug-in projects, permitting variants on the type including
standard and RCP [5].

A tooling feature for the generation of projects is the plug-in wizard.
Once the wizard is completed a PDE perspective is loaded. This provides a
variety of useful features. There is a modification GUI which includes the
plug-in.xml, extensions, extension points and dependencies. For a plug-

￼
18

in to connect to all the different components correctly, a plug-in.xml file
must be constantly updated. Two important features of this are the
dependencies and extensions. Extensions and extensions points modification
GUI provides simpler generation of commands, menus and other GUI
elements [6]. Commands use a handler to execute the specified code to
provide certain behaviour. Eclipse enables automation of the construction of
commands, providing easier development. It also produces the correct code
within the plugin.xml to reflect the newly created command [6].
Dependencies can be added and removed though the use of the modification
GUI. They provide packages and classes for additional functionality n a plug-
in.

Additionally PDE assists with testing of the plug-in before the
deployment of the final product. Plug-ins are also available to help with the
automation of creating and testing of plug-ins using PDE. “Plug-in Builder” is
an example of this [7]. This provides support for manufacturing the plug-in
as well as deploying the plug-in locally for testing [8, 9].

￼

Figure 7: Eclipse SDK [4].

	

Eclipse also specifies explicit documentation through an API,

including a variety of classes and methods. These are all specific for plug-in
development [4]. The APIs are clearly defined allowing simple navigation
and identification of information. These would be essential for the project
providing the developer with mechanisms to implement the functionality of
the plug-in. Additionally there are a variety of different tutorials available
to assist developers, offering differing levels of difficulty [9]. Eclipse also
has a vast amount of forums, which enables a developer to identify solutions
[10]. Eclipse supplies a class with methods for specifying the content type of
t h e n e w l a n g u a g e , t h i s i s :
“org.eclipse.core.contenttype.contentTypes” [4]. This would
supply support for the Byteman type, and help with implementation of the
plug-in.

	 Another available application type for development of professional
and stylish aesthetics for the plug-in is Rich Client Platform applications
(RCP). This is an adaptation, which utilizes new and improved tooling
techniques. It provides simpler methods for creating and modifying menus,

￼
19

toolbars and other GUI elements. [5]. There are three main parts to an
Eclipse RCP application:

• Workbench adviser is an invisible component that labours in the
background and configures the appearance of the plug-in.

• Main program is an RCP application, which is the equivalent of a main
method.

• Perspective is the layout of the program.

Eclipse represents each resource (files, folders and packages) as an
IResource, then markers can be used to represent information about
these resources. The marker feature of an Eclipse plug-in allows the
information to be observed using different views, e.g. Problem view for
errors [11].

	 Once the plug-in is developed it will require deployment. Eclipse
provides a simple and quick way of deploying plug-ins. The project needs
only be exported as a JAR file then added to the plug-ins folder in the
Eclipse application folder.

2.3.2.2 IntelliJ IDEA

IntelliJ IDEA is a code-centric IDE, which encourages developer
productivity and focuses on understanding and improvement of code. It
allows for considerable language recognition, for example distinguishing the
difference between HTML and the JavaScript within one script [12].

	 IDEA has an expansive range of tutorials and information available to
aid with plug-in development. IDEA has a variety of libraries available to
assist with the development of different language plug-ins. IDEA also
supplies classes, which allow a developer to specify the type of the new
language, as the language will be recognised using the extension that is
attached to it. This can then be used to point to the parser. The package for
extension definition is: “com.intellij.fileTypeFactory” [12] [13]. IDEA
modifies the plugin.xml for the developer efficiently, allowing for the
developer to concentrate on other aspects of the plug-in design.

	 There is however no platform for building RCP applications in IDEA,
therefore limiting the aesthetics of the GUI. IDEA does however allow RCP
applications built in other IDEs to be imported and modified [3].	 IDEA uses
actions instead of Eclipse’s commands and these have a similar functionality.
They are easily added to the program using a menu option. This
modification is then reflected automatically within the plugin.xml [14].

	 The debugging feature allows the developer to debug the program
without having to leave the IDE. This provides speed, simplicity and
convenience for the developer [12].

	 GUI implementation is easy and simple with IDEA. The GUI
development view provides the ability to drag and drop the buttons, text
boxes, and other elements to the correct position on the GUI.

	

2.3.2.3 Analysis

￼
20

	 Eclipse supports a variety of mechanisms to support custom language
plug-in development. There is also a comprehensive selection of features for
development of editors, menus, toolbar items, views and perspectives.
There are also numerous and varying tutorials and examples. These supply
the user with an extensive reference and support for developing a plug-in
[15]. Debugging code is an important and practical feature within an editor
and Eclipse provides support for this [16].

IntelliJ IDEA also provides numerous features to support and benefit
the creation of a plug-in. It has specific assistance for development of
custom language plug-ins. Features which are supported by the IDE include:
syntax highlighting, quick definition look up, code completion, refactoring
and other examples similar to the available features of Eclipse [12] [14].
IntelliJ also provides tutorials and videos to help the user with
development, these demonstrate the features and software provided [13].

2.3.2.4 Conclusion

	 Both IDEs provide similar development support for implementing
plug-ins, providing an extensive and varying amount of options. These
features will be valuable and efficient when implementing the plug-in. The
more suitable IDE available for the development of this plug-in was Eclipse.
The foremost reason for using Eclipse was its popularity within the target
users. Another reason was that the developer had previously used Eclipse
and was familiar with its mechanics. Eclipse also supplies an extensive
amount of tutorials to assist the developer with the implementation of the
plug-in. This ranges from getting started to more intricate development
factors. There was also a sizeable open source API available for the
libraries, classes and methods, which support plug-in applications. Eclipse
also provides a development environment made specifically for plug-in
implementation [8].

2.3.3 Software Support

 Research into plug-in development software revealed a variety of
software available. This resulted in the research and analysis of three
different applications: Certiv Analytics, Xtext and DLTK. DLTK is Eclipse’s
plug-in for plug-in creation. It accommodates a flexible wizard utilized to
generate plug-in projects with additional features for development. This
software doesn’t have the simplicity of Xtext which is a major disadvantage
[17] [18]. Certiv Analytics is a DSL editor, which is the intermediate of Xtext
and DLTK. It uses ANTLR grammar like Xtext and develops by extending a
few key classes [19]. The disadvantage of this application and the reason for
its dismissal is its limited code generation capability when compared to
Xtext.

Xtext was manufactured by Eclipse and provides effortless creation of
new languages and their extensions. Xtext generates projects for plug-ins as
well as additional features to improve development. Xtext provides ANTLR
tooling to define a formal grammar and this can then be utilized to
manufacture a parser [20]. It provides features to implement content assist,

￼
21

validation, formatting, highlighting and UI features. Xtext also allows
combined use of the PDE, as well as Xtend, Check and Oaw architecture
[21].

Xtext supplies ANTLR tooling which allows cross-referencing as well as
terminal and enumerated rule types. It supports linking and global and local
scoping. Other features available for development are syntax and error
highlighting, content assist and validation. Utilization of the software is
easier as it provides users with extensive documentation of features [20].

Xtext is used professionally for domain specific and general-purpose
languages. It is also easily downloaded into eclipse.

2.3.4 Features for the Plug-in

Although there is no current research or technology available for
Byteman IDE support, such mechanisms are accessible for other languages.
Analysing the other language assistants will identify the components
necessary to construct a viable solution to the problem (section 1.2). This
will provide insight into possible features, display aesthetics and automation
characteristics for the system.

A prominent feature implemented throughout the investigated
material was an editor. This feature, often a standard text editor,
maintained specialist characteristics to enhance the ability to develop the
script. The editors had the capability to recognise the language and its file
extension, displaying the text differently for each. Syntax and error
highlighting was one of the noticeable components within these editors,
demonstrating the structure of the language as well as emphasising
keywords. Another obvious feature was the use of error markers, which
demonstrate the location of the error. Additionally these provide error
messages specifying inaccuracies in the code. These error detection
methods notify the user of problems. Frequently the editor had the ability
to assist the user with immediate and automated code completion. This
supplemented the user with a variety of options they could choose from to
complete code elements. All of these features are absent within the
development of Byteman.

Perspectives were an Eclipse component used to contain all features
specific to a tool. They also added views and menu options. The prominent
views were an Outline, Problems, Javadocs, Navigation and a Console. The
Outline demonstrates the different components of a file, emphasising the
structure of the code. Problems is a view, which provides a view of errors in
the workspace, specifying their location. Javadocs provides documentation
for the code in a specific view. Navigation provides the ability to navigate
through projects and files within the workspace. The Console view is used to
display output from programs representing a collection of the output in a
single location [22-24]. Again these would be completely new features to
Byteman.

Debugging is an important feature for aiding developers in generating
valid code. The debugger is used to identify errors with increased speed and
ease, enabling the user to step through code as well as halting the program
at specified points for inspection. A variety of views are available which

￼
22

display information such as the line number of the code being edited and
the variables that have been initialized, with their values. This is described
later in more detail [16].

2.3.4.1 Grammars and Parsers

	 A grammar is a formal definition of a language. A programming
language grammar is similar to English grammar. It specifies the rules that
provide the language with meaning. Just as with English grammar there are
rules for defining sentences. Similarly the grammar for Byteman needs a
rule to specify what defines an expression. This grammar can then be used
to generate a parser. A parser is used to analyse text, therefore the
grammar is used to specify the rules of this analysis. The grammar specifies
how the text will be divided and analysed. For the analysis, the rule will
specify patterns of the language and when the input does not match this it
will produce parser errors.

The Byteman agent employs JFlex and Cup[25] to generate its
tokeniser and parser from an LALR grammar. Most Java IDE development
tools, XText included, only provide support for generating recursive descent
parsers. They do not allow the use of left recursion and operator
precedence in the grammar. So, implementation of the plug-in required
construction of a new grammar for Byteman rules.

 Byteman rules employ Java expressions in their BIND, IF and DO
clauses. In theory, this meant that existing Java grammar rules could be
used for the plug-in grammar. For example, ANTLR [26] provides a grammar
suitable for recursive descent parsing [27]. However, Java expressions in
Byteman rules comprise only a subset of the Java language. Declarations
and control structures are not allowed. So, in practice the plug-in grammar
needed to be written from scratch.

2.3.4.2 Debugger

To assist with error detection and correction many developers require
the use of a debugger. This is a tool, which allows the user to halt code to
be further analysed. The developers are usually provided with variables and
their values from the point in the code at which it was halted. This can help
identify errors and erroneous behaviour produced from inaccuracies. The
debugger knows the location to halt through the use of breakpoints.
Breakpoints are points the user can set using the editor. These usually
represent a line in the code to halt on. Eclipse uses a debugger which has its
own API available for users to generate a custom debugger for other
languages. This could be constructive for designing a debugger for Byteman.
This is however a complex and intricate process, therefore this section will
investigate the Eclipse debugger and the possible aid its APIs could provide.

Available APIs

￼
23

	 Eclipse contributes a collection of support for developing custom
software to aid debugging. These include APIs, which can re-use Eclipse’s
o w n d e b u g g e r a n d i t s f e a t u r e s . T h e s e A P I s a r e :
org.eclipse.debug.core and org.eclipse.debug.ui [4]. The first
of these relates to assistance with the functionality of the debugging
features [25]. The aesthetics displayed when debugging are supported and
implemented using the UI API. This provides an expansive spectrum of
varying libraries to implement the GUI features [4].

 Launcher

	 Through research it became apparent a launcher was necessary. This
is used to launch the custom program and implemented using a
LaunchDelegate, which is used to specify all the launch information. The
launcher recognises the configuration that is required to execute the
program using the extension [25]. Within this launcher the mode that the
program must be launched in is specified. There are two modes available
that are relevant to the specification of this project, these are run and
debug. Run executes the program normally. Debug will execute the program
with a debugger, which will identify breakpoints to pause the program.
Within this class additional arguments are necessary to specify to the JVM to
launch the program in debug mode [26].

Debug model

The debugger uses a debug model and event handling. Once the
interpreter is started in debug mode then it listens for debug commands,
and then sends debug events to the event socket. There are two sockets,
one listening for commands, the other listening for events.

The developer must provide a debug model which implements all
available debug model interfaces demonstrated in figure eight. The
IThread is instantiated for communication and records the breakpoints. It
extracts information for the breakpoint and annotates the current thread
with this. The IDebugElement is used to implement common functions in a
debugger and prevent code replication. IVariable is a wrapper for
variable names, which delegates retrieving the value of the debug target.
IValue is used to display the value and depending on the values used
within the interpreter this can be simple strings and integers or more
complex. IStackFrame parses and caches stack frame reply messages from
the interpreter, which retrieves information about the current step and
previous step of the debugger. Each IDebugTarget instantiates an
IProcess (the DebugTarget will be explained in the next section).

￼
24

￼
25

Figure 8: The debug model [16].

DebugTarget

This is the previously mentioned class, which is the prominent feature
within the debug model. It is used to centralize communication in the
debugger. When this is initialized it opens two sockets with read and write
threads listening respectively. These are used to communicate between the
UI, the debug model and the interpreter. Commands and events are used, so
instead of waiting for the interpreter to send a message, events are used so
the UI doesn’t get blocked. Then the debug methods can send the
appropriate commands. This communication is synchronised, as the Eclipse
platform is multi-threaded. Once the debug model and event handler are in
place, the interpreter will work with the Eclipse debugger [16] .

Source Code Lookup

To implement a more advanced and constructive debugger, this will
display the paused code section to the developer. This is used to create a
GUI to demonstrate and look up the source code. There are different
methods of retrieving this, dependent on the method used to store the
source.

Breakpoints

	 The debugger uses breakpoints to signify where the code should be
paused for the developer to analyse. These are usually represented in
Eclipse by a marker within the ruler in the editor.

	

Appending a Breakpoint:

1. Check that it is actually valid.

2. Check it is active.

3. Ensure that it is supported by the debug model and the program
attempting to use it.

There is an API class available called LineBreakpoint, which is an
abstract implementation used to help implement your own constructor and
model identifier. To authenticate that breakpoints are valid the breakpoint
listeners need to be filtered. Extracting the breakpoint number from the
interpreter event message, and then finding the corresponding breakpoint
object allows the collection of information. Then the current thread should
be annotated with this information.

￼
26

The breakpoints are added as deferred breakpoints. Breakpoints are
identified as the interpreter starts and are added before the interpreter’s
start-up has completed. After they have been added the interpreter is
resumed again. The event handler supervises the suspension of code from
breakpoints and deleting them.

Defining a Breakpoint:

1. First define a breakpoint structure using the breakpoint and
resource marker.

2. Use the toggle breakpoint menu item from Eclipse, using the
appropriate debug model.

3. Toggle breakpoint action.

[16]

Byteman Alterations

To add a debugger to the plug-in is going to be a complex task and
additional functionality needs to be added to the Byteman rule compiler.
Research into this identified that the table of bytecode offset to line
number mappings, and the name of the rule’s source file needed to be
injected into the bytecode. This research needs to be added to include the
custom Eclipse debugger and its execution.

2.4 Research Conclusion

	 The research demonstrated many advantages that the project should
include to provide a proficient solution. It reinforced the reasons for
implementing a plug-in rather than a full IDE. The analysis identified that
the most proficient IDE would be Eclipse. Therefore an Eclipse plug-in will
be developed.

	 The software decided upon was Xtext and ANTLR, these were
emphasised as the most appropriate choices for the project. They provided
additional features and came as a package to support the development of
the project. They will be utilized to simplify the complex process of
generating the plug-ins lower level components.

The research emphasised that it would benefit users to integrate the
command scripts into the IDE. It also suggested that additional features to
improve the current support would be essential. This would remove the
current command line interface execution improving usability of Byteman.

	 Research was hampered by a lack of easy access to information and
support for Byteman. Similar projects were investigated and the current
project has provided new insights in this area.

￼
27

3 Requirements

The requirements specify the entire system and the abilities that it
should provide the user with. This involves the interaction between the user
and system, as well as the attributes that the system will consist of.

3.1 Requirements Specification

3.1.1 Functional Requirements

Data Entry and Outputs

R1- A text editor must be able to recognise .btm files.

R2- The editor must enable the user to write Byteman rules, with the editor
recognising patterns and tokens of the rule.

R3- The user must be able to see highlighting of errors and syntax within the
rule.

R4- The user must be able to view assistance to complete code.

R5- The plug-in should include a Byteman specific perspective including
different views.

R6- The plug-in should contain a navigator, to enable the user to navigate
through different projects.

R7- The plug-in should enable the user to navigate to the Java class defined
from the rule.

R8- The plug-in should provide a Console for output.

R9- The plug-in will provide the user with an easy to use menu and GUI for
installation of the Byteman agent.

R10- The plug-in should also provide the user with an easy to use menu and
GUI for the submission and unloading of rules.

R11- The user should be able to view which rules are submitted.

R12- The user should also be able to check the state of injection, as well as
filtering this by file or rule name.

R13- The plug-in should be able to generate a skeleton template of a
Byteman rule for the user.

R14- The plug-in should offer the ability to utilize a debugger to validate
code.

￼
28

3.1.2 Non-Functional Requirements

Speed

R15- Once the plug-in has been installed it should load immediately.

R16- New .btm files should load straight away.

Usability

R17- The system should have a user manual to aid the user with utilization.

R18- The system should utilize the menus within eclipse so users can easily
navigate and use the features.

R19- The install and submit GUIs and menus should be easy to navigate and
quick to use.

R20- Any output from the plug-in should be displayed in a clear and concise
way.

R21- The editor should improve the usability of Byteman.

Reliability

R22- The plug-in isn’t a critical system but if properly installed should be
available whenever Eclipse is loaded and working.

3.1.3 Hardware and Software requirements

Languages

R23- The plug-in will be programmed using Java.

R24- ANTLR will be used as a tool to implement the grammar to generate
the parser.

R25- The plug-in should utilize Xtext to support the implementation.

Platform

R26- The plug-in will be used within Eclipse.

￼
29

4 Design

4.1 Overview

	 The strategy for the design of the system was iterative. The system
was divided into separate sections. Each section represented a feature to be
developed for the plug-in. Each feature was designed, implemented then
tested before progressing onto the next. This ensured that lower level
components were functional before the higher level components were
developed and appended.

4.2 System Design

4.2.1 Plug-in

	 The project will develop a plug-in, which should provide a
maintainable structure. The system was split into two sections, functional
and graphical. Figure nine displays ncl.ac.uk.byteman for the functional
features and ncl.ac.uk.byteman.ui for the GUI features. This
architecture ensures alterations can be made to either section without
modification of the other. It also makes navigation through the system more
manageable, and quicker. In the figure is the structure of the system, the
separate projects and the features they will provide.

￼
30

￼

Figure 9: Diagram of plug-in structure.

4.3 Software Decisions

	 To produce the system structure above the correct software needs to
be identified. This has to support the development and produce appropriate
features. This section covers the decisions made to select the appropriate
software.

4.3.1 Languages

4.3.1.1 Java and ANTLR

The principal language the system will be developed in is Java. This is
due to the choice of IDE and the software used to support the development
of the system. The Eclipse IDE is implemented in Java, and Xtext is a Java
based DSL development software. Xtext provides use of ANTLR, a tool for
generating grammar [27]. This will be utilized to develop a grammar to
generate a parser for the editor to recognise the rule language. This is used
to take advantage of the software capabilities.

ncl.ac.uk.byteman.ui

ncl.ac.uk.byteman

-grammar
Byteman.xtext

Launcher

Validation

GUI

Submit

Install

Error Messages

Highlighting

Perspective

Views

Filtering

Content Assist

Referencing

￼
31

4.3.1.2 Check

	 Check is an expression language provided by Xtext. This enables the
definition of constraints and error messages to be used in the plug-in. These
constraints use a model of the rule language produced by the parser. This
will be used as the error messages will be more explanative than the current
ones, and displayed to the user in the editor. The language also easily
expresses the constraints to enable errors or warnings [21].

4.4 Feature Design

	 The features of this system aim to remove the limitations of
Byteman. The design will consider available features from other IDEs,
identified in the research, and design a Byteman alternative.

4.4.1 Structured Editing

	 Currently Byteman has no structured method for editing rule scripts.
This section will provide the design of this as well as additional features to
provide expansive support for the user.

4.4.1.1 Grammar

	

	 Byteman provides users with no method of recognising the rule script,
it is displayed as ordinary text in editors. The first lower level component
that is required to produce structured editing is the grammar. This will
divide and analyse the Byteman rules. The grammar will provide a
comprehensive rule set to recognise the structure of the rule language. It
will allow a method to identify the patterns for the validation necessary
when editing the Byteman rule scripts. The rule language allows the use of
Byteman and Java syntax and semantics, these are both required in the
design of the grammar.

 Byteman Grammar Rules

	 The grammar must contain grammar rules specific to the patterns
that are imposed on the Byteman rule language. The domain model of the
grammar must include the ability to contain multiple rules. The structure of
the grammar will include patterns for individual Byteman rules in the script.
Each Byteman rule will be broken into sections: event, condition and action.
The event will contain the class, method and binding, if it is present. CLASS
will contain a Java class pattern, and METHOD will contain a Java method
pattern. The start and end keywords must be RULE and ENDRULE. The
condition is a Java Boolean expression, to be evaluated. The action will also
be a Java expression, which is described in the next section [1].

	

Java Expression Grammar Rules

￼
32

	 Java is a general-purpose language resulting in a broader and more
expansive range of patterns than Byteman. This means that the design of
this section will be more complex to implement. Java contains a variety of
different expressions and types, these are all given a precedence. Here is
the precedence from highest to lowest: assignments, arithmetic, bitwise,
logical, comparison, field access, method calls and simple expressions. This
structure will be added to the grammar to allow Java expressions, for
different sections of the Byteman rule. This will provide an almost complete
Java grammar, as well as the Byteman grammar.

4.4.1.2 Editor

The grammar will provide the recognition of the rule language
constraints and validation, the editor will use these to produce a structured
editing tool. The Eclipse editor is displayed in figure ten. This offers the
user multiple features. The initial feature is its ability to recognise .java
files and display them with enforced constraints. The plug-in will implement
an editor. The editor will provide the ability to recognise .btm files and this
will provide an editor specific to Byteman. This will be achieved using the
extension features provided by Eclipse PDE. The editor will offer a text
editor to input the rules, and the grammar will provide the validation of the
input. This will provide Byteman with the ability to develop rules quickly
and easily through the use of a structured display.

Figure 10: Example of an Eclipse editor.

4.4.1.3 Error and Syntax Highlighting

The editor requires additional features for increased support.
Currently Byteman’s error detection technique is limited with no visual
display in the code. There is also no structured method of viewing the
Byteman rules. Eclipse provides this within the editor displayed in figure
eleven. The editor contains highlighting of the error, and a marker notifying
its location. The keywords are also highlighted, providing a more readable

￼
33

structure to the code. The project will provide error and syntax
highlighting. This is a visual method of alerting the user to aspects of the
development. Errors will be displayed in a descriptive manner
demonstrating erroneous sections of the rule with highlighting and markers.
Syntax highlighting accentuates keywords and areas of the code, providing a
simple method of distinguishing the structure. It will provide different
colours to highlight the different sections of the rules (i.e. event, condition
and action). This will offer the user valuable information and the increased
probability that an error will be identified and eliminated. This eradicates
confusion concerning the structure of Byteman rules and displays them more
coherently [20].

	 ￼

Figure 11: Example error and syntax highlighting from Eclipse.

4.4.1.4 Error Messages

Byteman’s error messages are confusing and displayed in the
command line. Eclipse provides comprehensive error messages in the editor
shown in figure twelve, which the target users are used to. To assist with
validating code, error messages should be incorporated into the plug-in.
These will be for compilation errors, as they are displayed in the editor
before runtime. These should clearly and concisely demonstrate to the user
what is wrong, providing the developer with information to solve the
problem. This will decrease the time taken to debug code, as well as
assisting in producing valid code.

 

Figure 12: Example error message within Eclipse

4.4.1.5 Code Completion

Byteman has no automation feature for completing code. Eclipse
provides this through a shortcut and a list displayed in figure thirteen. The

￼
34

short cut decided upon for this editor is CTRL + SPACE, due to its usage
within Xtext and Eclipse. It is a recognised shortcut therefore provides an
easier extension for the target users. This feature will be produced using
Xtext’s available content assist development support. This will provide users
with a list of Java and Byteman variables to choose from to complete the
code element. Code completion provides a simpler and quicker method for
developers to implement code, making it an attractive feature for the
editor [22]. The absence of such support is a significant hindrance to user
adoption of Byteman.

￼

Figure 13: Eclipse example of content assist.

4.4.1.6 Referencing Java Classes

There is no method of alternating between Java classes and Byteman
rules. Eclipse provides functionality which allows a user to highlight a class
name and open it through the use of a menu item. This feature will be
implemented using the JDT API and the search engine it provides. To use this
feature the user will have to highlight the class or method that they require
to be displayed. Then utilizing a provided menu feature will access the
specified class, as long as it is within the workspace. This will allow users to
navigate between their respective programming scripts easily, without the
upheaval of having to identify the correct package and class. This will
decrease development time and errors as the user can validate Java
declarations more simply.

4.4.2 Perspective

This is a visual container for views in the IDE such as the editor or
Console and is specific to a single language. Eclipse provides perspectives
for different languages and features, as shown in figure fourteen. This
provides the user with easier navigation, as all the features are contained in
one location. Eclipse organises related views within the perspective using
tabbed panes. Tabs within the same pane present the same type of content
such as file contents or build, execution and debug output. Figure fifteen
demonstrates the views specifically the Console, which is used for output.

￼
35

These will be implemented by adding dependencies in the plug-in, then
creating an extension point to specify the perspective and its views. The
perspective will ensure that .btm files are opened using the Byteman editor.
It will also provide a variety of views for the user, such as Problems,
Outline, Navigation and the Console. This will supply the user with
increased information, which will be easily accessible.

￼

Figure 14: Example of available perspective in Eclipse.

￼

Figure 15: Eclipse example of views.

4.4.3 Byteman Rule Template

Currently, each Byteman rule is developed from a blank text file, no
aid is provided. Eclipse offers users a template Java class, which contains
the skeleton class structure as shown in figure sixteen. Template generation
is a standard feature in a multitude of IDEs. The feature will allow the user
to generate a template .btm file in a project. A basic rule definition will
automatically be printed in the file, decreasing the time to develop,
especially for experienced users who will be accustomed to the availability
of such a feature. It will also support new users by providing the principals
for Byteman rules immediately. Templates will be achieved using Eclipse PDE
support for wizards to generate new files. [28].

￼
36

Figure 16: Example template from Eclipse.

4.4.4 RCP

 	 RCP is a rich client platform, used to provide plug-ins with improved
GUI features. The research into this software revealed that it wasn’t
suitable for this project. The plug-in that will be generated from this
project will use the menus and views available within Eclipse and will only
contain an inconsequential amount of GUIs. RCP is also unavailable for use
with Xtext, and as Xtext provides all the features necessary for this project
RCP became redundant [5].

4.4.5 Installation and Submission

Byteman already allows specialised features for the user as described
in section 2.2. It was necessary to design a method to integrate and
automate these within Eclipse. This would make the command line
redundant, resulting in decreased complexity and no command to
remember. It will provide developers with an easy and quick technique for
advanced Byteman use, allowing them to install, submit and view output
efficiently [1]. These features will be implemented using GUIs. These will
contain a text box for the user to add the necessary information. The button
on the GUI display will then allow for the completion of the necessary code
to execute the script. The output produced from these actions should be
displayed to the user appropriately. This should be achieved through the use
of a GUI dialog box, as well as the use of a Console view. This will allow the
user to identify and analyse output quickly and simply.

￼
37

4.4.5.1 Launcher

	 The previous design of a submission GUI seemed too complex. The
user had to provide the absolute path of the rule, even though they had
developed it in Eclipse. The design was refined to provide a method of rule
submission using the rule that had been developed. This produced a design
for a launcher, which will submit rules in the workspace from Eclipse. This
will use a specified launch configuration for Byteman and the .btm
extension. The user right-clicking on the rule and using the Byteman
launcher will submit the rule. There will be no requirement for the rule
path to be entered. The launcher will allow for simpler and quicker
launching of rules within the workspace.

4.4.6 Additional Byteman Support

	 The research identified that additional features to the current
Byteman support would be beneficial to users of the plug-in. These are
features to help extend the current scripts and make their methods
accessible. The submission script has methods for output about all rules and
deleting rules. It was decided that their availability to the user should be
integrated into the IDE. This will remove their use within the command line,
providing simpler execution.

4.4.6.1 Viewing Rules

The output from the injection state will be printed within the IDE.
This will require the use of menus. When the menu is selected this should
trigger a method to retrieve the rules that are currently submitted in the
program. If there are no rules then the user should be notified of this. The
output should be displayed in the Console. This will provide the user with a
quick and simple mechanism for viewing information about which rules have
been installed.

	

4.4.6.2 Filtering Rules

The output previously mentioned has no method to identify relevant
information, therefore the design was reviewed and refinement identified.
This will be a filter to specify the information required. The filter options
are retrieval of information about a script or a rule. A GUI containing a text
field and a button will enable this. The name of the rule or script will be
entered to execute the filtering. The user should then click the button,
which will execute the retrieval of information.

4.4.6.3 Uninstalling All Rules

As the user has the ability to submit rule scripts, then logically they
should also be able to unload them. This feature will provide the user with

￼
38

this capability. This feature should have a menu item in the IDE for the user
to choose. When selected this should execute a code segment which uses
the submission script. The method available from the script will uninstall all
the rule scripts currently loaded.

4.4.6.4 Uninstalling a Selected Rule

	 It is sometimes necessary to unload specific rules rather than the
whole of the currently loaded ruleset. The design was revised to allow the
user to specify a rule script for deletion. It will use a menu item, which will
open a GUI. This should allow the user to enter the name of the rule scripts
they require unloaded. This will aid the user in a more specific deletion
mechanism.

4.4.7 Debugger

Byteman currently has no debugger, unlike the one provided by
Eclipse in figure seventeen. This is a Perspective on its own and provides a
multitude of features. To transfer this feature to Byteman rules, the
debugger would need to halt a rule when it is executing in the JVM. This
would be implemented utilizing the debug APIs mentioned in section
2.3.4.2, basing the program structure on the model shown in figure eight
(page twenty-five). This analysis would decrease the amount of time
exhausted while debugging, and ensure simpler error identification. The
debugger should give the user the ability to append breakpoints and observe
halted code [16].

Figure 17: Example of a debug view, including a breakpoint in Eclipse.

￼
39

5 Implementation

This section explains the technical aspects of the project during the
implementation of the system. It describes the features of the system and
the mechanisms used to complete them. It displays the achievements of the
features and what they provide the user with. The system’s user guide can
be found in appendix B.

	

5.1 System Overview

	 A plug-in was produced providing developers the integration of
Byteman with Eclipse. It removed the need for command line execution.
This was an advantage as the target users are IDE developers. It allowed
structured editing of Byteman rules and the submission of rules from the
IDE. The system adhered to the design and removed Byteman limitations.

5.2 Grammar and Parser

An editor which enforces Byteman syntax and semantics was
required, so a grammar was developed. This specifies rules for the patterns
of Byteman and Java expressions. The grammar provides the user with an
editor to input rules, which will supports their validation.

Figures eighteen to twenty demonstrate small fragments of the
implemented grammar sections. Patterns for Java expressions are displayed
within figure eighteen. It contains the highest Java precedence, assignment,
as described in section 4.4.1.1. The first line is the name of the rule, the
right-hand side of the second line is the pattern. The parser recursively
matches the input text against the patterns, to validate the inputs are
correct. Java expressions in the grammar state the highest precedence
expression first continuing to the lowest one. This provides the user with all
possible Java expressions within the scope of the Byteman rule language.
These are constrained by the grammar to the BIND, IF and DO clauses of
the Byteman rules.

AssignmentExpr:

 left=VariableExpr ASSIGN right=Expression;

OperatorExpr:

PlusMinusOperand(ops+=(PLUS | MINUS)
operands+=PlusMinusOperand)*;

Figure 18: Grammar section for Java

A grammar rule for Byteman is displayed in figure nineteen. As
Byteman rules have an event, condition and action, this is the architecture
of the grammar. The BytemanRule is the representation of an entire rule
within a script. Each section of the rule (e.g. event) is defined by separate

￼
40

rules in the grammar. The Rule in the second line of figure nineteen is
defined at the bottom of the figure. This grammar rule represents the name
of the Byteman rule and specifies that it may be a qualified name or a JVM
type (a choice of Java classes). The grammar rule allows one or more Rule
in the name this is represented by the +. This provides a valid grammar rule
that allows a Byteman rule name of any length, as long as there is at least
one non-white character.

BytemanRule :

 keyword=KEYWORD_RULE (name+=Rule)+

 event=Event

 condition=Condition

 action=Action

 KEYWORD_ENDRULE;

Rule:

QualifiedName | JavaType;

Figure 19: Grammar section for Byteman rules

Figure twenty displays a terminal rule, which defines some of the
tokens accepted by the grammar. It defines the tokens for the two boolean
values, true and false, which can be entered in either upper or lower case.
Xtext provides default terminal rules defining Java tokens like numbers,
strings, comments and whitespace. However Byteman has different
conventions to Java for white space and comments so the plug-in grammar
had to define its own token rules.

terminal BOOLEAN :

 'TRUE' | 'true' | 'FALSE' | 'false' ;

Figure 20: Terminal rule in grammar

5.3 Editor and Features

The grammar provides validation for the input of the editor. The next
feature was the development of the editor with the ability to
recognise .btm files as Byteman rules. This was achieved through the use of
an extension in the plugin.xml. This extension specifies the editor to be
used, and within this was an attribute stipulating the extension for its files.
This provides the user with structured editing and parser generated errors.
These errors are generated because of the constraints specified by the
grammar rule patterns. They are displayed in the editor to notify the user
quickly and simply.

The plug-in offers syntax and error highlighting, to accentuate
sections of the code to the developer. Syntax highlighting was implemented
using a highlighting calculator and configuration. The configuration specifies
colours for the calculator to use. The calculator computes the correct
sections of code to highlight. This project implements keyword highlighting.

￼
41

To implement this the plug-in traverses the parse tree. During this traversal
the calculator identifies the keywords and highlights them. This highlighting
is provided to the user throughout the development of Byteman rules. Error
highlighting provides highlighted code and so developers can now identify
invalid code more quickly.

	 Additional error detection methods now implemented are error
markers and messages. Xtext provides an expression language called Check
as described in section 4.3.1.1. This language was used to identify errors
and provide custom error messages. This permits for more coherent and
accurate error messages. As displayed in figure twenty-one the validation
specifies a type to inspect. An appropriate error message is then specified
to aid the user. The example calculates if the user has neglected to state a
line number or if the line number is less than zero. The check requires the
condition to equate to false for the error message to be displayed. This
would highlight the error and place a marker at the location, as well as
specifying the error message, providing users with easier and quicker error
detection.

context BytemanRule ERROR

"AT LINE must contain a line number above zero":

let a = "LINE":

this.event.locationSpec.atline.name.contains(a) ?

event.locationSpec.atline.line >0 : true;

Figure 21: Example code for errors.

Another feature provided in the editor is code completion. This
supplies the user with a keyboard shortcut (CTRL + SPACE). This shortcut can
be used to offer the user with a list of available options, as shown in figure
twenty-two. When chosen, the code element will be completed
automatically. This was implemented with the aid of two different
methodologies.

The design emphasised the necessity for content assist for Java types
and common classes. This feature was completed using the JVM types
package. This provides code completion of Java elements. The second
method uses the “ProposalProvider” class. The developer implemented
this class to specify the traversal of the parse tree. This will produce the
content assist in the correct section of the rule, so not to violate a
constraint. This class will then specify the list of available Byteman variable
options for the user. The user can now quickly complete Java and Byteman
elements, and the target users are provided with a feature they are
accustomed to.

￼
42

￼

Figure 22: Content assist options list

	 A functional feature for the plug-in was the ability to generate a
template Byteman rule. When this option is executed it will open a
new .btm file in the editor. This file displays a basic rule structure. This is
displayed in figure twenty-three. The user can then fill in the missing code.
As the user doesn’t have to enter the keywords development time is
decreased. Wizards were constructed to allow easy construction of the file
for users. As figure twenty-four demonstrates the wizard provides the
creation of a Byteman file. Figure twenty-five displays the subsequent
wizard for locating and specifying the project the file will be placed into, as
well as a text field to enter the name of the file. Once the user presses
finish the new .btm file will be created and displayed in the editor. These
were implemented using the PDE’s wizard extension.

￼

Figure 23: Template Byteman Rule

￼

Figure 24: Wizard for creating a Byteman file

￼
43

￼

Figure 25: Wizard to enter details of the new file

￼

Figure 26: Extension used for the wizard

	 With the plug-in the user is able to open a specified Java class from a
Byteman rule. It is implemented using the Java search engine in the
org.eclipse.jdt.core.search package. This API is used to implement
a searching ability for the workspace. The user must highlight the Java
element they want to search for, and select a menu option to open the
reference. This executes code which uses search patterns to identify the
relevant search term. If the pattern is discovered within the workspace, the
class containing this is opened. This provides the user with simple and quick
navigation to relevant code.

5.4 Integration of Command Scripts

	 The command scripts were integrated into Eclipse. Installation of the
agent was provided through a GUI. Figure twenty-seven demonstrates the
GUI, which can be selected through a menu item. The user must enter the
Byteman home and the identified programs process ID or the main Java class
name. Once the button is selected installation of the agent is executed. If
the agent is successfully installed it will display a dialog box confirming this.
If an error occurs this is displayed in the Console. The plug-in also ensures

￼
44

cross platform use. The system will identify the operating system being
used, and execute the correct command script.

This feature provides integration of this function into the IDE and
makes its execution automatic. This is easier and simpler for the user than
using the command line but provides the same functionality.

￼

Figure 27: Byteman install GUI

	 The submission of Byteman rules is also provided through a GUI.
Figure twenty-eight displays the GUI, which can be opened through a menu
item. The Byteman home and rule script name are required in the text
fields. The button is then selected, which initiates the submission of the
rule. Successful execution outputs a listing of all installed rules, where as
failed execution outputs an error listing, and these are both displayed to the
Console. Submission is only possible if the agent has been installed prior to
this, with an opened listener. If the user installs the agent through the IDE
the listener will be opened automatically. This feature integrates submission
of rules with the IDE, removing the need for the command line. Removal of
the command line provides the user with simpler and easier development.
This feature also allows automation of the submission.

￼

Figure 28: Byteman submit GUI

The design specified refinements to the submission of the rules. The
launcher has implemented these refinements. Figure twenty-nine
demonstrates the launch configuration tab for Byteman. This launcher
provides execution of Byteman rules from within the workspace. This is
implemented through the use of the org.eclipse.core.debug. The API
allows the specification of a configuration type, resulting in the recognition

￼
45

of a .btm file. The user has to right click on the Byteman rule and click run
as. The GUI will be displayed and the user then selects run. This will submit
the rule with output for success or errors in the Console. The Byteman home
is only required once, it is stored and displayed in the text field each time
the GUI is opened. This provides the user with quicker and simpler
submission of rules, as there is less information to input.

Figure 29: Launch configuration for Byteman rules

5.5 Additional Byteman Support

The implementation of the additional features followed the original
design specified in Section 4.4.6. These included viewing, uninstalling and
filtering rules. The ability to view rules was implemented through the use of
a menu item displayed in figure thirty. This then executes a method, which
displays the rules in the console as demonstrated in figure thirty-one. Figure
thirty displays the menu items for uninstalling rules, there being two
options. The first is to uninstall all rules that are submitted. The second, a
refinement of the previous, provides the user with the ability to uninstall a
specified rule. When this menu item is selected it will display a GUI shown
in figure thirty-two. For both of these methods the uninstalled rules will be
shown in the Console as displayed in figure thirty-three. There are menu
items to filter the rules by script or rule name. Figure thirty-four and thirty-
five display the two GUIs used to filter rules. The output is then displayed in
the Console, this is shown in figure thirty-six. These were implemented
using a Java instance of the submission script. This instantiation was then
used to provide methods that the script enabled. These features are
integrated into the IDE. The user is provided with quicker and simpler use of
them, as there are no commands to remember.

￼
46

￼

Figure 30: Menu items.

￼

Figure 31: Rules displayed in the console.

￼

Figure 32: GUI for deleting a specified rule.

￼
47

￼

Figure 33: Console displaying the uninstalled rules.

￼

Figure 34: GUI for filtering by script name.

￼

Figure 35: GUI for filtering by rule name.

￼

Figure 36: The console output for filtering.

￼
48

5.6 Debugger

The debugger from the design section was an intricate and complex
development task, which resulted in being too time consuming for
completion. However the research and design is available for another
developer to progress with.

6 Testing

￼
49

	 This system was rigorously tested to validate that it is executing
correctly and achieving its requirements. Testing was vital to provide
evidence of a working system, and to identify bugs within it. An expansive
testing range and the possible scenarios were used in the testing strategy.
This section provides the choices for testing and the strategy. The full
testing, screen shots and detailed testing tables, are in appendix A.

6.1 Testing Strategy

The strategy was to divide testing into unit, integration and system
tests. This was chosen to provide a wide range of tests. Unit tests are the
lowest level of the system and test the coding elements. This can be a class
within the program or even a method. These tests identified and provided
evidence of the behaviour of the components. For this system the features
were divided and a program component was a unit. Integration testing
combined the unit tests from the previous program element to identify and
analyse whether they will work together. This provides confidence in the
integration of the lowest level components, offering intermediate testing.
The integration of units meant features were tested. The tests within this
section were specified in the sequential order they were inputted. System
testing identifies if the integration tests will work together. It combines all
the components to identify if any errors were present or if the system was
functional. The order of the inputs signifies the order they were executed.

 These tests covered the lower level components as well as testing
the combined components. This strategy was advantageous for this system
as it allowed the division of the system to ensure no errors were present in
even the lowest level of the code. As each of the features of the plug-in
consisted of units of code, it followed that the most appropriate
methodology of testing is to divide the code and test each program
element.

The tests studied the behaviour of the plug-in during different
circumstances specified in the Test No. column, which provides the number
and the type of test. These tests provided evidence of the behaviour of the
system under normal, erroneous and extreme test cases. Extreme test cases
refer to correct input, but these will be maximal or minimal values. Normal
defines a test case that is correct. Erroneous expresses a test case, which is
incorrect. Some tests will have all three of the test cases, and where
appropriate some will not.

Full System Test

	 This is the result for the system test. It demonstrated the system is
functional and passed all of the tests set. This included intensive unit,
integration and system testing. As previously mentioned these are available
in appendix A.

Test No. Input Passed

1: Normal 6.4.1, 6.4.3 Yes

￼
50

￼
51

7 Results

	 The testing identified the behaviour and outputs of the system. This
required analysis to determine the overall performance of the system to be
evaluated. In this section the test results are discussed and evaluated to
demonstrate the strengths and weaknesses of the plug-in.

7.1 Unit testing

	 Unit testing analysed the individual components of the plug-in. The
tests presented a fully functional editor, customised for the use of .btm
files. This is necessary as the constraints and validations are only functional
for Byteman. Using this for other file extensions would cause the editor to
present incorrect errors and syntax highlighting. As the system is a plug-in
other languages will be supported in the IDE, therefore this would be a
redundant feature.

	 The editor’s syntax highlighting feature also demonstrated correct
highlighting, only emphasising Byteman keywords with an altered colour.
This was successful for normal, erroneous and extreme values.
Corresponding results were found for error highlighting, only underlining
erroneous code. Custom error messages have a weakness, they produce
error highlighting for the whole rule. However the more explanative
message will aid the user in locating the error.	

Error markers were displayed in the correct location in the left hand
side ruler, presenting the user with the line the error is on. These too are
only displayed when there is an error in the file, this provides the user with
the correct functionality.

	 Code completion was provided through the use of a shortcut, which
displayed a list of options to the user as expected. These options included
Byteman variables and formal and custom Java classes. The code
completion is only available in appropriate locations. If a Java expression
isn’t allowed in that location then it won’t be part of the code completion
list. The user can automatically complete code successfully.

	 Templates can be generated from wizards. The template provided the
user with a skeleton rule displaying the correct keywords. The wizard didn’t
allow the generation of a file with an incorrect extension. This was
necessary as the wizard was designed as custom support specifically for
Byteman.

	 All the GUIs were generated correctly and displayed the correct
information entry points. All menus were also displayed and in the correct
location.

	 The installation of the Byteman agent executed correctly, as well as
notifying the user with success or error messages. The user was also advised
about incorrect input into the text box.

 	 Submission of valid rules executed to completion and outputted the
installed rules to the user. The user was also notified of any incorrect input.

	 The additional features of the current Byteman support also proved
correct and presented constructive output. This included viewing the
submitted rules, these were correctly displayed in the Console. The function

￼
52

that enabled all rules to be uninstalled, unloaded all the rules successfully.
Unloading also including the ability to specify a rule to be uninstalled, this
was also successful. These both displayed the uninstalled rules in the
Console. If incorrect information was inputted then an error was displayed
in the Console. The plug-in also supplies the user with an option to filter
rules, this feature worked for filtering by rule name and script name. It
displayed nothing when an invalid name was entered, which was correct as
the filter wouldn’t identify the incorrect input.

	 The perspective and views all appeared and worked correctly. The
available views included a Console, Outline, Problems and Navigation.
Another feature of the IDE was the creation of a relationship between the
declared Java class and the Byteman rule it was referenced in. This
correctly opened the Java class for the highlighted Java element.

7.2 Integration Testing

	 Integration testing combined the unit tests to evaluate if the
components can execute collectively. This will identify if the system
performs properly at a higher level than unit testing, providing the user with
more functionality. These tests also move towards more correct system use,
providing an insight into actual user test cases.

	 The editor successfully provided the user with all the correct
features. It provided such features as template generation and highlighting.
Combined editor features executed correctly and no errors were found.

	 The plug-in provided the combination of installation and submission
successfully. Their additional features also provided the user with extended
information and executed functionally. This demonstrated evidence of the
successful integration of Byteman with Eclipse.	

All of the features that were combined and tested executed
accurately and with no errors. This demonstrated evidence of the system
working correctly for user case tests.

7.3 System Testing

	 The combination of all components executed correctly. The system
displayed no errors or faults when fully tested with user case tests. The test
cases employed rule scripts from real life scenarios. The integration tests
were combined with no issues, ensuring easy and simple use for the user.
This demonstrated evidence that the plug-in was functional and executed as
expected.

￼
53

8 Evaluation

	 This section evaluates the prototype against the aim and objectives
of the project. This identifies if the proposed objectives of the system were
met and what advantages the system provides. The depth in which the
feature of the system met the objectives will be evaluated. This section will
also specify the advantages the project provided and the progress within the
subject field it made.

	

8.1 Discussion

The aim of the project was to develop a system to provide
integration of Byteman with an IDE. Discussion and analysis of the objectives
in Section 1.4 will identify if they have achieved the aim of the project.

The IDEs were compared showing the advantages and disadvantages
of each, identifying that Eclipse would be used for the project. This decision
allowed simpler and quicker implementation of the prototype. It also aided
the design and the choice of technologies used. The choice of Eclipse was
advantageous and improved the quality of the final plug-in. This meant that
objective one was met, which was essential for the project’s success.

Research was continued into current technologies, this was for
objective two. The initial development stage researched and analysed
Byteman. This included how it works, what it is used for, how to use it, its
syntax, its limitations and practical uses. IDEs and plug-ins, which provide
language support, were analysed. These provided features to be used within
the system. This also involved investigating plug-in development and the
possible software to be used. This meant objective two was met.

Design of the low level components such as the grammar and parser
were completed. This included the Byteman and Java patterns for the
grammar rules. As a result, objective three was met.

The design section uses the research in this project to include or
exclude features. The design section shows a comprehensive and extensive
design of each feature, therefore meeting objective four.

Using the design from objective three, objective five was met. A
grammar was developed from scratch, which described patterns for both
Byteman and Java. The parser used these to enforce constraints within the
editor.

The plug-in provides a structured editor, which is customised for
Byteman rule scripts. It uses the grammar from objective five to provide
validation of input. Error highlighting is provided, which is advantageous to
the user as it supports error detection in the editor. It also decreases the
time taken to locate an error. These features of the editor achieve objective
six. The editor additionally provides code completion, error markers and
messages, template generation, perspectives, views and information
displayed in the Console. This completes the seventh objective.

The eighth objective was to provide a relationship between the
Byteman rule and the Java class it references. This was achieved through a
menu item, which will open the referenced class. The advantage of this was

￼
54

that it allows the user to validate classes and methods they have
referenced, quickly and simply. They can also validate that the behaviour
they are trying to induce is correct and relevant. This ensured objective
eight was met.

The installation and submission of the Byteman agent and rules was
successfully implemented. Additionally further features were implemented
to view, uninstall and filter the rules. This objective was achieved as well as
including additional functionality. This meant that objective nine was met.

The final advanced objective was partially achieved in that it was
researched and designed. However further work could be carried out in
future (see Section 9.4).

	 The aim of the project was achieved, providing a functional
prototype. This provides Byteman development support, integrated into
Eclipse. The prototype offers a wide range of features for Byteman users,
which weren’t available before this project. 

￼
55

9 Conclusion

	 The project aimed to integrate development support for Byteman
with an IDE, which was achieved. The project helped to create and expand
research into this area as well as providing crucial designs and a resultant
prototype. Initially the project was heavily research based, defining the
tools to use and system features. Tool definition included research into a
collection of libraries available for plug-in development. The features
chosen provide a wide scope of support and met the objectives.

9.1 Achievements

	

	 The most prominent achievement of the project was that it solves
the original problem by providing a wide range of support. This was
provided through the multitude of features designed and implemented in
the system.

	 All the objectives were met except the implementation of one of the
advanced features, although it was researched and designed. This was an
achievement, which provided an expansive solution to the problem. It has
provided a solution which is simple and quick to use. Installation of Byteman
is easy, the user is provided with two JAR files which only require copying
into the plug-in folder within the Eclipse application. Then after Eclipse is
restarted the plug-in will be available. This provides a system which is
portable and easy to deploy. It is also simple to use as it provides users with
prompts and success and error messages.

	 The project has provided research and analysis into a new subject
area for the Byteman language. It has offered innovative designs, which
have been implemented to produce a prototype, displaying the work
undertaken by the project.

	 The testing and results have provided evidence of a functional
system, which provides accurate features from the design. The results show
the system’s ability to deal with user errors, which demonstrates a robust
and well-formed prototype that meets the aim of the project.

	 The project removes the limitations of Byteman, which is achieved
through a number of features, one of these is a structured editor. The
system also provides the integration of Byteman execution into an IDE,
which makes the use of a command line redundant. It offers a relationship
between Java classes and the Byteman rule, which contains them. This
allows the relevant class to be opened from the rule, which is a huge
advantage when you have thousands of classes.

	 This project covered an extensive scope of research and design work
to produce the final product. It was necessary to generate analysis into a
new subject area. The project is functional, robust and provides a
significant amount of features to support developers with the creation of
Byteman rules within the Eclipse IDE. This has never been accomplished
before and will provide new and current developers with a variety of
features in an IDE for Byteman.

￼
56

9.2 Problems

	 An initial problem was the absence of previous research into IDE
support for Byteman. This was counteracted by initiating research into
alternative IDE language support and into Byteman itself. These two
directions of research provided am insight into the capabilities and
limitation of Byteman, and possible practical features for the plug-in.
Combined the features were analysed to identify which would be
appropriate to solve the limitations that were apparent in Byteman, thus
generating original research into the problem area, and reviewing it to
generate an innovative solution.

	 The project presented a steep learning curve for the developer. The
initial programming language that had to be mastered was Byteman, as this
was the prominent feature of the system. This was essential for testing, so
the features of the plug-in could be analysed. Therefore all practical use
Byteman was made more difficult by the limitations previously stated in
section 1.2. The lower level components required implementation using a
tool called ANTLR to generate a grammar for the editor. This was difficult,
as the developer had never used a grammar and parser before. This
necessitated knowledge of the syntax and possible options for the grammar
rules. The ANTLR tooling was unlike any programming language the
developer had used before. The project also used languages the user had
never used before, for different features of the plug-in. The solution to this
involved research and trial and error. The developer had never used plug-in
development either. This is a huge task due to the different libraries and
classes available. This problem was solved through time, research and trial
and error.

9.3 Learning Outcomes

	 The project provided a broad scope of new technical knowledge for
the developer. It presented new languages, programming skills, techniques,
tooling and introduced new concepts. These were advantageous to the
developer and aided in improving and developing their skills.

	 The research involved in this project extended the developers
knowledge of Byteman, Eclipse, plug-in design and development and
software support for custom languages. This developed their original skills,
improving their analytical and reviewing techniques. Throughout the
duration of the project independent working, planning and organisation
skills were improved and strengthened. The developers design skills were
enhanced, which was through the design of the system from lower level
components to the higher-level functionality.

	 This project was undertaken as an industrial placement with a
company called Red Hat. The project has given the developer an insight into
working on a professional project and writing professional documents. The
experience provided them with a chance to use new technology from
industry. It also provided them with the chance to create open source
software, providing a system for the JBoss and Byteman community to take
advantage of.

￼
57

	

9.4 Future Work

	 Due to the time constraints not all of the objectives were fully
implemented in the final system. Future work would be to implement a
debugger with such features as breakpoints, and code stepping. This
research should be integrated with the Byteman compiler and interpreter.
Additional future work would also be to refine the current features.

9.5 Concluding Remarks

	

	 Overall the project was a success providing functional features,
which integrated Byteman into an IDE. This project provides new research
into an innovative subject area, which successfully solves the original
problem. The project provides a wide and interesting range of research,
design and technical aspects, which have been beneficial to the developer.
The project achieves the aim, providing a design and implementation of the
objectives. 

￼
58

10 Glossary

D

DSL:

G

GUI:

I

IDE:

J

JVM:

P

PDE:

Perspective:

R

RCP:

S

SDK: 

￼
59

11 References

[1]	 A. Dinn. (2011, 11/03/2011). Byteman Programmer's Guide.
A v a i l a b l e : d p w n l o a s . j b o s s . o r g / b y t e m a n / 1 . 5 . 1 /
ProgrammersGuideSinglePage.html

[2]	 A. Dinn. (2011). Flexible, Dynamic Injection of Structured Advice
u s i n g B y t e m a n . Av a i l a b l e : h t t p : / / d e l i v e r y. a c m . o r g /
1 0 . 1 1 4 5 / 1 9 7 0 0 0 0 / 1 9 6 0 3 2 5 / p 4 1 - d i n n . p d f ?
ip=128.240.229.65&CFID=36046115&CFTOKEN=88806712&__acm__=13
11241502_9d4ce5dce044cebf00f91b990206fdde

[3]	 I. IDEA. (2011, 11th April 2011). Using IntelliJ IDEA for Eclipse RCP
Development. Available: www.jetbrains.com/idea/documentation/
usingIDEAforEclipse.html

[4]	 Eclipse. (2011, Accessed: 11th April 2011). Eclipse Documentation.
Available: http://help.eclipse.org/helios/index.jsp

[5]	 L. Vogel. (12th March 2011, 13th April). Eclipse RCP Tutroial.
Available: www.vogella.de/articles/EclipseRCP/article.html

[6]	 L. Vogella. (28th March 2011, Accessed: 15th April 2011). Eclipse
Commands Tutorial. Available: www.vogella.de/articles/
EclipseCommands/articles.html

[7]	 P. Builder. (2008, Accessed: 16th April 2011). What is Plugin Builder.
Available: http://www.pluginbuilder.org/

[8]	 W. M. a. D. Glozic. (8th September 2003, 23rd April 2011). PDE Does
Plug-ins. Available: www.eclipse.org/articles/Article-PDE-does-
plugins/PDE-intro.html

[9]	 L. Vogel. (20th September 2010, Accessed: 14th April 2011). Eclipse
Plugin Development Tutorial. Version 1.6. Available: www.vogella.de/
articles/EclipsePlugin/articles.html

[10]	 DZone. (2011, 1st June 2011). EclipseZone. Avai lable:
www.eclipsezone.com

[11]	 E. P. Development. (2008, 20th April 2011). Introduction to Builders,
Natures and Markers. Available: www.eclipsepluginsite.com/builders-
natures-markers.html

[12]	 O. S. Maxim Shafirov, Kieth Lee, Sascha Weinreuter. (11th April 2011).
Developing Custom Language Plugins for IntelliJ IDEA. Available:
www.jetbrains.com/idea/documentation/idea_5.0.html

[13]	 D. Jemerov. (20th October 2010, 24th April 2011). Getting started
w i t h p l u g - i n d e v e l o p m e n t . A v a i l a b l e : h t t p : / /
c o n f l u e n c e . j e t b r a i n s . n e t / d i s p l a y / I D E A D E V /
Getting+Started+with+Plugin+Development

[14]	 D. Jemerov. (2011, 23rd April 2011). Developing Custom Language
Plugins for IntelliJ IDEA. Available: http://confluence.jetbrains.net/
d i s p l a y / I D E A D E V /
Developing+Custom+Language+Plugins+for+IntelliJ+IDEA

[15]	 C. Aniszczyk. (12 Feburary 2008, Plug-in development 101, Part 1:
The fundamentals. Learn the basics of Eclipse plug-in development.
Available: www.ibm.com/developerworks/library/os-eclipse-
plugindev1/index.html?ca=dgr-eclipse-1

￼
60

http://delivery.acm.org/10.1145/1970000/1960325/p41-dinn.pdf?ip=128.240.229.65&CFID=36046115&CFTOKEN=88806712&__acm__=1311241502_9d4ce5dce044cebf00f91b990206fdde
http://delivery.acm.org/10.1145/1970000/1960325/p41-dinn.pdf?ip=128.240.229.65&CFID=36046115&CFTOKEN=88806712&__acm__=1311241502_9d4ce5dce044cebf00f91b990206fdde
http://delivery.acm.org/10.1145/1970000/1960325/p41-dinn.pdf?ip=128.240.229.65&CFID=36046115&CFTOKEN=88806712&__acm__=1311241502_9d4ce5dce044cebf00f91b990206fdde
http://delivery.acm.org/10.1145/1970000/1960325/p41-dinn.pdf?ip=128.240.229.65&CFID=36046115&CFTOKEN=88806712&__acm__=1311241502_9d4ce5dce044cebf00f91b990206fdde
http://delivery.acm.org/10.1145/1970000/1960325/p41-dinn.pdf?ip=128.240.229.65&CFID=36046115&CFTOKEN=88806712&__acm__=1311241502_9d4ce5dce044cebf00f91b990206fdde
http://delivery.acm.org/10.1145/1970000/1960325/p41-dinn.pdf?ip=128.240.229.65&CFID=36046115&CFTOKEN=88806712&__acm__=1311241502_9d4ce5dce044cebf00f91b990206fdde
http://www.jetbrains.com/idea/documentation/usingIDEAforEclipse.html
http://www.jetbrains.com/idea/documentation/usingIDEAforEclipse.html
http://help.eclipse.org/helios/index.jsp
http://www.vogella.de/articles/EclipseRCP/article.html
http://www.vogella.de/articles/EclipseCommands/articles.html
http://www.vogella.de/articles/EclipseCommands/articles.html
http://www.pluginbuilder.org/
http://www.eclipse.org/articles/Article-PDE-does-plugins/PDE-intro.html
http://www.eclipse.org/articles/Article-PDE-does-plugins/PDE-intro.html
http://www.eclipse.org/articles/Article-PDE-does-plugins/PDE-intro.html
http://www.vogella.de/articles/EclipsePlugin/articles.html
http://www.vogella.de/articles/EclipsePlugin/articles.html
http://www.eclipsezone.com
http://www.eclipsepluginsite.com/builders-natures-markers.html
http://www.eclipsepluginsite.com/builders-natures-markers.html
http://www.jetbrains.com/idea/documentation/idea_5.0.html
http://confluence.jetbrains.net/display/IDEADEV/Getting+Started+with+Plugin+Development
http://confluence.jetbrains.net/display/IDEADEV/Getting+Started+with+Plugin+Development
http://confluence.jetbrains.net/display/IDEADEV/Getting+Started+with+Plugin+Development
http://confluence.jetbrains.net/display/IDEADEV/Developing+Custom+Language+Plugins+for+IntelliJ+IDEA
http://confluence.jetbrains.net/display/IDEADEV/Developing+Custom+Language+Plugins+for+IntelliJ+IDEA
http://confluence.jetbrains.net/display/IDEADEV/Developing+Custom+Language+Plugins+for+IntelliJ+IDEA
http://www.ibm.com/developerworks/library/os-eclipse-plugindev1/index.html?ca=dgr-eclipse-1
http://www.ibm.com/developerworks/library/os-eclipse-plugindev1/index.html?ca=dgr-eclipse-1
http://www.ibm.com/developerworks/library/os-eclipse-plugindev1/index.html?ca=dgr-eclipse-1

[16]	 D. W. a. B. Freeman-Benson. (August 27th 2004, 14th April 2011).
How to Write an Ecl ipse Debugger. Avai lable: http://
www.eclipse.org/articles/Article-Debugger/how-to.html

[17]	 A. P. Andrel Sobolev, and Jeff Norris. (2010, 23rd April 2011). DLTK IDE
Guide: Step 1 Skeleton. Available: http://wiki.eclipse.org/
DLTK_IDE_Guide:Step_1_Skeleton

[18]	 J. N. a. A. P. Andrel Sobolev. (2009). DLTK IDE Guide:Step 2. Towards
a n E d i t o r . A v a i l a b l e : h t t p : / / w i k i . e c l i p s e . o r g /
DLTK_IDE_Guide:Step2._Towards_an _Editor

[19]	 C. Analytics. (2011, 23rd April 2011). DSL Editor. Available:
www.certiv.net/projects/dsl-editor.html

[20]	 Eclipse. XText User Guide. Available: www.eclipse.org/Xtext/
documentation/1_0_1/xtext.html

[21]	 O. A. Wear. Accessed: 20th June 2011). Check / Xtend / Xpand
Reference. Available: http://www.openarchitectureware.org/pub/
documentation/4.3.1/html/contents/core_reference.html

[22]	 Eclipse. (2010, 23/04/2011). PHP Development Tools Project.
Available: www.eclipse.org/pdt/

[23]	 Oracle. (2011, Accessed: 14th April 2011). NetBeans IDE 7.0 Features.
Available: http://netbeans.org/features/cpp/

[24]	 N. Ford. (24 Jul 2008, Accessed: 15th April 2011). Using the Ruby
Development Tools plug-in for Eclipse. Available: http://
www.ibm.com/developerworks/opensource/library/os-rubyeclipse/

[25]	 M. Bozeman, "Extending an Eclipse Embedded Debugger," White
Paper.

[26]	 J. Szurszewski. (8th January 2003, Accessed: 01/08/2011). We Have
Lift-off: The Launching Framework in Eclipse. Available: http://
www.eclipse.org/articles/Article-Launch-Framework/launch.html

[27]	 T. Parr. (2010). ANTLR: FAQ Getting Started. Available:
www.antlr.org/wiki/display/ANTLR3/FAQ+-+Getting+Started

[28]	 Eclipse. (2011, 11th April 2011). Eclipse Documentation. Available:
h t t p : / / h e l p . e c l i p s e . o r g / h e l p 3 3 / i n d e x . j s p ? t o p i c = /
org .ec l i p se .cd t .doc . i s v/gu ide/pro jec tTempla teEng ine/
Howtoregistertemplates.html

￼
61

http://www.eclipse.org/articles/Article-Debugger/how-to.html
http://www.eclipse.org/articles/Article-Debugger/how-to.html
http://wiki.eclipse.org/DLTK_IDE_Guide:Step_1_Skeleton
http://wiki.eclipse.org/DLTK_IDE_Guide:Step_1_Skeleton
http://wiki.eclipse.org/DLTK_IDE_Guide:Step2._Towards_an
http://wiki.eclipse.org/DLTK_IDE_Guide:Step2._Towards_an
http://wiki.eclipse.org/DLTK_IDE_Guide:Step2._Towards_an
http://www.certiv.net/projects/dsl-editor.html
http://www.eclipse.org/Xtext/documentation/1_0_1/xtext.html
http://www.eclipse.org/Xtext/documentation/1_0_1/xtext.html
http://www.openarchitectureware.org/pub/documentation/4.3.1/html/contents/core_reference.html
http://www.openarchitectureware.org/pub/documentation/4.3.1/html/contents/core_reference.html
http://www.openarchitectureware.org/pub/documentation/4.3.1/html/contents/core_reference.html
http://www.eclipse.org/pdt/
http://netbeans.org/features/cpp/
http://www.ibm.com/developerworks/opensource/library/os-rubyeclipse/
http://www.ibm.com/developerworks/opensource/library/os-rubyeclipse/
http://www.ibm.com/developerworks/opensource/library/os-rubyeclipse/
http://www.eclipse.org/articles/Article-Launch-Framework/launch.html
http://www.eclipse.org/articles/Article-Launch-Framework/launch.html
http://www.eclipse.org/articles/Article-Launch-Framework/launch.html
http://www.antlr.org/wiki/display/ANTLR3/FAQ+-+Getting+Started
http://help.eclipse.org/help33/index.jsp?topic=/org.eclipse.cdt.doc.isv/guide/projectTemplateEngine/Howtoregistertemplates.html
http://help.eclipse.org/help33/index.jsp?topic=/org.eclipse.cdt.doc.isv/guide/projectTemplateEngine/Howtoregistertemplates.html

12 Appendix

Appendix A

￼
62

Appendix B

Byteman Plug-in User Guide

Contents

Abstract	 2
..
Acknowledgements	 3
...
Declaration	 4
..
Table of Figures	 5
...
Table of Contents	 6
...
1 Introduction	 7
...

1.1 Overview of Byteman	 8
...
1.2 Limitations of Byteman	 9
..
1.3 Problem Solution	 10
...
1.4 Aims and Objectives	 12
...
1.5 Dissertation Structure	 14
..

1 Background Research	 15
...
2.1 Byteman	 15
...
2.2 Command Scripts	 16
..

2.2.1 bmcheck	 16
...
2.2.2 bminstall	 17
...
2.2.3 Bmsubmit	 17
..

2.3 Development Research	 17
...
2.3.1 Why a Plug-in?	 18
..
2.3.2 Which IDE?	 18
...
2.3.3 Software Support 	 21
..
2.3.4 Features for the Plug-in	 22
...

2.4 Research Conclusion	 27
..
3 Requirements	 28
..

3.1 Requirements Specification	 28
..
3.1.1 Functional Requirements	 28
..
3.1.2 Non-Functional Requirements	 29
..
3.1.3 Hardware and Software requirements	 29
................................

4 Design	 30
..
4.1 Overview	 30
..
4.2 System Design	 30
..

4.2.1 Plug-in	 30
..
4.3 Software Decisions	 31
..

4.3.1 Languages	 31
..
4.4 Feature Design	 32
...

4.4.1 Structured Editing	 32
..
4.4.2 Perspective	 35
..
4.4.3 Byteman Rule Template	 36
...
4.4.4 RCP	 37
...
4.4.5 Installation and Submission	 37
...
4.4.6 Additional Byteman Support	 38
..
4.4.7 Debugger	 39
...

￼
63

5 Implementation	 40
...
5.1 System Overview	 40
..
5.2 Grammar and Parser	 40
..
5.3 Editor and Features	 41
...
5.4 Integration of Command Scripts	 44
...
5.5 Additional Byteman Support	 46
..
5.6 Debugger	 49
..

6 Testing	 49
..
6.1 Testing Strategy	 50
..

Full System Test	 50
..
7 Results	 52
..

7.1 Unit testing	 52
...
7.2 Integration Testing	 53
..
7.3 System Testing	 53
...

8 Evaluation	 54
..
8.1 Discussion	 54
...

9 Conclusion	 56
...
9.1 Achievements	 56
..
9.2 Problems	 57
..
9.3 Learning Outcomes	 57
..
9.4 Future Work	 58
..
9.5 Concluding Remarks	 58
...

10 Glossary	 59
...
11 References	 60
..
12 Appendix	 62
..

Appendix A	 62
..
Appendix B	 63
..

1. Installing the plug-in	 65
..
1.1 Pre-requisites	 65
..
1.2.Installation	 65
...

2 Starting the plug-in	 66
...
2.1 Opening the perspective	 66
...
2.2 Opening Views	 66
...
2.3 Opening a new .btm File	 66
...

3 Features in the Editor	 69
..
3.1 Content Assist	 69
..
3.2 Error Messages	 69
...

4 Added Features to the IDE	 71
...
4.1 Installing the Byteman Agent	 71
..
4.2 Submitting a Byteman Rule	 71
..
4.3 Viewing All Rules	 71
...
4.4 Deleting All Rules	 72
..
4.5 Deleting Selected Rules	 72
...
4.6 Filtering Injection State by Script Name	 72
...................................
4.7 Filtering Injection State by Rule Name	 73.....................................

￼
64

1. Installing the plug-in

1.1 Pre-requisites

To use the plug-in the following prerequisites are necessary:

• A Java 5 or 6 SDK

• Eclipse SDK 3.3 or higher.

1.2.Installation

To install the plug-in firstly copy the two plug-in jars called:
“ncl.ac.uk.byteman” and “ncl.ac.uk.byteman.ui”. These two files
then need added to the Eclipse plug-ins folder in the application’s root
directory, as shown below in figure one. Eclipse should then be restarted,
the plug-in features should now be available for use.

￼

Figure 1: Plug-in folder for Eclipse.

￼
65

2 Starting the plug-in

2.1 Opening the perspective

Once the plug-in has been installed the user should open the
“Byteman Perspective”, they can do this by going to Window>>Open
Perspective>>Other...>>Byteman Perspective. The screen should then
open the Byteman perspective as shown below in figure two.

￼

Figure 2: The Byteman Perspective.

2.2 Opening Views

The Byteman perspective provides the user with a set views for the
perspective, these views include: Outline, Console, Byteman Navigation and
Problems. To open one or more of these go to: Window>>show
view>>Other..>> <Name of the chosen view>. Shown in figure two are
screen shots of the different views available.

2.3 Opening a new .btm File

Finally the new .btm file must be opened in the editor for
development to start. This is done by going to:
File>>new>>other>>Byteman Wizard>>Byteman File. This will
automatically open a wizard. The user must enter the name of the package
they wish the file to go in and the name of the file, as shown below in figure
three. This will then automatically generate a .btm file with keywords for a
Byteman skeleton printed, as shown in figure four. The keywords within the
rule file will be automatically highlighted to provide the user with syntax
highlighting as they continue to program.

NB: enter all the Rule details before writing the comments, otherwise the
comments may not be recognised and may be treated as an error.

￼
66

￼

Figure 3: The wizard for Byteman template generation.

￼
67

￼

Figure 4: The template Byteman rule.

￼
68

3 Features in the Editor

3.1 Content Assist

	

To use content assist the user must be in the correct location in the
code for a list to be displayed. Then the user must press CTRL + SPACE, this
will then display a drop down menu for the user. The menu will have options
to complete that code element, to use an option use the mouse and click on
the appropriate menu item. This is shown in figure five below.

￼

Figure 5: A list for content assist.

3.2 Error Messages

There are two methods available for error detection, they are:

1. Through the use of the editor.

 2. Through the use of the Problem view.

To view the error within the editor the user just needs to go to editor
ruler. There an error marker will be present. There will also be highlighting
specifying the location of the error. If the user hovers over the error marker
an error message will be displayed. This is shown in figure six.

The second method is the use of the Problem view, to initialize this
use section 2.2. Then to bring the tab forward click the top of it. The user
should then scroll down identifying the relevant errors. This is shown in
figure seven.

￼
69

Figure 6: The error detection support.

￼

Figure 7: The problems view.

￼
70

4 Added Features to the IDE

4.1 Installing the Byteman Agent

To install the Byteman agent the user must go to Bminstall>>Install
Rule. They will then be presented with a GUI interface allowing them to
enter the Byteman home and the process id or program name that the agent
will be install into. The Byteman home path is the path to the folder for the
Byteman project. The process id can be found by using the activity monitor
or the name of the Java program. The GUI is displayed in figure eight. The
user should then click the “Install Byteman Agent” button, if it has been
installed a dialog will appear to inform the user.

￼

Figure 8: Install GUI.

4.2 Submitting a Byteman Rule

To submit a Byteman rule the user must first go to:
BMSubmit>>Submit Rule. They will then be shown a GUI interface where
they must enter the Byteman home path (as describe in section 4.1). They
must then ether the absolute path of the .btm file they wish to install rules
from. The output from this action will be displayed in the console. Figure
nine displays the GUI.

￼

Figure 9: Submit GUI.

4.3 Viewing All Rules

￼
71

The user must go to: Bmsubmit>>View Rules, the rules that are
loaded will then be displayed in the Console.

4.4 Deleting All Rules

To delete all the rules the user must go to: Bmsubmit>>Delete All
Rules, the deleted rules will then be displayed in the Console.

4.5 Deleting Selected Rules

To delete a set of rules of the users choice the user must go to:
Bmsubmit>>Delete Selected Files. The user will then be presented with a
GUI, as shown in figure ten. The user must enter the absolute path of the
rule they wish to delete into the presented text field. Then they need to
click the “Delete rule/s” button. This should then delete the specified
rules, the output being displayed in the Console.

NB: The file paths must be entered with a comma “,” in between the names
for the system to find the correct file path e.g. “filepath,longfilepath” .

￼

Figure 10: Delete GUI.

4.6 Filtering Injection State by Script Name

To filter all the rules that have been loaded the user must go to:
Filter>>by script/file name. This will then present a GUI, displayed in
figure eleven. The user must enter the name of the file or rule they wish to
display information about. Then click on the “search” button. The filtered
output will be displayed within the Console.

NB: The name of the file is just the relative path e.g. name.btm.

￼
72

￼

Figure 11: The filter GUI.

4.7 Filtering Injection State by Rule Name

To filter the Rules by name then the user must go to: Filter>>by rule
name. This will then display a GUI, as shown in figure twelve. The user must
then enter the name of the rule into the text field and press the “Search”
button. The rule will then be displayed in the Console.

NB: The name of the rule must be the one specified within the Byteman rule
e.g. inside the .btm file is: RULE rule name, then the user would enter:
“rule name”.

￼

Figure 12: The filter GUI.

￼
73

