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ABSTRACT: A number of numerical algorithms for simulation of particle 

packing have been proposed and used in a wide range of industries: mining, 

chemical engineering, pharmaceuticals, agriculture and food handling, etc. 

However, most of them can only deal with simple and regular shapes due to the 

complex and expensive numerical algorithms needed to simulate complex shapes. 

In this paper, a FEMDEM code, Solidity, is used to more accurately capture the 

influence of complex shape. It combines deformable fracturing arbitrary-shaped 

particle interactions modelled by FEM with discrete particulate motion modelled by 

DEM. This paper will cover recent code optimisation for the contact force 

calculation with arbitrary body shape, parallelisation performance and discussion of 

results showing both deformable and rigid body versions of the code in different 

application scenarios. Solidity also provides post-processing tools to analyse the 

particle packing structure in terms of local porosity and orientation distributions, 

contact forces, and coordination number, etc.  Some examples of Platonic and 

Archimedean body packs are presented. 
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1. Introduction 

Particle packing has been studied for many years as it is of fundamental 

importance to many industries: mining, chemical engineering, pharmaceuticals, 

agriculture and food handling, etc.  In previous years, most published papers have 

been on packing of spherical particles using the Distinct or Discrete Element 
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Method (DEM) which was invented by Cundall and Strack (Cundall and Strack, 

1979).  

Recently, the packing of complex shapes has been attracting more and more interest 

motivated by their wide application in industry. A number of numerical algorithms 

for simulation of particle packing have been proposed. Greben et al, (2010) use a 

commercial code popular in the video games industry, PhysX (by Navidia) to place 

packs of armour units such as Antifer Cubes and Dolosse. Blender, is a similar 

module with certain physically realistic features used to introduce mechanical 

realism into computer animation visualisations. DigiPack (Caulkin et al. 2008) was 

used to simulate the structure pattern of catalyst pellets. Some researchers also 

developed so-called clustered overlapping sphere algorithms to represent non-

spherical shapes and simulate them in DEM. Cleary (2008) used the so-called 

superquadrics and formulas to define ellipsoids or other quadrics. However, most 

of them can only deal with simple and regular shapes due to the complex and 

expensive numerical algorithms needed to simulate complex shapes. 

The Finite Element Method, (FEM), for modelling stress and deformation of solids, 

has for several decades now, been combined with DEM for modelling the collision 

and motion of solids. Important for handling complex shapes, FEMDEM solves the 

contact mechanics using a distributed contact force approach. In this paper, a 

FEMDEM code, Solidity, is used to more accurately capture the influence of 

complex shape. This paper will cover recent code optimisation for the contact force 

calculation with arbitrary body shape, parallelisation performance and discussion of 

results showing both deformable and rigid body versions of the code in different 

application scenarios. Solidity also provides post-processing tools to analyse the 

particle packing structure in terms of local porosity and orientation distributions, 
contact forces, and coordination number, etc. 

The paper is organised as follows: Section 2 briefly describes the mathematical 

models, in Section 3 applications and some results are shown followed by a 

conclusion. 

2. Mathematical models 

The FEMDEM method was pioneered by Munjiza whose first working 2D 

FEMDEM code was developed in 1990 (Munjiza 2004). FEMDEM has proven its 

efficiency and reliability as a computational tool to solve problems involving 

transient dynamics of systems in which deformation and fracturing play an 

important role. Xiang et al. (2009) introduced higher order large strain 

improvements in their FEMDEM code, named Y3D-D. Y3D-D handles the 

transient dynamics of complex shaped multi-body behaviour and can support a vast 

range of alternative e.g. non-linear constitutive or internally fracturing properties. 

Recently, the first author (Xiang) has developed a new version of the original Y3D 

to simulate rigid solids. This rigid body solver, has the advantage that it executes 

the simulation faster than the general deformable version. 

2.1 Governing equations  

1. Deformable solid 
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The motions of elements are influenced by the forces acting on elemental nodes, 

internal nodal force, intf , external nodal force, extf . The constitutive equation 

influences the deformation of the material through the Cauchy stress tensor in the 

linear momentum equation given by,  
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Where v is nodal velocity vector, Internal nodal forces are given by 
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External nodal forces are given by 
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Where b is body force, defined by  zyx bbb=b , t is surface traction 

force. 

Nodal mass matrix is given by, 
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Since mass is conserved, the mass is calculated based initial configuration. ρ is 

the density of material.  

2. Rigid body solid 
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where mp,i and Ip,i are mass and moment of inertia of the particle i, respectively. 

x  and θ  are the linear acceleration and angular acceleration of the particle i, 

respectively. Tc,ij is contact force torque. For multiple interactions, the interparticle 

forces and torques are summed for ki elements interacting with particle i.  

2.2 Contact force 

In FEM/DEM, a penalty function method is employed to calculate the normal 

contact force when two particles are in contact. The penalty function method in its 

classical form assumes that two particles penetrate each other. The elemental 

contact force is directly related to the overlapping area of finite element in contact. 

The distributed contact force approach takes into account the shape and the size of 

the overlap area in order to be distributed among the surrounding nodes. Munjiza 

[5] showed that integration over finite elements was equivalent to integration over 

finite element boundaries, the contact force is given by, 



4   

( ) −=
= =







d
n

i

m

j

tcn
jtic

ji
jtic

1 1 


nf  
(3) 

Where βc and βt are the contactor and target discrete elements, respectively, n is 

the outward unit normal to the boundary of the overlapping area, the integration 

over finite element boundaries can be written as summation of integration over the 

edges of finite elements.  

Xiang et al (2009) developed further the FEMDEM method by taking account of 

the sliding friction force. The well-known classic Coulomb type friction was 

implemented and described as follows, 

tttt k vδf −−=                        (4) 

where η is the coefficient of viscous dissipation, ft is the tangential elastic contact 

force and vt is the tangential relative velocity. If ft is bigger than the friction force 

obeying the Coulomb-type friction law, nt ff   the particles slide over each 

other and the tangential force is calculated using the total normal contact force fn : 

nt ff −=                (5)  

where µ is the coefficient of sliding friction. 

2.3. Code optimisation and parallelisation 

High CPU cost hinders FEMDEM methods from being more widely used 

especially when in-efficient and serial algorithms. Recently Xiang optimized the 

contact detection algorithm in the FEMDEM and parallelized the code using 

OpenMP. In this paper, the authors use a packing system with 288 rock-like 

boulders to test the CPU time resulting from these speed enhancements. Figure 1 

shows the FEMDEM capability to model such a system of mono-sized angular rock-

like boulders (bodies of about 40 kg) being dumped in a 5.26m×5.3m×3.87m bin 

(front face not shown). The OpenMP parallelised code is shown (Figure 1) to give 

a speedup of 6.5 on 8 threads and 9 on 12 threads in a 3D deformable rock deposition 

with 288 particles. The runtime was reduced by half after the code was optimized. 

In future, the OpenMP implementation will be redesigned with a hybrid MPI and 

OpenMP implemented for larger particle systems to be modelled.  



 5 

 
Figure 1 Speed-up achieved by Solidity  

3. Results and discussions 

3.1 simulation setup 
Inspired by the work of Torquato and Jiao (2009), a random packing protocol is 

used to prepare the packing of 5 Platonic (Figure 2) and 13 Archimedean (Figure 3) 

solids in a rectangular container. About 11,000 particles are added sequentially at a 

certain height from the highest position of the existing particles in the container. 

This ensured that the particles land in a stable configuration without adding variable 

and excessive impact energy to the particles which were already in place in the 

packing. In this paper, the particles are modelled as rigid bodies with density of 2.56 

g/cm3 and Coulomb coefficients of friction from 0.2-1.0, together with a damping 

coefficient of 0.6. Note, that all eighteen particle geometries have been given the 

same size, d defined by the diameter of the circumscribing sphere, and thus have 

different volumes. 

 
Figure 2. The five Platonic solids: tetrahedron P1, icosahedron P2, dodecahedron 

P3, octahedron P4, and cube P5. 
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Figure 3. The 13 Archimedean solids: truncated tetrahedron A1, truncated 

icosahedron A2, snub cube A3, snub dodecahedron A4, rhombicosi dodecahedron 

A5, truncated icosidodecahedron A6, truncated cuboctahedron A7, 

icosidodecahedron A8, rhombicub octahedron A9, truncated dodecahedron A10, 

cuboctahedron A11, truncated cube A12, and truncated octahedron A13. 

3.1 Packing Density  

Figure 4 Final simulated packing structure for the truncated dodecahedron 

dodecahedron (solid shape A10) as seen from the front face container wall, colour 

indicates sequence of placement. 
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An example pack is shown in Figure 4, where the bulk packing sample volume for 

average porosity calculation is described as being bounded by moving in from the 

container wall by 5d, and for the case of the uneven top, the 5d is taken inwards 

from the average horizontal plane for the top surface particles. Porosity in a granular 

system is the volume fraction of voids in a total volume of a granular system, the 

volume fraction of solids being the packing density. A regular grid is defined in the 

domain of the numerical results. A value of 1 is assigned to the centroid of the cells 

that are inside a tetrahedron of the solid mesh and 0 is assigned otherwise. For the 

sake of clarity in Figure 5 for illustrative purposes, the cell dimension is shown to 

be similar to the dimension of the cylindrical pellets. This algorithm can be used to 

calculate mean packing density in this paper or local packing density distribution in 

(Farsi, et al, 2016). 

 

 
Figure 5 Representation of packing density calculation 

 
Table 1 Packing density 

 Packing density 

truncated tetrahedron A1 0.57 

snub cube A3 0.55 

rhombicosi dodecahedron A5 0.57 

truncated cuboctahedron A7 0.56 

truncated dodecahedron A10 0.54 

truncated octahedron A13 0.56 

tetrahedron P1 0.52 

icosahedron P2, 0.56 

dodecahedron P3 0.56 

octahedron P4 0.55 

cube P5 0.52 

Five Platonic (P1-5) and 6 Archimedean (A1, A3, A5, A7, A10, and A13) solids 

are investigated at this stage. They are deposited in the container using a sequential 

addition protocol with a friction coefficient 0.6. The mean packing densities are 

shown in Table 1. Packing densities for all 11 solids vary in a narrow range, 0.52-

0.57. a reflection on the low energy from particle impact velocity available for 

0 1 1 0 0

0 1 1 1 0
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translation and reorientation with this level of applied Coulomb friction. However, 

it is interesting to note that the square and the tetrahedron, particles that are clearly 

having highest angularity and lowest sphericity, have considerably lower packing 

density. The truncated tetrahedron A1 was selected to illustrate the effect of friction. 

 

 
Figure 6 Packing density vs friction coefficient for solid shape A1 

The effects of friction coefficient on packing density is shown in Figure 6. As 

expected, the higher the friction coefficient, the lower packing density for A1 shape. 

This trend qualitatively agrees with the results found by other researchers (Zhao, et 

al. 2015). When friction coefficient is reduced to 0.2, the packing density reaches 

0.67. This value matches very well with the the density of the optimal lattice. 

Packing of truncated tetrahedron, 0.68 (Torquato and Jiao, 2009). Further, 

investigation with these tools can explore extreme dense packing conditions by a 

combination of low friction and vibration of boundaries. 

3.2 Contact forces 
The magnitude of contact forces for each unit in the static pack has been extracted. 

The maximum contact force experienced by each particle is also of interest. 

Normally the contact force is used to extract the force-chain network and how they 

change in dynamic systems. In this paper, the force chain network is constructed 

from a list of all contact forces larger than 1.5 times the mean weight-normalised 

maximum contact force, i.e.  Fc/W for all contacts experienced by all particles. 

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0 0.2 0.4 0.6 0.8 1 1.2

Pa
ck
in
g
	d
e
n
si
ty

Coefficient	of	friction



 9 

-5

0

5

10

15

20

25

30

35

0 1 2 3 4 5 6 7 8 9 10

P

Contact	number

A5 A10 p3

             
(a)                                                 (b) 

 
                                 (c)                                                                  (d) 

Figure 7 Packing characteristics showing force chains (a, b, c) and coordination 

number statistics (d): (a) rhombicosi dodecahedron A5, (b) truncated dodecahedron 

A10, (c) dodecahedron P3, (d) Probability density function, P of normalised contact 

force. 

 

A class of dodecahedrons, P3, A5 and A10 is selected for analysing the force-

chain structure pattern (Figure 7 a-c). It is shown that A10 tends to generate longer 

and straighter chains which may be due to their bigger facets. P3 and A5 tend to 

form short and circular networks Arching type structures are found in all three packs 

near the corners of the container. The three-dimensional force chain structure is easy 

to illustrate in a changing view 3D visualizer, but is more difficult to display in a 

figure. In similar work done with 2D FEMDEM simulations (Guises et al 2009), 

where force-chain and stress-chains were examined using various normalisation 

strategies, it is much easier to highlight the chain structures and compare with 

photo-elastic experiments. It should be noted that stress chains can also be analysed, 

either by running the more CPU-hungry deformable solver, or by importing the rigid 

pack geometry and re-solving the equilibrium state with the deformable code. 

 

3.3 Coordination number 

The number of contacts each particle makes with its neighbours is known as the 

coordination number. The coordination number has a wide variation; contacts with 

neighbouring particles or container ranging from 1 to 10 in the three packs examined 
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for A5 A10 and P3. Different packing conditions result in a different average 

coordination number and different spatial distributions of coordination number. Fig. 

15 shows the variation of coordination number in a probability density plot for the 

three different packing density packs. From A10 to P3 the probability density curve 

shifts to the right, resulting in a larger average coordination number and wider 

spread. It is worth noting that the analysis tools recognise the surface-to-surface and 

edge-to-surface contacts as one coordination number. Thus, the lowest value of 

coordination number in these three static packs is one. The analysis tools including 

force- and stress-chain statistics are continually being improved for the benefit of 

future granular media analysis. 

3.2 Orientation of unit axes  
 

A useful method to examine whether particle principle axes are entering the packing 

domain with preferred orientation or later adopt one is to use stereographic 

projection methods. Farsi et al., 2016 (this conference) use Solidity to simulate 

particle structure of cylindrical packs and show the orientation distributions with 

stereographic analysis.  

 

4. Conclusions 

In this paper, we have presented a FEMDEM model that has been developed and 

parallelised to investigate the random packing of complex shapes. Platonic and 

Archimedean body packs were investigated and analysed in terms of local porosity 

and orientation distributions, contact forces, and coordination number, etc. The 

effect of friction was investigated for truncated dodecahedron particles. Packing 

density decreases as friction coefficient increases. The sequential addition method 

of introducing the particles to the already packed grains was set up to give only low 

levels of energy and with the one friction value tested in this work, relatively low 

values of packing density will have been created compared with maximum jammed 

packs that would be possible with different coalescence history and friction 

parameter selection. The packing density analysis picked out the slightly lower 

packing densities to be expected for the most angular particle shapes which were 

the tetrahedrons and cubes. 
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