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Abstract

Reactors with fixed beds of cylindrical particles have a wide application in the

chemical industry. Ceramic particles are pelletized and fired to produce high poros-

ity catalyst pellets of complex shapes. These pellets fill cylindrical reactor columns

with particulate packing structures that are key to the in-service performance, but

will suffer breakages, which impact on catalyst performance. The combined Finite-

Discrete Element Method (FEMDEM) implemented in the Solidity code would ap-

pear to be ideally suited to capturing both the multi-body pellet interactions and

pellet fracture and fragmentation. However, to put to use the Solidity code for this

purpose and establish its capabilities and limitations required a substantive research

programme, as reported in this PhD thesis.

Laboratory experiments were performed to evaluate the elastic and fracture proper-

ties of reference ceramic samples, as required for input parameters for computer sim-

ulation and to investigate code capability to describe fracture in such high strength

and porous media for which no previous such simulations had been reported. Each

set of specimens was characterised by means of micro- and nano-indentations, ultra-

sonic and strength tests. Standard laboratory rigs are generally too compliable for

capturing the deformations of stiff and tiny ceramic specimens. For this reason, a

novel digital image correlation methodology was developed to obtain both strength

and stiffness from three-point bending tests on alumina bars which would have been

otherwise impossible.

The effects of the catalyst support shapes on their final strength and fragmentation

behaviour were investigated through controlled experiments and predominantly 2D

plane stress simulations on single pellet shapes. Uniaxial compression tests and high-

speed video recordings were employed to estimate the strength and fragment size
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respectively. The Solidity FEMDEM code was employed to simulate the effects of

geometrical features and loading orientation on the pre- and post-failure behaviour

of catalyst supports.

The Solidity FEMDEM code was also used to simulate the deposition of packs of

catalyst supports in cylindrical containers. A post processing tool was implemented

to extrapolate the packing density profiles, packing structure, bulk porosity and

orientation distributions of the resulting bodies making up the pack of pellets. The

numerical results were compared with the corresponding experimental packing den-

sity profiles and orientation distributions published in the literature, together with

other reported simulation results.

The final part of the thesis addresses the goal of this research which is to investigate

the effects of pellet shapes on the packing and fragmentation behaviour. The findings

suggest that the use of Solidity FEMDEM will have a significant industrial impact by

contributing to improvements in the performance of catalysts through understanding

of induced packed structures and its associated physical processes including stress

and breakages.
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With four parameters I can fit an elephant,

and with five I can make him wiggle his trunk.

John von Neumann
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Chapter

ONE

Introduction

1.1 Background

1.1.1 Research context

The Applied Modelling and Computation Group (AMCG) at Imperial College Lon-

don is working on the development and the application of innovative modelling

techniques in earth, nuclear, engineering and biomedical sciences. The group has

principal research interests in the development and application of numerical methods

for fluids including ocean, atmosphere, and industrial multi-phase flows, for neutral

particle radiation transport, for optimization mathematics and its applications, and

for the solution of inverse problems. Among other projects, the group is developing

the Solidity FEMDEM code, a suite for numerical simulations previously named

Virtual Geoscience Simulation Tools (VGeST). This computational tool is based

on the combined finite-discrete element method (FEMDEM) and it is employed for
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the analysis of discontinuous systems (i.e. elastic-plastic deformations and fracture

propagation) and has also been coupled with thermal and fluid fields. There are

many examples of engineering problems that are being approached with this tech-

nology at the AMCG. For instance, the description of the packing process and of

the flow of granular materials has an important application in geoscience for the de-

scription of granular avalanches. The same tool has also been applied to the costal

engineering field, where this technology is employed to investigate the behaviour of

armour unit systems at the scale of unit interactions and at the scale where the solid

material as a whole is performing as a granular system. An important aspect of nov-

elty of the Solidity FEMDEM code is that not only permits to describe the motion

and interaction of many distinct bodies, but also let to investigate the mechanical

solicitations that deform and fracture the bodies. This kind of analysis finds many

applications in geomechanics and structural engineering in order to simulate frac-

turing of quasi-brittle materials. Other possible fields of application are the food,

powder and chemical technology, mixing, etc.

1.1.2 FEMDEM community

Generic algorithms for FEMDEM simulations in 2D and 3D started to be proposed

from the early 90s. Extensive developments and applications of the FEMDEM

method have been carried out after the release of the open source Y-code in Munjiza

(2004), and different versions have been released, including the code developed from

the collaboration between Queen Mary University and Los Alamos National Labo-

ratory [Munjiza (2004); Munjiza et al. (2015); Rougier et al. (2014)], the Y-Geo

and Y-GUI software that have been developed by the Grasselli’s Geomechanics

Group at Toronto University [Mahabadi et al. (2010b, 2012)], and VGeST (Virtual

Geoscience Simulation Tools) released by the Applied Modelling and Computation
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Group (AMCG) at Imperial College London [Xiang et al. (2009a); Munjiza et al.

(2010)]. Recently the AMCG has upgraded and renamed VGeST as ’Solidity’. A

commercial FEMDEM code developed by Geomechanica (www.geomechanica.com),

has also been released in Canada, although its application has been limited to mod-

elling rock fracture. While the first Y-code employed finite strain elasticity coupled

with a smeared crack model to capture deformation, rotation, contact interaction

and fragmentation, the AMCG has greatly improved the code, implementing a range

of constitutive models in 3D [Karantzoulis et al. (2013); Guo (2014)], thermal cou-

pling [Joulin et al. (2017)], parallelisation and a faster contact detection algorithm

[Xiang et al. (2017)].

1.1.3 Industrial context

Many industrial manufacturing processes require hydrogen or one of its derivatives

as a reactant, particularly in the petrochemical industries. Usually, hydrogen is

produced from hydrocarbon feed via reforming using mixtures of steam reforming

and partial oxidation. Steam reforming of the simple hydrocarbon methane occurs

with the following reaction [Wagman et al. (1945)]:

CH4 + H2O←−→ CO + 3 H2

This reaction is highly endothermic and it is normally performed in multi-tubular

fixed-bed reactors. The multiple tubes, which constitute the multi-tubular reactors,

are filled with catalysts and the heat carrier circulates externally around the pipes,

as shown in Figure 1.1(a) and 1.1(b).

The catalyst typically employed for hydrogen production contains an active nickel

(Ni) metal component supported on porous materials with a high surface area,

most commonly alumina (aluminium oxide, Al2O3) [Rostrup-Nielsen & Rostrup-
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(a) (b)

(c)

Figure 1.1: (a) Scheme of a heated chamber used for hydrogen production. Ex-

amples of (b) packed columns and (c) catalyst supports.
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Nielsen (2002)]. To maximize the available surface area and increase heat transfer,

these media can be shaped as pall rings, cylindrical pellets, balls or more complex

configurations, as shown in Figure 1.1(c). Although fixed-bed reactors are commonly

used for highly endothermic reactions, this method brings with it the following

problem: after several start-up and shutdown cycles, as shown in Figure 1.2(a),

catalysts are partially crushed to fragments due to the different thermal expansion

properties between the metal tube and ceramic media. The accumulation of these

fragments in turn causes pressure drops inside the tubes: at the same time a local

decrease in efficiency of the reaction and an increase of the temperature occurs, as

shown in Figure 1.2(b), and this can even cause the failure of the steel tube reactor,

as shown in Figure 1.2(c). Pressure drops can also affect the reactor to the point

that the catalysts must be removed and replaced every three to five years instead

of the optimal ten years. This recurring event has a significant negative impact on

plant lifecycle costs (costs for replacements and missing production during the plant

downtime). A better understanding of fracture propagation in packed structures of

ceramic bodies is crucial in minimising these effects and could also be relevant for

further innovations and developments of the fixed-bed reactor technology.

1.2 Problem to investigate

The purpose of this research was to investigate particle stress and fracture propaga-

tion in packed bed structures employing a combined finite-discrete element method.

This technology enables the modelling of a large number of interacting distinct bod-

ies, each associated with a separate finite element mesh. Continuous deformations

are modelled through finite elements while discontinuous behaviours, such as frac-

tures, are analysed by discrete elements. For this reason a combined finite-discrete

element method simulation not only allows accurate reconstruction of the packing
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(a) (b)

(c)

Figure 1.2: (a) Catalyst supports crushing to fragments after several start-up

and shutdown cycles. (b) Pressure drops inside the packed columns with a

localised temperature gradient (dashed red box), and (c) consequent failure of

the reactor.
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process, yielding to values for the location and the orientation of each particle in

the reactor, but also reveals how stress chains form within packed structures under

mechanical solicitations. The goal of this research project is therefore to achieve a

better understanding of different pellet shapes and their inherent mechanical prop-

erties by means of numerical simulations, the findings of which could be of industrial

interest by contributing to improvements in the performance of catalysts. To obtain

realistic simulations of fracture propagation of ceramic pellets it is essential to first

characterise the mechanical properties of the material that makes up the particles,

and then compare the numerical results of idealised experimental conditions with

the actual experiments to validate the code for use with such materials.

1.3 Outlines of the thesis

Chapter 2 summarises the standard test methods addressed to the study of the

mechanical characterisation of small engineered high performance materials.

Chapter 3 reviews the literature addressed to the simulation of fragmentation and

multi-body systems. The review will be essentially focused on the mechanical char-

acterisation of porous ceramics and the simulation of pellet fragmentation and mono-

shape, mono-sized systems with the discrete element method (DEM) and the com-

bined finite-discrete element method (FEMDEM). An additional discussion on the

applicability and possible advantages of the two methods concludes this section.

Chapter 4 presents the experimental work that have been carried out to determine

the material properties of the porous ceramic materials used for the detailed frag-

mentation study with Solidity FEMDEM numerical simulation illustrated in Chap-

ter 5. This characterisation work has been tackled in this research by employing

different testing techniques, including uniaxial compression (Brazilian disc test), ul-
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trasonic test, nanoindentations, mercury (Mg) intrusion, Brunauer-Emmett-Teller

(BET) adsorption and three-point bending test. A novel optimisation algorithm that

have been developed for the characterisation of the Young’s modulus of small, highly

stiff engineered materials is also introduced. Material presented in this chapter has

appeared in the following publication:

Farsi A, Pullen AD, Latham JP, Bowen J, Carlsson M, Stitt EH, Marigo M. 2017.

Full deflection profile calculation and Young’s modulus optimisation for engineered

high performance materials, Scientific Reports, 7, 46190. doi:10.1038/srep46190

(Nature research open access journal, 5-year impact factor: 5.525).

In Chapter 5, the Solidity FEMDEM code is used to first investigate its capabilities

in the simulation of fragmentation of porous ceramic specimens, and then to in-

vestigate the structural strength of complex-shaped pellets under simplified loading

conditions. Moreover, the focus of this chapter is on proving through a series of

validation studies that the method can also be applied to fracture of very strong

(by comparison with most geomaterials) porous ceramic bodies and to find possible

limitations of the method. The chapter therefore follows a progression from simple

specimen geometry strength tests simulations (i.e. three-point bending tests and

Brazilian disc tests) towards more complex shape specimens. This chapter ends

with an example of the code capabilities to design pellets shapes suitable to deliver

advantages for the catalyst performance. Here the Solidity FEMDEM code is used

to investigate the relation between the structural strength of complex-shaped pel-

lets and the orientation of simplified loading conditions, representing the mechanical

loads of the pellets in a reactor. Material presented in this chapter has appeared in

the following publication:

Farsi A, Xiang J, Latham JP, Pullen AD, Carlsson M, Stitt EH, Marigo M. 2015.

An application of the finite-discrete element method in the simulation of ceramic
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breakage: Methodology for a validation study for alumina specimens, Proceedings of

the 4th International Conference on Particle-based Methods

Chapter 6 focuses on reproducing experimental packing results when pellets are re-

leased into cylindrical containers. Solid cylindrical, spherical and complex-shaped

(trilobes) catalyst supports once at-rest in their cylindrical containers are compared

to the corresponding experimental results from X-Ray CT scans. The numerical

results are analysed with a post-processing tool that has been specifically developed

to reproduce the calculation process employed to evaluate the axial and radial pack-

ing density profiles and the pellet orientation distribution from the voxelised data

format of the X-Ray CT scans employed in the literature. Material presented in this

chapter has appeared in the following publication:

Farsi A, Xiang J, Latham JP, Carlsson M, Stitt EH, Marigo M. (2017) Simulation

and characterisation of packed columns for cylindrical catalyst supports and other

complex-shaped bodies, Proceedings of the 7th International Conference on Discrete

Element Methods (This paper was awarded Best Student Paper by the conference

organisers).

Chapter 7 gives an outline of the main findings discussed in the thesis and of pro-

posed new developments.
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TWO

Mechanical characterisation of

high performance ceramics

2.1 Introduction

Significant recent advancements achieved in manufacturing technology, including

the new opportunities made possible by additive layer manufacturing (3D printing)

have opened the doors to a range of new engineered materials with complex archi-

tectures and enhanced mechanical properties [Lewis et al. (2006); Fu et al. (2011);

Zheng et al. (2014); Roohani-Esfahani et al. (2016)]. The scope of this research

was to study resistant catalytic pellets that can reduce costs in the production of hy-

drogen, ammonia and other industrial chemicals; but high-performance mechanical

components that exhibit high strength and stiffness have found useful applications

in different fields in medicine, engineering and technology: stronger and more reli-

39



Chapter 2: Mechanical characterisation of high performance ceramics

able artificial bones can improve the lives of bone cancer patients; the pellets that

make up the nuclear fuel in the core of nuclear power plants. In all of these applica-

tions, computational tools and numerical simulations have become essential as effort

is focussed on process optimisation [Schlereth & Hinrichsen (2014); Palma et al.

(2016); Deng et al. (2001); Helfer et al. (2015); Michel et al. (2008)]. However,

the mechanical properties of this kind of materials are significantly affected by their

microstructural design and by the sintering process [Wang et al. (2002); Wötting &

Ziegler (1985)], (i.e. the geometry and scale of the finished product, type of powder,

compaction, extrusion or printing tools, firing time and temperature). Consequently,

it is critical that characterisation of the mechanical behaviour of these materials is

carried out rigorously and on specimens representative of the final product.

Since porous ceramics are generally considered to be brittle elastic [David (2015)],

Young’s modulus and tensile strength are two of the main parameters needed in or-

der to predict the mechanical behaviour of systems made from such components. A

variety of methods to determine the Young’s modulus can be found in the literature:

they can be broadly categorised as either dynamic or quasi-static. Dynamic meth-

ods (such as ultrasonic, prism resonance and impulse excitation tests) typically use

knowledge of the density and geometry of specimens, together with measurements

of a dynamic response to a transient or cyclic loading. Quasi-static methods (such

as micro- and nanoindentations, direct compression and tension tests, flexural tests)

use the deformation or strain response of a specimen to a series of constant loads or

a continuous loading applied at a low rate such that inertial effects can be ignored.

Dynamic methods such as resonance frequency methods and ultrasonic tests on

the one hand need very little sample preparation and the inferred elastic constants

can be related to the static Young’s moduli [Ledbetter (1993)]. Because of their

sintering processes, many of these materials can only be cast into small pellets, and

wave scattering and difficulties in the alignment of tiny samples with the emitting
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and receiving beams can sometime constitute a disadvantage in employing these

methods.

2.2 Quasi-static testing methods

Nanoindentations are widely employed to characterise the elastic properties and

the mechanical behaviour of materials at the micro- and nanoscale [Oliver & Pharr

(2004); Pan et al. (2016)]. They require high-resolution testing equipment and in

some cases also time and particular tools for the sample preparation (i.e. grinding,

polishing, etc.). In the context of ceramics, this technique is particularly well suited

when applied for the characterisation of the properties of thin films and small sam-

ples such as ceramic coatings and small structural features. To increase the accuracy

of the tests, the indentations are generally repeated in a certain area of the sample.

However, the resulting Young’s modulus distributions need to be interpreted as the

repeatability is significantly dependent on the experience of the operator. In addi-

tion, the inferred Young’s modulus reflects the features of the indented portion of

the tested material (such as the external surface) and may not be representative of

the structural behaviour of the sample at the macroscale.

When possible, other quasi-statically determined parameters such the elastic mod-

ulus from uniaxial compression and the flexural modulus, are generally preferred

because they require more conventional and simpler testing machineries and spec-

imen preparation. In addition, they are also generally considered to be more rep-

resentative of in-service loading conditions [Eissa & Kazi (1988)]. One of the main

advantages that these tests offer, compared to dynamic methods, is that they can

provide an estimate for both the strength and the stiffness of the material with a

single experiment. While the strength is just a function of the sample geometry

and the load at failure, Young’s modulus is also related to the relation between the
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applied loads and the corresponding deformations in the sample (i.e. the recorded

displacements). Since the deformations of highly stiff materials are inevitably small

and therefore not easy to determine with a high level of confidence, the estimated

Young’s modulus can be significantly affected by experimental errors. Bending tests,

compared to uniaxial compressions, have the advantage of emphasising the response

of the tested sample to the applied loads, effectively increasing the measurable de-

formations of the sample during the test.

2.2.1 Three-point bending test

The EN 843-2:2006 Section 4 [British Standards Institution (2007)] describes how

the three-point bending test can be employed to evaluate Young’s modulus using

either the test rig cross-head displacement (Method A.1), displacement transducers

(Method A.2) or strain gauges (Method A.3). The Method A.1 is generally not

applicable because of the effects of standard rig self-compliance in a three-point

bending test for the case of particularly stiff sample bars. This is caused by the great

ratio between the applied load and the relatively small deformations of the samples

before failure. A typical example for such stiff materials of load-displacement curve

of the three-point bending test, shown here for a porous alumina sample, is given

in Figure 2.1. About 80% of the total displacement recorded by the rig (continuous

line) is not representative of the actual alumina beam deflection but is likely to

be due to load-frame compliance, based on the expected specimen displacement

(dashed-line). Although EN 843-2:2006 Section 4.4 suggests to repeat the test on

a thick metal or ceramic bar to estimate the rig self-compliance, the accuracy of

the estimated Young’s modulus relies on the assumptions that the thick sample is

perfectly rigid and that the rig is responding with the same self-compliances to the

transmitted loads, and this might not be true for all the actuators.
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Figure 2.1: Effects of the rig self-compliance in the three-point bending tests:

expected (dashed red) and recorded (black) load-displacement curve from a

three-point bending test on an alumina sample.

Methods A.2 and A.3 are also not convenient when the specimens are too small to

allow a standard transducer or strain-gauge to be accurately installed and employed

with a high level of confidence. Digital Image Correlation (DIC) is a non-contact

optical method that can be employed for monitoring displacements and deforma-

tions from sequences of images [Hild & Roux (2006); Pan et al. (2009); Dupré et al.

(2010); Roux et al. (2012)]. This technique can be used to emulate either the

arrangement of transducers or the strain gauge as described in Method A.2 and A.3

respectively. Optical observation methods make it possible to eliminate the test

rig compliance by tracking discrete optical targets, e.g. discrete markers placed on

the two supports and the loading plate in the three-point bending test. It is also

possible to average the displacements of a number of random markers in an area

expanded around the discrete targets to increase the accuracy of the tracked dis-

placements. Although relatively easy to implement, these methods of harnessing

optically recorded data only use data from limited regions of each image, effectively

discarding most of the available information. This gave an opportunity for the de-

velopment of a more reliable method that uses all of the available image deformation
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data during bending tests, leading to higher levels of accuracy in deflection calcula-

tion and therefore in Young’s modulus evaluation. This optimisation methodology

is described in Chapter 4, where the results are compared with the ones obtained

from other standard tests.
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THREE

Numerical methods for

fragmentation and multi-body

simulations

3.1 Simulating fracture propagation

3.1.1 Introduction

Interest in simulating fracture propagation extends across a variety of scientific and

engineering fields, such as structural analysis, material design, nuclear waste dis-

posal risk assessment, oil and gas reservoir engineering, and subsurface ore mining

[Paluszny & Zimmerman (2011)]. Numerical simulations are performed in order to

predict the formation and behaviour of these fracture systems, due to the geomet-
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ric and physical complexity inherent in fracture phenomena. Two main modelling

approaches can be identified in the literature for fracture analysis: discrete crack

and smeared crack models, also known as geometric/non-geometric, or grid/subgrid

methods. They were introduced in the late 1960s by Ngo and Scordelis and Rashid

in application to the concrete structural analysis [Borst et al. (2004)]. The smeared

crack model is based on the assumption that in concrete, due to its heterogeneity

and the presence of reinforcement, many small cracks nucleate which only in a later

stage of the loading process link up to form one or more dominant cracks. Since

each individual crack is not numerically resolved, the smeared crack model cap-

tures the deterioration process through a constitutive relation, thus smearing out

the cracks over the continuum. In this kind of analysis cracks are represented as

an isotropic or anisotropic damage concentration band within a mesh element from

which fracture geometry can be inferred, instead of being explicitly defined [Jirasek

(1998)]. In contrast, the discrete crack model represents cracks discretely and aim

to simulate the initiation and propagation of dominant cracks. This kind of analysis

can be performed with different approaches, e.g. boundary element based methods

(BEM) Carter (2000), peridynamics [Silling (2000); Silling et al. (2003)], finite ele-

ment simulations (FEM) [Lin & Smith (1999); Schöllmann et al. (2003)] extended

finite element method (XFEM) [Bordas & Nguyen (2007)], discrete element method

(DEM) [Sitharam (2000); Tavarez (2007); Huang et al. (1999); Wan (2011); Po-

tyondy & Cundall (2004)] or combined finite-discrete element method (FEMDEM)

[Munjiza (2004)]. An important aspect to underline is that the great majority of

geometric methods do not maintain a representation of the fractures separate from

the mesh, and rely on mesh editing techniques, such as in situ insertion of new

crack nodes, edges and faces, to capture mesh growth. There are also several ap-

proaches presented in the literature aimed at describing solid fragmentation using

DEM. In Huang et al. (1999) numerical simulations of uniaxial compression and
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cutting processes of rock have been presented employing packed discrete elements

bonded together to represent the bulk rock material. Similar examples are presented

to describe tunnelling, flexural and Brazilian tests in Potyondy & Cundall (2004),

and powder agglomerates in Liu et al. (2010). The standard approach consists of

defining a packed structure of particles (generally spheres) with a determined parti-

cle size distribution and then defining laws for the contact and interactions between

particles (Figure 3.12) on the basis of parameters such as penalty numbers, stiffness

of the bonding, etc. and to obtain forces that, once they are applied to the elements,

define the movement of the simulated bodies with Newton’s laws of motion. These

bonded-DEM approaches will be discussed in Section 3.1.3.

3.1.2 FEMDEM method for fracturing systems

3.1.2.1 Introduction

Algorithms for FEMDEM simulations started to be proposed from the 90s. Ex-

tensive developments and applications of the FEMDEM method have been carried

out after the release of the open source Y-code in Munjiza (2004), and different

versions have been released, including the code developed from the collaboration

between Queen Mary University and Los Alamos National Laboratory [Munjiza

(2004); Munjiza et al. (2015); Rougier et al. (2014)], the Y-Geo and Y-GUI soft-

ware that have been developed by the Geomechanics Group led by Giovanni Gras-

selli at Toronto University [Mahabadi et al. (2010b, 2012)], and VGeST (Virtual

Geoscience Simulation Tools) released by the Applied Modelling and Computation

Group (AMCG) at Imperial College London [Xiang et al. (2009a); Munjiza et al.

(2010)]. Recently the AMCG has upgraded and renamed VGeST as ’Solidity’. A

commercial FEMDEM code developed by Geomechanica (www.geomechanica.com),

has also been released in Canada, although its application has been limited to mod-
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elling geomaterials. While the first Y-code employed finite strain elasticity coupled

with a smeared crack model to capture deformation, rotation, contact interaction

and fragmentation, the AMCG has greatly improved the code, implementing a range

of constitutive models in 3D [Karantzoulis et al. (2013); Guo (2014)], thermal cou-

pling [Joulin et al. (2017)], parallelisation and a faster contact detection algorithm

[Xiang et al. (2017)]. The key features of the two-dimensional FEMDEM code that

has been implemented in Solidity are the following ones: (a) compute the contact

detection, interaction and motion of bodies, (b) calculate the stresses and defor-

mations within bodies and (c) compute the transition from continua to discontinua

when fragmentation occurs. The shape of two-dimensional bodies is discretised

through a triangular mesh. Each triangle is both a discrete element (DE) and finite

element (FE). The Y-code, which was presented in Munjiza (2004), has provided the

fundamental theoretical aspects of the contact and cohesive crack model employed

in Solidity and will be critically summarised in the following sections.

3.1.2.2 Contact detection and interaction

When two bodies are in contact, some of the elements of the mesh of the first body

overlap some elements of the boundary of the second body, as shown in Figure 3.1(a).

A contact detection algorithm detects all the couples of DE that are more likely to

be in contact, discarding all the couples that are too far to be in contact. This is

done to avoid processing the contact interaction of all the possible couple of elements

in the system and therefore reducing the run time of the simulation. The contact

interaction is implemented through a variational formulation. The penalty function

method is used to compute the normal component of the contact force between two

bodies by imposing the stationarity of a functional subject to the contact constraints

over the boundaries. The contact potential function is defined in the form of equation

(3.1), where p is the penalty term, while f(x) is a function of the point x in the
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(a) (b)

(c)

Figure 3.1: Scheme of the key features of the Solidity FEMDEM code: (a) compute

the contact interaction and motion of bodies, (b) calculate the stresses and

deformations and (c) compute the transition from continua to discontinua when

fragmentation occurs.

49



Chapter 3: Numerical methods for fragmentation and multi-body simulations

overlapping discrete elements of the two contacting bodies. The function f(x) is

defined in such a way that it is zero outside the discrete element, constant on the

boundaries and increasing while moving towards the centre of the discrete elements

(triangles in 2D or tetrahedra in 3D). The infinitesimal contact force is defined as

the gradient of the corresponding potential function dF = −∇(ϕ) dA in 2D and

dF = −∇(ϕ) dV in 3D, where dA and dV are the infinitesimal overlapping area

and volume. The total contact force can then be calculated by integrating the

infinitesimal contact force filed over the overlapping area (in 2D) or volume (in

3D). This ensures that the the energy during the contact interaction is conserved,

independently of the penalty term, element shape or magnitude of the penetration,

as the so-defined contact force field is conservative [Munjiza & Andrews (2000)].

ϕ(x) = p · f(x) (3.1)

Since the solution obtained through the minimisation of the potential function sat-

isfies the constraint of impenetrability only approximately, the contacting couples

tend to penetrate into each other, generating distributed contact forces along their

boundaries. With a sufficiently large penalty term the extent of the overlapping is

negligible as is the related error in the response of the simulated system. The dif-

ference between the effects of two different but statically equivalent loads becomes

very small at sufficiently large distances from load [de Saint-Venant (1856)], there-

fore the structural response of a body to contact forces can be well represented even

though the mesh discretisation and penalty term might locally influence the correct

distribution of the pressure on the contact surfaces of two colliding bodies.
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3.1.2.3 Fracture initiation and propagation

The transition from a continuous domain to a discontinuous domain is carried out

through fracture and fragmentation processes. The model implemented in the code

is based on the assumption that the stress-strain curved consists of a hardening

branch (before the peak) and a strain-softening part (where the stress decreases

with the strain increasing), as illustrated in Figure 3.2.

Figure 3.2: Objective stress-strain curve to be modelled [Munjiza (2004)].

Figure 3.3: Strain softening defined in terms of displacements [Munjiza (2004)].

Figure 3.3 shows the strain-softening relation that has been implemented in the code

through the constitutive law of the joint elements in terms of stress and displace-
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ments. The strain-softening part is also defined in terms of stress and displacements

in order to avoid the ill-posedness of the problem generated by a stress-strain def-

inition. The area under the graph in Figure 3.3 is the energy release rate (Gf ),

i.e. the energy dissipated in order to extend the surface of the crack. Gf is also

equal to twice the surface energy, which quantifies the disruption of intermolecular

bonds that occur when a surface is created. The relationship between stresses and

displacements is modelled through a single crack model: when the size of separa-

tion is zero the bonding stress is equal to the tensile strength (ft), implying that

the separation begins only after reaching this stress value equal to ft. Once the

separation starts to increase, there will be a decrease in bonding stress. When it

reaches a limit value of separation (δc), the bonding stress tends to zero. In the

actual implementation of this model, the separation of adjacent element edges is

assumed in advance by introducing joint elements and describing the topology of

adjacent elements with different nodes. As no two elements share any nodes the

continuity between elements is enforced through the penalty function method. Be-

fore the bonding stress reaches the tensile strength its value is given by equation

(3.2), where δp is the separation corresponding to when the bonding stress is equal

to the tensile strength (δp = 2h ft/p), h is the size of that particular finite element

and p is the penalty parameter.

σ = ft

[
2δ

δp
−
(
δ

δp

)2
]

(3.2)

After the bonding stress has reached the tensile strength, the strain-softening law

described in terms of stress and displacements is given by the equation (3.3), where

z is a heuristic scaling function representing an approximation of the experimental

stress-displacement curves and the parameters a, b and c are obtained from the
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interpolation of experimental stress displacement curves. These parameters only

define the shape of the softening curve, which is then stretched depending on the

material properties of the material (i.e. the energy release rate and the tensile

strength). However, the heuristic curve that was implemented in the first Y-code

was derived from direct tension experiments on concrete samples. There are other

materials that have been tested to obtain a more representative softening curve

shape, such as granite, e.g. see Rougier et al. (2014). The variable D is given

by equation (3.4) and the complete relationship for the normal bonding stress as a

function of separation can be written as shown in equation (3.5).

σ = ft

[
1− a+ b− 1

a+ b
e(D

a+cb
(a+b)(1−a−b))

]
[a (1− d) + b (1−D)c] (3.3)

D =


0 δ ≤ δt

1 δ > δt

δ−δt
δc−δt otherwise

(3.4)

σ =



ft

[
2δ
δp
−
(
δ
δp

)2
]

0 ≤ δ ≤ δp

ft

[
1− a+b−1

a+b
e(D

a+cb
(a+b)(1−a−b))

]
[a (1− d) + b (1−D)c] δ > δp

ft

[
2δ
δp

]
δ < 0

(3.5)

The implementation of the constitutive law given above can be represented as the

interposition of normal and shear springs between the joint nodes of the elements
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Figure 3.4: A schematic representation of the joint elements.

in contact, as shown in Figure 3.4. The normal springs have a non-linear stress

displacement law given by equation (3.5), whereas the shear springs have analogous

laws representing shear failures. The normal and shear springs between the joint

nodes of the elements in contact are removed once the separation reaches the value

δc, meaning that the fracture has propagated through the edge. With the bonding

stress model as described above, the stress and strain fields close to the crack tip

are influenced by the magnitude and distribution of the bonding stress close to the

crack tip. In particular the stress field is influenced by the mesh topology close to

the crack tip.

In order to have a good approximation of the crack propagation the element size

close to the crack tip needs to be much smaller than the size of the plastic zone

(Δ), represented in Figure 3.5. The length of the plastic zone proposed in Munjiza

(2004) for a plane stress mode I loaded crack can be approximated by equation (3.6).

In the next section a slightly different formulation based on Irwin’s modification

of Griffith’s solids theory will be presented and the consequent constraints on the

numerical discretization will be discussed.
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Figure 3.5: Single crack model with bonding stress [Munjiza (2004)].

rp Munjiza =
π E δc
32 ft

(3.6)

3.1.2.4 Discretisation of the plastic zone

The toughness, or resistance to crack growth, of a material is governed by the energy

absorbed as the crack moves forward. In extremely brittle materials such ceramics

with low porosity, this energy is primarily just that of rupturing the chemical bonds

along the crack plane. In tougher materials bond rupture plays a relatively small

role in resisting crack growth, with by far the largest part of the fracture energy

being associated with plastic flow near the crack tip. The elastic stress field near

the crack tip is defined in Westergaard (1939) by the system of equations (3.7).

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

σx = KI√
2πr

cos θ
2

(
1− sin θ

2
sin3θ

2

)
+ ...

σy =
KI√
2πr

cos θ
2

(
1 + sin θ

2
sin3θ

2

)
+ ...

τxy =
KI√
2πr

cos θ
2
sin θ

2
cos3θ

2
+ ...

(3.7)
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Figure 3.6: Schematic representation of the crack tip.

where r and θ are the polar coordinates on the crack plane, as shown in Figure 3.6,

and KI is the stress intensity factor. This parameter is defined as KI =
√
E GI ,

where E is the Young’s modulus and GI is the energy release rate, which has been

defined in the previous section. For distances close to the crack tip, the second

and higher order terms of the series that defines the stress at the crack tip can be

neglected, as indicated by dots in equations (3.7). By simplifying these expressions,

the elastic stress field along the fracture, at a distance r from the crack tip can be

approximated by the following equation (3.8).

σ ≈
√

E GI

2πr
(3.8)

Asrtends towards zero, the crack tip stresses become singular. This implies that

a yielded region will exist in the material ahead of the crack for all reasonable

stress values.A plastic zone is present near the crack tip within which the stresses

as predicted by the above equation would be above the materials yield stress ft,

as shown in Figure 3.7. The size of the plastic zone first presented in Irwin et al.

(1958) is given by equation (3.9), and can be estimate by substituting the tensile
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r

σft

rp

Figure 3.7: Representation of stress field near the crack tip.

strength into equation (3.8).

rp Irwin ≈ E GI

2π f 2
t

(3.9)

Approximate stress and strain fields close to the crack tip are obtained through a

finite element discretisation of the governing equations. As described in the previous

section, a cohesive law is implemented in the Solidity FEMDEM code to describe the

fracturing process that takes place in the plastic zone. This law gives the relationship

between bond stress and separation of two finite elements taking into account the

equivalent plastic deformation (and energy consumption) before fracture occurs.

With this bonding stress model, the stress and strain fields close to the crack tip are

influenced by the magnitude and distribution of the bonding stress close to the crack

tip. For this reason it is necessary that the size of finite elements close to the crack tip

be smaller (at least one fourth to correctly numerically represent the bonding stress

with constant strain striangles) than the actual size of the plastic zone, as illustrated

in Figure 3.8. Finally, a relation between the maximum element size hmax adopted

in the discretisation and the mechanical properties of the analysed structure can be
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rp

d ≥ δc
Figure 3.8: Schematic representation of discretisation near the crack tip.

defined in equation (3.10) in order to avoid numerical issues. This constraint on the

mesh discretisation represents a strong limitation on the applicability of the method

to simulate particular classes of problems and will be discussed in the next sections.

hmax ≈ E GI

8π f 2
t

(3.10)

3.1.2.5 Required parameters and their physical interpretation

In order to describe a physical system through numerical modelling a set of pa-

rameters needs to be determined. An estimate of the values of the parameters in

Table 3.1 is needed for the Solidity FEMDEM code in order to simulate fragmenta-

tion. A concise theoretical explanation of the physical meaning of each parameter is

now presented. The Mohr-Coulomb failure criterion shown in Figure 3.9 represents

the linear envelope that is obtained from a plot of the shear strength of a material

versus the applied normal stress when failure occurs. The τ axis represents the shear
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strength and σ axis represents the normal stress; d is the intercept of the failure

envelope with the τ axis, and φ is the slope of the failure envelope. The quantity d

is called cohesion and the angle φ is called angle of internal friction. Compression is

here assumed to be positive: in order to have a better description of brittle materials

this failure criterion has been provided with a tension cut-off that limits the tensile

stress to the value of ft, which is called the tensile strength. Before reaching the

failure envelope the stress-strain relationship is modelled as linearly elastic and it

is governed by Young’s modulus (E) and Poisson’s ratio (ν). When failure occurs,

the fracture opening is described in terms of stress-displacement by a heuristic curve

governed by the energy release rate (G), i.e. the energy dissipated in order to extend

the crack. Figure 3.10 shows the relation between the stresses and displacements of

the simulated material until failure. Only when a fracture has opened up, are the

two fracture walls considered to be two distinct surfaces of the domain. When two

distinct surfaces are in contact, two different processes are defined in the Solidity

FEMDEM code. A contact force is applied to two colliding surfaces in order to

avoid their conpenetration: this force is implemented through a penalty function

method and it is governed by a penalty number (p), which can be assumed to be

correlated to the Young’s modulus (E). Friction is applied when surfaces slide over

each other and its value is implemented with a Coulomb model of friction through

a friction coefficient (µ), which change with the materials of the two surfaces (a and

b) in contact as shown in Figure 3.11. Since in a real system some stress waves are

dissipated in sound, thermal energy or they simply leave the domain, if dissipations

are not taken into account, the reflections and superposition of these strain waves

may cause unrealistic brittle failure in the structure. To avoid these dynamic ef-

fects, a viscous damping proportional to stiffness is applied to finite elements as an

energy dissipation mechanism, where viscous forces are calculated using the rate of

deformation tensor. As shown in Munjiza (2004), a critical value of viscous damping
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d

τ

σ

d

φ

ft

Figure 3.9: Mohr-Coulomb failure criterion with a tension cut-off.

σ,τ

δ

E,υ

ft ,τlim

Figure 3.10: Strain softening defined in terms of displacements.

(η) can be correlated, to Young’s modulus (E), density (δ) and the element size (h),

which is a numerical parameter.

3.1.3 Bonded-DEM vs FEMDEM fracture codes

DEM is a powerful method for computing, with a reasonably small run time, the

motion and interactions of a large number of particles. There are several approaches

presented in the literature aimed at describing solid fragmentation using DEM. In

Huang et al. (1999) numerical simulations of uniaxial compression and cutting
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Fr

N

μa,b

N

N
Fr

Fr

a)

b)

Figure 3.11: Relation between normal and friction force with a Coulomb model of

friction.

Table 3.1: Required parameters for simulating fragmentation with FEMDEM.

Name Symbol Unit

Cohesion d [Pa]

Angle of internal friction φ [rad]

Tensile strength ft [Pa]

Young’s modulus E [Pa]

Poisson’s ratio ν

Energy release rate G [J/m2]

Penalty number p [N/m]

Friction coefficient μ

Density δ [kg/m3]

Viscous damping coefficient η [kg/s]
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Figure 3.12: Example of rheological elements of DEM for the interaction between

particles [Sitharam (2000)].

processes of rock have been presented employing packed discrete elements bonded

together to represent the bulk rock material. Similar examples are presented to

describe tunnelling, flexural and Brazilian tests in Potyondy & Cundall (2004), and

powder agglomerates in Liu et al. (2010). The standard approach consists of defin-

ing a packed structure of particles (generally spheres) with a determined particle

size distribution and then defining laws for the contact and interactions between

particles (Figure 3.12) on the basis of parameters such as penalty numbers, stiffness

of the bonding, etc. and to obtain forces that, once they are applied to the elements,

define the movement of the simulated bodies with Newton’s laws of motion.

The material properties are therefore uniquely implemented by means of numerical

parameters representing the rheological elements affecting the interaction between

particles, and they are moreover affected by the choice of the packed structure

employed for idealizing the bulk material. Those parameters have not direct cor-

respondence with the mechanical properties at the macroscale, properties that are

generally inferred from standard experiments. For instance one of the parameters
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that is generally accepted to describe the elastic deformation phase of materials is

the Young’s modulus, and it can be easily inferred from the comparison between

standard experiments and the analytical solution of the corresponding linear elastic

homogeneous model or eventually by consolidated empirical correlations. In a DEM

model the equivalent of Young’s modulus is a combination of numerical parameters,

such as penalty numbers and/or stiffnesses of fictitious springs between particles,

and these parameters regulate the forces needed for overlapping and separating two

elements. This means that the mechanical description of a DEM model is defined

in terms of forces and displacements, assuming rigid particles with contact laws

and therefore stresses and strains could be only inferred at a second stage. Conse-

quently it is not easy to characterise a material in a DEM model: on one hand the

relationship between these numerical parameters and the conventionally employed

mechanical properties is not straight forward, given that these are in terms of forces

and displacements and the others are in term of stresses and strains (e.g. one of the

parameters that define the relationship between the tensor of the stresses and the

tensor of strains is the Young’s modulus itself). On the other hand there are no an-

alytical solutions to correlate standard experiments to those numerical parameters

and therefore the calibration of a DEM model could be performed only on the basis

of numerical correlations and optimizations (such as by inverse analyses). These

considerations reveal how combining the finite element method with the DEM can

bring considerable advantages: with FEMDEM the mechanics of bodies is defined

in terms of stresses and strains, allowing the implementation of generally accepted

and consolidated constitutive models that describe the behaviour of different ma-

terials (such as glass, concrete, plastics, etc.) and, as a consequence, it is possible

to calibrate FEMDEM models with fundamental material parameters that are well

characterized in literature. Therefore it is possible to simulate the interaction of

large number of particles with great accuracy, revealing stress waves inside bodies
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and other features that are not easely exhibited with an uncoupled DEM code. The

cost of these features is an additional run time during the calculation. In fact both

DEM and FEMDEM are explicit methods that need to reiterate the calculations for

all the time steps of the time discretization, but while a single iteration of a DEM

code is relatively fast, in a FEMDEM code an additional run time is needed, as

more complex calculations are required and moreover a finer time discretization is

often necessary. For this reason, with the current CPU performance and grade of

sophistication of the algorithm, the domain of applicability of FEMDEM codes, in

general, do not include all the possible engineering applications, in particular when

a large number of deformable particles, e.g. ones that are also breakable in response

to developing stress regimes, needs to be computed (this will be discussed in detail

in following Sections). For those applications DEM, or other more efficient methods,

represent the only alternative to compute the results in a reasonable run time.

3.2 Simulating multi-body systems

3.2.1 Introduction

The study of the dynamic behaviour of a system with a large number of intercon-

nected bodies, generally called granular media, is an important field in mechanics.

Granular materials not only are already present in nature, where grains cover about

90% of the solid surface of the planet, with sizes varying from micrometres (clay)

to more than 100 meters (rock blocks); but they are also the matter of study of

food, powders and chemical processing and mixing technology, etc. Even though

granular materials are used in a variety of fields, the explanation of some trivial

behaviour observed in granular systems is not completely clear and is still an open

field of study for physicists and engineers. The type of interactions between grains is
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wide: factors such as chemical reactions, presence of fluid or particle fragmentation

influence their behaviour. In addition to the diversity of materials involved, the

granular world also covers a wide range of physical processes: a granular medium

can ether behave as a gas, a solid or a fluid forming liquid bridges depending on the

degree of agitation (related to the granular temperature) of the grains. The granular

system is classified as dry granular material when its behaviour is not influenced by

the interstitial fluid and cohesive forces between the grains. This class of granular

systems has now gained widespread attention due to abundance of the applications

associated with it [Guises (2008)].

One of the main topics of interest that is strictly related to the behaviour of a gran-

ular system is the study of the packing of particles. This is an extensive field of

research with interest covering many different fundamental and applied topics: from

the description of fluids and glasses [Berryman (1983); O’Hern et al. (2001); Majmu-

dar et al. (2007)], to the characterization of the rheology of granular flow [Campbell

(1990); Goldhirsch (2003); Forterre & Pouliquen (2008)], or the description of trans-

port properties of rocks. Another important field of application is the description

of the packing structure and the force transmission through a grain assembly [Maj-

mudar & Behringer (2005); Mueggenburg et al. (2002); Da Silva M & Rajchenbach

(2000)]. In all of these applications, computational tools and numerical simulations

have become essential as effort is focussed on the understanding of complex pro-

cesses involving a large numbers of particles. Packing algorithms for non-spherical

particles that have superseded the popular type of frozen-once-placed ballistic depo-

sition algorithm once appropriate for spheres (Aparicio and Cocks 1995) or sphere

composites, can be broadly divided as follows:

• Purely geometric types include random space filling and collective rearrange-

ment [e.g. Caulkin et al. (2008)];
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• DEM based on extensions from the original spherical-based approach with geo-

metrically determinate radial contact normals, e.g ellipsoids and superquadrics

[e.g. Song et al. (2006)];

• DEM based on clustered overlapping variable size spheres [e.g. Caulkin et al.

(2015)];

• Polyhedral DEM where contact forces can be calculated between arbitrary

shaped convex and concave polyhedra with overlapping volume or common

plane area repulsive force formulations [e.g. Mack et al. (2011)];

• Combined FEMDEM approaches where to create arbitrary complex and con-

vex particles, shapes are constructed from combinations of primitive concave

polyhedra that can be rigid or deformable [e.g. Munjiza (2004)].

3.2.2 FEMDEM method for multi-body systems

A challenge for the FEMDEM methods, especially transient dynamic deformable

simulations that track the stress waves inside the grains, is that the methods are

relatively more expensive in terms of computational time, which limits the number

of particles that can be considered or process time that can be modelled. Where the

particles are known to have both smoothly curved and flat faces while also having

sharp edges, such as cylinders, the number of tetrahedral elements to represent

this particle geometry accurately may seem prohibitive. For this reason, in many

applications dealing with multi-body systems, DEM capability is justifiably focusing

on the dynamic solid particulate flow properties of systems in which millions of

particles are involved and where the time of relevance is many seconds or even

minutes of real time. Simplifying assumptions are made to achieve run completion

in practical timescales.
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However, there are certain applications, typically in manufactured particles, where a

representative pack is of the order of a thousand particles. More accurate capturing

of the influence of complex shape is often necessary to model the topology of the void

space e.g. for optimisation of fluid flow properties. Alternatively it may be the force

or stress transmission through the contact points that is critical to avoid functional

damage, or both structural stability and flow properties are the simulation purpose.

In the context of mono-sized, mono-shape packing problem, for applications where

special shapes are needed for engineered granular packs, the FEMDEM technology

would appear to be ideally suited. The field of applicability of the Solidity FEDEM

code is discussed in the next section.

3.3 Applicability of DEM and FEMDEM simula-

tions to industrial problems

3.3.1 Introduction

The verification of simulation results is normally the first step to confirm the ap-

plicability of a computational tool to describe a certain industrial problem that

needs to be investigated. Model validation is defined in Schlesinger (1979) as the

’substantiation that a computerised model within its domain of applicability pos-

sesses a satisfactory range of accuracy consistent with the intended application of

the model’. A model should be developed for a specific application and its validity

determined with respect to that purpose. If the application of a model is to answer

a variety of questions, the validity of the model needs to be determined with respect

to each question. Numerous sets of experimental conditions are usually required to

define the domain of a model’s intended applicability. A model may be valid for one
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set of experimental conditions and invalid in another. A model is considered valid

for a set of experimental conditions if the model’s accuracy is within its acceptable

range, which is the amount of accuracy required for the model’s intended purpose.

This usually requires that the model’s output variables of interest (i.e., the model

variables used in answering the questions that the model is being developed to an-

swer) are identified and that their required amount of accuracy be specified. The

behaviour data of the simulation model and the system can be graphed for various

sets of experimental conditions to determine if the model’s output behaviour has

sufficient accuracy for the model’s intended purpose. These comparisons can be

used in different ways: graphs can be used in the model development process to

make a subjective judgment on whether a simulation model possess sufficient accu-

racy for its intended purpose. In order to determine how accurate is the level of

prediction of the model, a procedure with statistical techniques and a strategy of

data collection must be defined for each set of experimental conditions and for each

variable of interest [Sargent (2005)].

The mathematical representations of the contact physics between particles and con-

tainer walls including friction effects have been implemented with varying sophisti-

cation by the DEM community and to determine the range of applicability of those

models a verification study is consequently crucial. For this reason we can observe

a considerable effort in validation studies of DEM numerical simulations in litera-

ture. The comparison between packed structures of different shaped pellets and their

equivalent numerical simulation has been presented in Caulkin et al. (2008), where

bulk density, local packing density profiles, and pellet orientation distributions ob-

tained from computational models have been compared with the experimental data

sets obtained from X-ray computerized tomography of the packed columns. In Li

et al. (2005) a validation study has been proposed: they performed experiments

to complete the determination of all material properties including friction coeffi-
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cients applicable to glass and steel sphere simulations so that sandpile experiments

with spherical particles could be numerically simulated with DEM. In Cleary et al.

(2003) the dynamics of granular systems in flow, flow rates through apertures, veloc-

ity field statistics, have been compared with DEM numerical simulations. In Asmar

et al. (2002) it is shown a different methodology for validation studies: some simple

simulations are used to verify code: in fact they do not compare their results with

that of experiments, but they set up eight mathematical tests based on artificial

situations that can uncover bugs in programs, even if they appear to simulate real

experiments reasonably well. In Zhou et al. (1999) has been investigated the math-

ematical importance of rolling friction on the formation of a heap of spheres. The

discrete element method has been also coupled with other theories in order to cap-

ture more complex phenomena: in Takeuchi et al. (2012) and Takeuchi et al. (2013)

a combines discrete phase and fluid dynamic model has been compared to actual

experiments of particle breakage in an impact pulveriser. Combined finite-discrete

element method (FEMDEM) codes have also been subjected to validation studies:

in Latham & Munjiza (2004) and Xiang et al. (2009b) respectively a cube-packing

experiments and free balls on a rotating disc have been compared to their equivalent

numerical simulations to investigate the capability of the code to represent contact

between particles and container walls in packed structures. Mahabadi et al. (2010a),

Rougier et al. (2011) and Knight et al. (2013) have presented validation studies on

the capability of FEMDEM in the description of solids fragmentation, comparing

the behaviour of Brazilian disc specimens as observed in laboratory during dynamic

indirect tensile tests to their equivalent numerical simulations.
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3.3.2 Domain of applicability of the Solidity FEMDEM code

It is important to highlight the limitations of the current Solidity FEMDEM code

in order to understand the domain of applicability. The code has an explicit solver,

in other words it discretises the continuous time in time steps and then it calculates

the state of a system at a later time step on the basis of the state of the system at

the current time step. This implies that, even if only the status of the system at an

exact time is required, the code needs to calculate the output for every prior time

step until it reaches the required one. To give an example: if you want to calculate

the state of a modelled system after three seconds from the initial conditions, the

total run time is equal to the run time of a single iteration multiplied by the number

of time steps before the required one, in this case three seconds divided by the

length of the time step. So, by fixing the real time of the system that needs to be

simulated, the total run time is directly proportional to the run time of a single

iteration and inversely proportional to the length of the time steps. It is important

to bear in mind that the run time of a single iteration increases with the number

of elements of the numerical discretization and decreases with the rise of the CPU

performance of the computer employed for the calculation. On one hand the length

of the time step decreases with the dimension of the elements and on the other hand

to enforce accuracy there are numerical limitations that force the use of a large

number of small elements. This brings a limitation on the domain of applicability

of the Solidity FEMDEM code: when simulating a large number of particles, each

individual particle needs to be discretised with several elements. That means that

the number and dimension of the elements is practically constraining the maximum

real time and in turn the physical process that can be simulated in a reasonable

time.

Moreover, when simulating fracturing, a relation between the maximum element size
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Figure 3.13: Representation of an alumina specimen microstructure.

adopted in the discretization and the mechanical properties of the analysed structure

is defined in equations (3.10) and (3.6). This constraint needs to be satisfied in order

to avoid numerical issues, as discussed in the previous sections. Some estimates of

E (Young’s modulus), G (energy release rate) and ft (tensile strength) are obtained

with the correlations presented in Lam et al. (1994) for a standard engineering

ceramic and the derived maximum element size is reported in Table 3.2. From the

table it is clear how this constraint on the numerical discretization affects the run

time of the simulation. One last important observation is that the maximum element

size could sometime be comparable to the dimension of the grains that constitute

the microstructure of the ceramic (5-40 μm), as shown in Figure 3.13.
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Table 3.2: Material properties of partially dense alumina samples [Lam et al.

(1994)] and their numerical discretisation constraints.

Firing
temperature

E Density G ft rp Irwin rp Munjiza hmax

[◦C] [GPa] [kg/m3] [J/m2] [MPa] [µm] [µm] [µm]

1200 73 2560 7 45 42.1 52.0 13.0

1300 136 2840 14 97 31.8 39.2 9.8

1400 355 3800 36 165 4.5 5.6 1.4
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FOUR

Mechanical characterisation

4.1 Introduction

The purpose of the experimental work reported in this chapter is to determine the

appropriate strength and stiffness parameters for the specific porous ceramic ma-

terials which are to be the subject of a detailed fracture and multi-body packing

study using numerical simulation with the Solidity FEMDEM code. The combina-

tion of high strength, high porosity and necessarily small specimens required that

a considerable effort would need to be expended to produce a reliable set of exper-

imental data for assigning material properties. Such a set of properties could then

inform the verification process that could ultimately demonstrate convincingly the

applicability of the Solidity code for the simulation of high-performance catalyst

supports. It is worth recalling that the FEMDEM methods to be used here have

not been applied before to materials outside typical brittle geomaterials. As has
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been introduced in Section 2.1 the investigation of microstructural properties and

the accurate characterization of mechanical properties of porous ceramic samples is

a critical issue in material science and has been tackled in this work by employing

different testing techniques, including uniaxial compression (creating indirect ten-

sion in disc specimens), ultrasonic test, nanoindentations, mercury (Hg) intrusion,

Brunauer-Emmett-Teller (BET) adsorption and three-point bending test.

4.2 Sample preparation

The samples were prepared with the help of Daniel Curry (Johnson Matthey). Three

sets of prismatic samples were sintered with a reference alpha-alumina powder with

an average granulate size in the 170-210 µm range that was compacted at an initial

bulk density of 2.25 g/cm3 and then fired at 1200 ◦C, 1300 ◦C and 1400 ◦C to obtain

three sets of bars with final bulk porosity of 0.36, 0.26 and 0.15 respectively. The

geometry and density of the tested samples are reported in Table 4.1. Three sets of

cylindrical samples with three different geometries were also sintered with the same

reference alpha-alumina powder that was compacted at an initial bulk density of

2.25 g/cm3. Two sets consist of cylinders with two different sizes (Small and Big)

and one set consists of cylinders with four holes (4−hole). The green pellets are then

fired at 1200 ◦C, 1300 ◦C and 1400 ◦C to obtain three sets of three group of samples

each. The average of the diameter of the cylinders (D), diameter of the holes (d),

widths (t) and bulk densities of the tested samples are reported in Table 4.2.
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(a)

(b)

(c)

Figure 4.1: (a) Reference alumina powder and (b) compaction die that have been

used to produce the four-hole cylinders. (c) Some of the samples that have been

tested.
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Table 4.1: Average of the measured dimensions and bulk density of the tested

prismatic specimens.

Set L H Bulk density
[mm] [mm] [g/cm3]

1 40.20 ± 0.01 4.84 ± 0.01 2.58 ± 2%

2 38.09 ± 0.01 4.64 ± 0.01 3.00 ± 2%

3 36.33 ± 0.01 4.41 ± 0.01 3.25 ± 2%

Table 4.2: Average of the measured dimensions and bulk density of the tested

specimens.

Set D d t Bulk density
[mm] [mm] [mm] [g/cm3]

Small 9.59 ± 0.01 - 8.88 ± 0.01 2.21
Big 18.56 ± 0.01 - 19.16 ± 0.01 2.321

4-hole 18.39 ± 0.01 5.14 ± 0.01 12.54 ± 0.01 2.31

Small 9.19 ± 0.01 - 8.49 ± 0.01 2.51
Big 17.69 ± 0.01 - 18.36 ± 0.01 2.692

4-hole 17.56 ± 0.01 4.88 ± 0.01 12.00 ± 0.01 2.64

Small 8.76 ± 0.01 - 8.09 ± 0.01 2.89
Big 16.82 ± 0.01 - 17.53 ± 0.01 3.123

4-hole 16.78 ± 0.01 4.68 ± 0.01 11.38 ± 0.01 3.06

76



4.3: Uniaxial compression

4.3 Uniaxial compression

4.3.1 Brazilian discs

Brazilian disc tests were performed on the alumina cylinders. The test consists of

placing a cylindrical pellet between two plates and diametrically compressing it to

failure. A monolithic cylinder of aluminium alloy was placed centrally on the sta-

tionary base of the test rig (Instron model 5984 electromechanical test frame). An

opposing cylindrical loading platen was mounted centrally on the vertically-moving

crosshead of the test rig, below the load-cell. The experiments were performed in

displacement control. The test rig control software (Instron Bluehill 3) recorded

load and displacement during each experiment, at 0.1 second intervals. The com-

pression applied on the sample by the loading plates induces a stress field with

horizontal tensile stress which according to a linear elastic model has its highest

value in the centre of the disc. The tensile strength can be calculated based on

the two-dimensional elastic solution for a disc with two concentrated forces applied

to its vertical extremes. It is then possible to express the horizontal tensile stress

experienced by the specimen in the centre of the disc as a function of the applied

load (F ) and of the geometry of the sample.

ft =
2F

πDt
(4.1)

As shown in Figure 4.2 that failure occurs at the point of maximum tensile stress,

i.e. at the centre of the disc, the Brazilian disc test formula (4.1) gives an estimate

of the indirect tensile strength (ft), where D is the diameter of the disc and t its
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(a) (b)

Figure 4.2: Two frames from the video recording of the uniaxial compression test

on a cylinder without holes from Set 1: (a) before and (b) after failure.

width, International Society for Rock Mechanics (1978). This relation is only valid

for cylinders without holes.

Since the Brazilian disc formula is not valid for specimens with holes, sets of discs

of two different sizes (Small and Large) were produced with same compaction pres-

sures and firing temperatures of the corresponding pellets with four holes. Two disc

sizes were taken into account to represent the possible strength variation due to the

employment of a different compaction die to cast the cylindrical pellets with four

holes. The values of indirect tensile strength were then calculated for 4-6 samples

for each set of discs with uniaxial compressions and the results have been reported

in Figure 4.3. The strengths of the three sets of cylindrical pellets with four holes

were then assumed to be equal to the average strengths of the corresponding sets of

discs.
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Figure 4.3: Indirect tensile strength of the Small (solid red) and Big (void red)

cylinders evaluated by Brazilian disc test. Average (black) tensile strength

obtained for the three sets of samples.

4.3.2 Four-hole cylinders

The four-hole specimens will later be used to illustrate the power of the FEMDEM

code to capture the effects of complex geometry and the effect this has on the

stress field and susceptibility to fracture in different modes and generate fragments.

Uniaxial compressive tests were performed on 8-10 specimens from each of the three

sets of four-hole cylinders. Prior to testing, one side-face of each specimen had a

random speckle pattern applied. The experiments were performed in displacement

control, with a crosshead velocity of 10 mm/s. For each set, the four-hole cylinders

were tested in both the weak and the strong orientation of the holes, as shown in

Figure 4.4(a) and 4.4(b) respectively.

The experiments were recorded with a high-speed video-camera (Vision Research

Phantom v12.1 monochrome, maximum capture rate 16,000 frames/second at full-

resolution of 1280 by 800 pixels, fitted with a 100 mm macro lens). The optical axis

was set normal to the speckled side-face of the specimen. A high-speed video camera

was used to capture the post failure behaviour and fragmentation of the samples at

end of the test.
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(a) (b)

Figure 4.4: Frames from the video recording of the uniaxial compressive tests on

four-hole specimens. (a) Weak and (b) strong loading orientation.

The experimental results can be used to quantify the structural strength given a

defined configuration of the load, of this type of pellets for two loading configurations

(weak and the strong orientation of the holes), i.e. the maximum value of force that

the specimen can support without breaking for a given configuration (orientation)

of the load. Limitations in the experimental apparatus have not allowed to obtain

sufficiently accurate results for the strongest set of pellets (Set 3). The results

from the other two sets of samples have shown a quite consistent relation between

loading orientation, tensile strength and the structural strength of the pellets. When

normalising the load at failure with the failure load of an equivalent cylinder of

identical tensile strength and geometry but without holes, all the results converged

to a value of about 2% for the weak orientation and about 20% for the strong

orientation. It is important to point out that the load values at failure could have

been affected by errors as the examination of the video recordings of the tests was

required to define the time when the first fracture was visible on the samples, which

might have occurred later than when that fracture was actually initiated.
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Figure 4.5: Loads at failure for the uniaxial compressive tests on the four-hole

specimens from the three set of samples. Results for the (a) weak and (b)

strong loading orientation.
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4.4 Ultrasonic test

The ultrasonic equipment consisted of a 25 MHz piezoelectric transducer, which

emits and receives longitudinal waves through a bar sample immersed in a water

bath, an amplifier and computer that records and processes the signals. Each tested

specimen, after being coated with an impermeable thin layer, was placed on a thin

metal support that separates the specimen bar from the bottom wall of the water

tank and maintains the sample vertical and parallel with the transducer beam. A

partially motored apparatus is then employed to align the ultrasonic beam with the

longer dimension of the sample bar. This was done to maximise the length that the

waves have to travel before and after being reflected by the bottom surface of the

sample so that the recorded signals have two distinctive peaks that represent the

top and bottom reflections.

Three specimen from each set of bars were tested with ultrasonics. Figure 4.6 shows

a scheme with the path of the first reflected wave (yellow) and two possible paths

of the transmitted wave (red and green dashed lines). When the transducer is not

aligned with the beam the transmitted wave will follow a longer path (red dashed

lines). The procedure followed to align the piezoelectric transducer with the tested

samples consisted in tilting the transducer beam until the transmitted wave path was

as shorter as possible, in other words when the time interval between the reflected

and transmitted wave peak was minimised. Figure 4.7 shows the two distinctive

sets of peaks recorded for one of the tests recorded for Set1. Since the path between

the transducer and the top surface of the sample is travelled twice both by the

top and bottom reflected waves, the distance between the two peaks corresponds

only to the time that the waves take to travel twice the length of the specimen.

Therefore, the velocity of the longitudinal waves propagating through the sample can

be expressed as VL = 2L
∆t

. The relation between density (ρ), Lamé constants (λ and
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µ) of the specimen and the longitudinal wave velocity is VL =
√

λ+2µ
ρ

Timoshenko

(1970). By substituting in the previous equation of the wave velocity the relations

between the Lamé constants and Young’s modulus (E = µ(3λ+2µ)
λ+µ

), Poisson’s ratio

(ν = λ
2(λ+µ)

), it is possible to express the Young’s modulus of the tested specimen as

a function of the longitudinal wave velocity, Poisson’s ratio and bulk density: E =

V 2
Lρ

(1−2ν)(1+ν)
1−ν . Since the test apparatus did not allow to transmit transverse wave

through the specimen, the Poisson’s ratio could not be experimentally estimated.

Previous publications on ultrasonic tests on porous alumina samples report a value

of 0.17 for the Poisson’s ratio, assuming that it is ’approximately independent’ of

porosityLam et al. (1994); Green et al. (1988). In more recent publicationsAsmani

et al. (2001); Chang et al. (2000) the relation between Poisson’s ratio and porosity

of alumina samples has been experimentally investigated, showing that samples with

similar porosity to the ones employed in the present work have Poisson’s ratio in

the 0.17-0.20 range. The Poisson’s ratio was therefore assumed to be 0.17 as its

variability affects the estimated Young’s moduli by less than 3%. The experimental

and signal processing tools for these ultrasonic tests were provided by Jack Egerton

(Imperial College London).

4.5 Nanoindentations

Nanoindentation test results have been provided by James Bowen (Open University).

The nanoindentation apparatus has maximum load of 400 mN, load noise of < 1 µN,

maximum depth of 1,000 nm, and depth noise of < 0.2 nm. A Berkovich diamond

indenter with tip radius of < 3 nm has been used to indent the specimen. Each

indentation test is performed within 240 s, including a 30 s holding time at the peak

load. The testing temperature is maintained within the range of 20-22 ◦C to reduce

thermal drift. The elastic moduli were measured using the Oliver-Pharr method
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Figure 4.6: Scheme with the path of the first reflected wave (yellow) and two

possible paths of the transmitted wave (red and green dashed lines).
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Figure 4.7: Experimental data of the sound rebound time obtained from an ultra-

sonic test on a sample from Set 1. In particular, the Hilbert envelope (dashed

black), the filter windows (dashed red) and the windowed signal (continuous

black).
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[Oliver & Pharr (1992)].

One specimen from each set of bars was tested with nanoindentations. For each bar,

one hundred indentations have been performed for statistical correction to minimize

the experimental error. The histograms and normal probability distributions of the

Young’s modulus were estimated with one hundred nanoindentations on the surface

of a sample. A correction was performed by excluding the experimental results that

were 50% either lower or higher than the average value of the entire distribution.

This correction was done to exclude the indentations that were not representative

of the whole sample (e.g. direct indentations of pores or a crystals). The results

from the indentations on a sample from Set 1 are shown in Figure 4.8.

Similarly, the Young’s moduli of the four-hole cylindrical samples were also inferred

by nanoindentations. The mean values and standard errors of the Young’s modulus

estimated for each set of samples are shown in Figure 4.9.

4.6 Hg intrusion and BET adsorption

Hg intrusion and BET adsorption test results have been provided by Michele Marigo

(Johnson Matthey). One sample from each set of bars was analysed using a Mi-

croActive AutoPore V 9600 mercury intrusion porosimeter and a ASAP 2420 BET

adsorption apparatus.

The microstructure of the three sets of samples was therefore investigated with Hg

intrusion, BET adsorption. Figure 4.10(a) shows that the dominant pore diameter

for Sets 1-3 is in approximately 100 nm. There is a slight decrease in the mean

pore diameter as the firing temperature increases. Figure 4.10(b) shows that the

porous volume available for Hg intrusion decreases with increasing firing tempera-

ture. Figure 4.10(b) also displays the anticipated correlation between the internal
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Figure 4.8: (a) Histograms, (b) original (dashed) and corrected (continuous) nor-

mal probability distributions of the Young’s modulus estimations by nanoin-

dentations for a sample of Set 1.
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Set 1 Set 2 Set 3
0

20

40

60

E
[G

P
a]

Figure 4.9: Young’s modulus of the four-hole cylinders of the three sets of samples

evaluated by nanoindentations.

surface area of the sample, measured using BET adsorption, and the pore volume.

4.7 FESEM

The field emission scanning electron microscopy (FESEM) results have been pro-

vided by Dogan Ozkaya (Johnson Matthey). Bars and fragments from the three

sets of bars were analysed using a Zeiss ultra 55 field emission electron microscope

equipped with in-lens secondary electron and backscattered detectors. The samples

were carbon coated prior to analysis to provide a conductive layer for charge dis-

sipation. The high-resolution low-accelerating voltage imaging was performed with

an accelerating voltage of 1.6 kV, aperture of 20-30 µm and a working distance of

2-3 mm. The low-resolution general imaging was performed with an accelerating

voltage of 20 kV, aperture of 30-60 µm and a working distance of 7-8 mm

The field emission scanning electron microscopy results show that the difference in

the microstructure within the samples is not significant. The FESEM analyses of the

fragments from the the bending tests, show some differences in the microstructural

behaviour of the three sets of bars. The fractured sample from Set 1 exhibits mostly
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Figure 4.10: (a) Pore size distributions from Hg intrusions on a sample from Set 1

(black), Set 2 (blue) and Set 3 (red) and (b) the correlation between the BET

area and the pore volume from Hg intrusions.
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inter granular fractures, as shown in Figure 4.11(a). The fragments from Set 2

and 3 on the other hand reveal predominantly intra granular fractures, as shown in

Figure 4.11(b) and 4.11(c) respectively, indicating stronger grain boundaries.

One sample from each set of bars was also polished to reveal the full cross section to

investigate the homogeneity of the microstructure within the samples by comparing

the pore size distributions at two sides and in the centre of the cross section. Even

though Figure 4.12 shows that the microstructure features within the samples appear

to be relatively consistent, this analysis was considered inconclusive. Moreover, due

to limitations in the pixel size of the images from the FESEM, the analysis was

carried out at scale that was not representative of the actual pore size. The minimum

size reported is around 1 µm and the average pore size of these samples is about 0.1

µm.

4.8 Three-point bending test

4.8.1 Experimental setup

The three-point bending test-fixture consists of two supports and a loading platen

mounted on instrumented test rig. The parallel pair of semi-cylindrical supports

were 20 mm apart and mounted on a monolithic cylinder of aluminium alloy that

was placed centrally on the stationary base of the test rig (Instron model 5984 elec-

tromechanical test frame). An opposing semi-cylindrical loading platen was mounted

centrally on the vertically-moving crosshead of the test rig, below the load-cell, as

shown in Figure 5.1(a). The experiments were performed in displacement control,

with a crosshead velocity of 0.5 mm/min. The test rig control software (Instron

Bluehill 3) recorded load and displacement during each experiment, at 0.1 second

intervals. The experiments were recorded with a high-speed video-camera (Vision
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(a)

(b)

(c)

Figure 4.11: FESEM images of the fracture surfaces of bar fragments showing

the microstructural failure mode for the three sets of samples. The scanning

of the fracture surface of a sample from Set 1 shows a fracture surface with an

inter-granular morphology (a), whereas the images from Set 2 (b) and Set 3 (c)

show fracture surfaces (below) and the external surface of the sample (above),

without visible grain boundaries.
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Figure 4.12: (a) Comparison of the microstructure within the thickness of the

sample, respectively in black, blue and red bars and the corresponding FESEM

images of the (b) left, (c) centre and (d) right portions of the cross section of a

sample from Set 1.
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Research Phantom v12.1 monochrome, maximum capture rate 6000 frames/second

at full-resolution of 1280 by 800 pixels, fitted with a 100 mm macro lens). The opti-

cal axis was set normal to the speckled side-face of the specimen. A high-speed video

camera was used in order to potentially capture the fracture event at the end of the

test, and to allow for the possibility of higher rates of loading in future experiments

without a change of equipment. The high-speed capability is not required for this

optimisation methodology, however, the monochrome 12-bit (4096 intensity levels)

sensor of this camera is well suited to digital image correlation, compared with (for

example) a 24-bit (3 x 256 levels) colour sensor.

4.8.2 Flexural strength

Before failure, according to the Euler-Bernoulli beam theory, a homogeneous bar

being tested in three-point bending test, experiences the maximum tensile and com-

pressive stress respectively in its bottom and top surfaces, in the exact middle of

the two supports. Since the tested material are assumed to fail under tensile stress

before failing under compression, a fracture will initiate from the bottom side when

the tensile stress reaches the value of the tensile strength of the tested material. By

solving the Euler-Bernoulli differential equation it is possible to express the maxi-

mum tensile stress experienced by the specimen as a function of the applied load

and moreover infer the tensile strength and the Young’s modulus from the applied

load and the beam deflection. The ISO 14704:2016 Section 8 suggests to evaluate

the flexural tensile strength (ft) with equation (4.2), where s is the span between the

two supports and H is the height and width of a bar with a square cross-section. As

mentioned before, the stress field induced in the specimen by the controlled bound-

ary conditions not only restricts the area where the fracture can initiate, but also

constrains the opening mode when the fracture is propagating. In fact, neglect-

92



4.8: Three-point bending test

Set 1 Set 2 Set 3
0

100

200

300

f t
[M

P
a]

Figure 4.13: Averages and standard errors of the flexural strength obtained with

three-point bending tests for the three sets of bar samples.

ing the possible effects of microscale inhomogeneities and anisotropies, the material

points that are failing experience a pure horizontal extension, which is normal to the

plane of the crack, in a mode I opening fashion. The averages and standard errors

of the flexural strengths obtained with three-point bending tests for the three sets

of bar samples are reported in Figure 4.13.

ft =
3FMaxs

2H3
(4.2)

4.8.3 Elastic modulus

The European Standard EN 843-2:2006 Section 4 describes the standard methodol-

ogy to determine the Young’s modulus of monolithic ceramics at room temperature.

These international guidelines refer to samples that are required to be big enough

to employ spans greater than 40 mm. Methods A.1 suggests to record the force-

deflection curve during three-point bending tests and employ equations (4.3) to

calculate the Young’s modulus, where s is the span between the two supports, H is
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the height and width of a bar with a square cross-section and ∆F and ∆w are the

recorded change in force and deflection respectively.

E =
∆Fs3

4 ∆wH4
(4.3)

In some cases, the specimens that are to be tested are too small to allow for a

40mm span, because of either technological or economic constraints, and this was

the case of the pellets employed in the study. Since the deformations of highly stiff

materials are inevitably small and therefore not easy to determine with a high level

of confidence, the estimated Young’s modulus with Methods A.1 can be significantly

affected by experimental errors. Moreover, Methods A.2 and A.3 from Section 4 of

EN 843-2:2006 cannot be applied either, because the specimens are too small to allow

a displacement transducer or strain-gauge to be accurately installed and employed

with a high level of confidence. As has been introduced in Section 2.1, this gave an

opportunity for the development of a more reliable method for the Young’s modulus

evaluation. This optimisation methodology is described in the next sections and the

results are then compared with the ones obtained from other standard tests.

4.8.4 Digital image correlation analysis

Prior to testing, one side-face of each specimen had a random speckle pattern ap-

plied. Digital image correlation analyses were performed on the image sequences

recorded by the high-speed camera, using commercially available software (LaVi-

sion DaVis/Strainmaster)LaVision Inc. (n.d.). For each experiment, each image in

the sequence was compared with the same initial or reference image representing

the undeformed specimen. The Region Of Interest (ROI) was the full width of the
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4.8: Three-point bending test

image (1280 pixels) by typically 220 pixels high, depending on the height of the

specimen. Since each image was a single view of the side-face of the specimen, only

in-plane deformations of the ROI were produced as an output of the DIC analysis.

The primary output of a 2D DIC analysis is a matrix with the vertical (dv) and

horizontal (dh) displacement values at each location in a regular grid, based on the

initial pixel locations or indices of the reference image. For these experiments, the

beam specimens were aligned parallel to the image edges, so each x value represented

a horizontal position within the specimen and each y value represented a vertical

position within the height of the specimen. The dv and dh data for each image was

exported from the LaVision software and further analysed using MatlabThe Math-

Works Inc. (n.d.) for the deflection profile calculation and the Young’s modulus

optimisation.

4.8.5 Full deflection profile calculation

The samples were prepared and tested as described in the Methods sections. The

displacement field of the beam (Figure 4.14) is discretized in a regular grid and

for each frame the DIC software calculates the vertical (dv) and horizontal (dh)

displacement of each cell in the grid. The mean vertical displacement of the bar along

the horizontal axis w’(x) is calculated for each frame by averaging the displacement

of the corresponding cells through the height of the beam, as shown in equation

(4.4). The averaged vertical displacement of the beam is then corrected by fixing

the vertical displacement of the left w(xl) and right w(xr) support to zero. This is

done by applying to the averaged vertical displacement the rigid translation C and

rotation ϕ, as defined in equations (4.5) and schematised in Figure 4.18. The effects

of the rotation on the horizontal axis can be neglected since they are much smaller

than the cell discretisation. The corrected deflection profile can be calculated for
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(a)

(b) Vertical displacement [μm]

(c) Horizontal displacement [μm]

Figure 4.14: (a) An example of the frames used to extrapolate the displacement

field of the beam during a three point bending test, (b) the vertical displacement

field dv and (c) the horizontal displacement field dh before failure.

each frame of the recorded experiment with equation (4.6) and an example is shown

in Figure 4.16.

w′
i(x) =

∑N
k=0 dv(x, yk)

N
(4.4)

⎧⎪⎪⎨
⎪⎪⎩

Ci = w′
i(xl)

φi = arctan
w′i(xr)−Ci

xr−xl

(4.5)
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(a)

(b)

(c)

(d)

Figure 4.15: (a) Sample configuration before (black) and during the test (red).

Schematic representation of the average vertical displacement correction by ap-

plying a rigid vertical translation (b) and rotation (c) to obtain the corrected

full deflection profile (d) of each frame.
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Figure 4.16: Typical sequence of deflection profiles before failure (grey). In par-

ticular, the profile at 20% (dashed black), 60% (black) and 100% (dashed red)

of peak load are shown.

wi(x) = w′i(x)− [Ci + (x− xl) ∗ sinφi] (4.6)

4.8.6 Young’s modulus optimisation

The sequences of beam deflection profiles were synchronised with the load histories

recorded by the test rig transducer, resulting in a value of applied load for each

profile. Assuming that the beam cross sections remain planar and normal to the

deformed axis of the beam, the theoretical vertical displacement profile (wEB) asso-

ciated with the applied load can be express as a function of the Young’s modulus

(E) of an equivalent linear-elastic isotropic and homogeneous beam with a defined

geometry. In equation (4.7) the theoretical vertical displacement is defined as a

function of the location (x) and E, whereas the moment of inertia (I) and the span

between the two supports (s) are two constants that are fixed with the geometry

of the tested beam. A single value of Young’s modulus can then be determined for
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4.8: Three-point bending test

each frame, index=i, by minimising the sum of the squares of the differences be-

tween the theoretical and the corresponding experimental deflection (least squares)

along the entire length of the beam between the supports. By repeating the min-

imisation shown in equation (4.8) for each frame, it is possible to determine a series

of intermediate Young’s moduli (Ei) that best represent the deflection of the beam

for each applied load at each frame. These intermediate moduli can then be used to

define a single value of Young’s modulus that best represents the linear stress-strain

relationship for the tested material over any selected range of applied load. The

range between the 20% and 80% of the peak load was selected to define a single

value of Young’s modulus for each specimen. The intermediate moduli were there-

fore converted to their corresponding values of deflection at mid-span and a linear

least squares regression was performed on the variable of deflection for the applied

load in the defined range. A value of Young’s modulus was then determined for

each specimen with equation (4.9), where H is the height of the sample and m is

the slope of the corresponding line of best fit.

wEB(x,E) =


−Px(4x2−3s2)

48EI
, for 0 ≤ x ≤ s

2

P (x−s)(s2−8sx+4x2)
48EI

, for s
2
< x ≤ s

(4.7)

N∑
k=0

(wEB(xk, E)− wi(xk))2 = min => E = Ei (4.8)

E = m
s3

4 H4
(4.9)
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4.8.7 Uncertainty and optical distortions

The proposed approach relies on the assumption that the plane of the target is not

displacing significantly in the direction normal to that plane, that is, toward or away

from the camera, which would falsely indicate expansion or contraction respectively.

For these experiments, this can be said to be true, since the maximum in-plane dis-

placements in the direction of loading, which would be dominant, were of the order

of only 1 or 2 pixels. To estimate the error for a possible optical distortion, an inde-

pendent experiment was considered. A constant vertical displacement was applied to

an identical speckle panel connected to the top punch of the three-point bending rig,

as shown in Figure 4.17(a). The experiment was performed in displacement control,

with a cross-head velocity of 0.4 mm/sec that on average corresponds to a vertical

displacement of 0.8 µm per frame. Since the maximum vertical displacement before

correction experienced on average by the bars before failure was generally 30-40 µm,

depending on the tested sample, e.g. in Figure 4.14, the error was conservatively

evaluated over 100 frames that correspond to a total vertical displacement of 80 µm,

which is twice the typical displacement range of the tested sample. The same proce-

dure applied to the beam samples was employed to calculate the horizontal profile of

the vertical displacement of the speckle panel. In Figure 4.17(b) the corrected beam

deflection is shown for each considered frame. Since the panel is subjected to a rigid

vertical translation with no deflection, the estimate error for each location of the

deflection profile calculated with this optimisation methodology can be defined as

the maximum absolute value of the deflection profile in each frame. The estimated

error, as shown in Figure 4.17(c) (dashed line), tends to a value between 0.1 and 0.2

µm. This error is too conservative when the deflection profile is employed for the

calculation of Young’s modulus. In this case all the locations of the deflection profile

are instead compared to the theoretical deflection in the optimisation process. The

estimate of the deflection error in this case can then be defined as the maximum
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deflection (halfway between the two supports) of the best interpolation curve given

by the Euler-Bernoulli theoretical deflection profile. In this case the estimated error,

as shown in Figure 4.17(c) (continuous line), is lower than the previous. The max-

imum value of this estimated error tends to 0.1 µm and corresponds to a vertical

displacement similar to the maximum before failure in the actual test. Since the

Young’s modulus for any applied load is a linear function of the maximum (middle)

value of the beam deflection profile, and that this value varies between 15 and 20

µm, depending on the tested sample, the relative error caused by optical distortions

on the last estimates of the Young’s modulus calculated before failure is between

0.5% and 0.7%.

4.9 Precision and accuracy: a comparison with

the standard flexural methods

In the context of ceramic samples, the European Standard EN 843-2:2006 Section 4

describes the standard methodology to determine the Young’s modulus of monolithic

ceramics at room temperature. These international guidelines refer to samples that

are required to be big enough to employ spans greater than 40 mm.

In some cases, the specimens that are to be tested are too small to allow for a 40mm

span, because of either technological or economic constraints, and this was the case

of the pellets used in the present work. Moreover, Methods A.2 and A.3 from Section

4 of EN 843-2:2006 cannot be applied to this type of specimens, because they are too

small to allow a displacement transducer or strain-gauge to be accurately installed

and employed with a high level of confidence. In summary, some specimens that

need testing are too small for the standard method to be applied.

Digital Image Correlation (DIC) can be employed to determine full-field displace-
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Figure 4.17: (a) Beam configuration before and after applying a rigid body motion.

(b) Optical distortion in the horizontal profile of the vertical displacement of the

speckle panel during the experiment. (c) The trend of the estimated maximum

errors for each frame.
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ments, deformations and strains from sequences of images. The use of DIC to obtain

equivalent experimental data to that which can be obtained using conventional phys-

ical transducers (for example, the vertical displacement of three discrete points on

the lower surface of the beam or the span-wise strain at mid-span) is not a standard

method that is widely adopted for three-point bending tests. However, it is possible

to use sets of DIC data obtained in this manner to calculate the Young’s modulus

using the algorithms in EN 843-2:2006 Section 4, equations (1) and (6).

What follows is a comparison between the proposed methodology and the standard

approaches suggested in EN 843-2:2006, employing both displacement and strain

data extracted at discrete locations from the full-field DIC deformation data. As

shown in Figure 4.18(a), we compare the following:

• The proposed methodology;

• Three virtual displacements (mid-span and at both supports, three sets placed

at different heights on the viewed surface of the beam;

• Two virtual strain gauges placed close to the lower surface of the beam (cor-

rected to indicate a value of strain on the lower surface).

For the purposes of this comparison, data sets from a single representative bending

test have been used. This allows to make a comparison based on the different

methodology, effectively excluding the impact of quality variations that are normally

obtained by comparing different sets of results. The algorithm suggested in EN

843-2:2006 for displacement transducers is equivalent to calculating the Young’s

modulus by Euler-Bernoulli bending theory, but using only the maximum vertical

displacement at mid-span relative to the average vertical displacement at the two

supports, as shown in Figure 4.18(b).
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The proposed method employs the entire vertical displacement data set, covering

the whole observed surface of the beam, in order to obtain the full deflection profile

for the specimen. This deflection profile is corrected to eliminate rigid-body transla-

tions and rotation, then analysed to determine the Euler-Bernoulli deflection curve

of best fit, as shown in Figure 4.18(b). By repeating this process for each frame, it

is possible to determine a series of intermediate Young’s moduli that best represent

the deflection of the beam for each applied load at each frame. These intermedi-

ate moduli can subsequently be used to define a single value of Young’s modulus

that best represents the linear stress-strain relationship for the tested material. The

employment of a larger set of displacement data for the determination of the beam

bending and of a more sophisticated method to account for the rigid-body transla-

tions and rotation are the key features that allow the proposed method to have a

higher level of precision compared to the standard method with three displacement

transducers.

In order to compare the levels of precision of the two methodologies, the interme-

diate Young’s moduli determined using the proposed methodology were converted

back to their corresponding values of deflection at mid-span, for each applied load.

In this way it is possible to compare the force-deflection curve from the proposed

methodology (i.e. full-field) to those obtained from the DIC-equivalent standard

method based on sets of virtual displacement gauges placed at different heights of

the beam. The values of force and deflection at 20% and 80% of the peak load

were then used to estimate the Young’s modulus from the three curves following the

suggested procedure in the EN 843-2:2006 Section 4.

The force-deflection curves shown in Figure 4.19 suggest that the standard method

can be sensitive to the choice of location of the virtual gauges on the surface of

the beam, in particular to whether the virtual gauges are located near the inner or

outer arc of the deflecting beam. This variability in the results from the standard
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4.9: Precision and accuracy: a comparison with the standard flexural methods

method indicates a lower precision, as it generates in our examples three values of

Young’s modulus that differ by more than 3%, with a lower value obtained in the

location of lowermost positions, which are analogous to the transducer positions

indicated in the EN 843-2:2006 Section 4. In the supporting reference for the EN

843-2:2006Morrell et al. (1999) it is noted that the standard quasi-static flexural

method generally produces lower values than other standard methods on ceramic

materials. Instead, the proposed methodology employs the data from the whole

surface of the beam, from the inner to the outer arc, eliminating the variability

due to the choices of the virtual transducer locations. The proposed methodology

generates a higher Young’s modulus than those determined by virtual displacement

gauges (using DIC data) and adopting standard calculation methods. This suggests

that the proposed methodology achieves higher accuracy and may be removing a

potential bias towards lower values that is likely to be imposed by the standard

quasi-static flexural method.

In Figure 4.20(a) the force has been normalised with the peak load and the data

range has been limited to 20% to 80% of the peak load (within the 10% - 90% range

indicated by EN 843-2:2006). Also plotted are the trend lines as determined by the

standard analysis method, which only considers values at two operator-selected eval-

uation points (for example, 20% and 80% of the peak load). A quantification of the

level of precision can be obtained by calculating the sum of squared residuals (SSR)

between values indicated by the linear trend and the actual deflection data, which

represents the measurement deviation from the value indicated by that trend. The

proposed full-field methodology has a lower SSR (tabulated within Figure 4.20(a),

4.28 against 5.51, 7.60 and 8.10 µm2), and therefore a higher level of precision.

The intermediate Young’s moduli from the proposed methodology were also used

to back-calculate the corresponding values of horizontal strain on the lower surface

of the specimen at mid-span for each value of applied load. Comparable values of
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horizontal strain were also extracted directly from the full-field DIC deformation

data, at two discrete locations just above the lower edge of the observed surface.

These were each corrected to an equivalent value at the lower surface. The result-

ing force-strain data (from 20% to 80% of peak load) is plotted in Figure 4.20(b).

The values of force and strain at 20% and 80% of peak load were then used to

estimate the Young’s modulus, as suggested in EN 843-2:2006 Section 4. Again, a

quantification of the level of precision can be obtained also from the calculation of

the SSR between values indicated by the linear trend and the actual strain data.

The proposed methodology based on full-field DIC has a SSR that is two orders

of magnitude smaller than the ones obtained with the standard method (tabulated

within Figure 4.20(b) 2.07 10−8 against 1.44 10−6, and 2.08 10−6), and therefore a

much higher level of precision.

This comparison has been carried out for an experiment that was recorded with

state of the art equipment and therefore only high resolution images were analysed

using DIC. It is reasonable to assume that the improvements in precision of the

proposed methodology would be more significant for lower resolution images because

the entire deformation data set (support to support and over the full height) has

been used rather than much smaller subsets of that data representing just a few

discrete locations.

4.10 Comparison of the experimental results

This optimisation methodology was applied to the bending test recordings of 15 sam-

ples that were sintered, as described in Methods, to obtain three grades of porosity,

with Young’s moduli expected to be in the 60-250 GPa range. In Figure 4.21 the

estimate of the Young’s modulus of the tested samples is plotted for each frame

as each three-point bending test progresses. The optimisation becomes stable after
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(a)

(b)

Figure 4.18: (a) Representation of the points from which the vertical displace-

ments are calculated with a standard method using three different sets of vir-

tual displacement gauges (orange squares, blue triangles and red crosses) and

the area used with the proposed methodology (black dashed line). The two ar-

rows (green and magenta) represent the locations of two virtual strain gauges.

(b) Schematic representation of the different determination of the vertical dis-

placements with the standard method from three data points at two different

locations (yellow, blue and red) and with the proposed methodology from the

best interpolation of the full deflection profile (black).
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Figure 4.19: Comparison of the force-deflection curves calculated with the stan-

dard method from the three sets of three data points (orange, blue and red) and

with the proposed methodology from the best interpolation of the full deflection

profile (black).
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Figure 4.20: (a) Subset of the data shown in Figure 4.19 with force as a percentage

of the peak load and limited to the range 20% and 80%. The corresponding

linear trends (grey dashed lines) obtained from the Young’s modulus obtained

from the two curves at 20% and 80% of the peak load are also plotted for

each set. (b) Comparison of the force-strain curves from the two virtual strain

gauges and from the proposed methodology. The corresponding linear trends

(grey dashed lines) obtained from the Young’s modulus extrapolated from the

three curves at 20% and 80% of the peak load are also reported in the graph.
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typically forty frames (about 20-30% of the peak load) due to the fact that in the

first phase of the experiment, i.e. when the punch makes contact with the sample,

the load and deformations are of very low magnitude and more significantly affected

by noise in the signal from the transducer and errors in the DIC analysis. The

distribution of results is consistent for the three sets of bars and the mean values

and standard errors are reported in Table 4.3.

Bars from the three sets of samples were also tested with ultrasonic techniques. As

explained in the previous sections, the velocity of the longitudinal waves propagat-

ing through the sample can be expressed as VL = 2L
∆t

. The relation between density

(ρ), Lamé constants (λ and µ) of the specimen and the longitudinal wave velocity is

VL =
√

λ+2µ
ρ

[Timoshenko (1970)].This relation is only valid for a wave propagating

through a homogeneous elastic medium.

The microstructure of the three sets of samples was therefore investigated with Hg

intrusion, BET adsorption and FESEM. Figure 4.10(a) shows that the dominant

pore diameter for Sets 1-3 is in approximately 100 nm. There is a slight decrease in

the mean pore diameter as the firing temperature increases. Figure 4.10(b) shows

that the porous volume available for Hg intrusion decreases with increasing firing

temperature. Figure 4.10(b) also displays the anticipated correlation between the

internal surface area of the sample, measured using BET adsorption, and the pore

volume. The FESEM results show that the difference in the microstructure within

the samples is not significant. The FESEM analyses of the fragments from the

the bending tests, show some differences in the microstructural behaviour of the

three sets of bars. The fractured sample from Set 1 exhibits mostly inter granular

fractures, as shown in Figure 4.11(a). The fragments from Set 2 and 3 on the other

hand reveal predominantly intra granular fractures, as shown in Figure 4.11(b) and

4.11(c) respectively, indicating stronger grain boundaries.

A 25 MHz ultrasonic transducer was employed for the tests and the measured lower
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Figure 4.21: Young’s modulus optimisation from full displacement profiles of the

bars of Set 1 (light grey), Set 2 (dark grey) and Set 3 (black).

wave velocity measured was above 5,000 m/s. Therefore the wavelength of the

transmitted waves is above 200 µm. The high ratio between the wavelength and

the average pore size of the specimens (0.1 µm) allows to trait the samples as

homogeneous media with respect to the transmitted ultrasonic waves.

One specimen from each set of samples was also tested with nanoindentations. For

each bar, one hundred indentations have been performed for statistical correction to

minimize the experimental error. The histograms and normal probability distribu-

tions of the Young’s modulus were estimated with one hundred nanoindentations on

the surface of a sample. A correction was performed by excluding the experimental

results that were 50% either lower or higher than the average value of the entire

distribution. The results from the indentations on a sample from Set 1 are shown

in Figure 4.8.

The distributions of the extrapolated Young’s moduli from the ultrasonic tests and

nanoindentations are in agreement with the ones from this optimisation method-

ology and the mean values and standard errors are also reported in Table 4.3. A

comparison of the results from the three tests is also shown in Figure 4.22.
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Figure 4.22: Comparison of the Young’s moduli from this optimisation methodol-

ogy (black), ultrasonic tests (blue) and nanoindentations (red).

Table 4.3: Mean values and standard errors of the Young’s moduli from this

optimisation methodology, ultrasonic tests and nanoindentations.

Optimisation method Ultrasonic test Nanoindentations
Set [GPa] [GPa] [GPa]

1 71.67 ± 2.66 65.45 ± 0.83 63.36 ± 1.59

2 143.04 ± 2.45 136.22 ± 12.98 158.34 ± 3.11

3 232.57 ± 3.31 209.11 ± 10.24 218.02 ± 7.92
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4.11 Concluding remarks

As has been described in Section 1.2, the final goal of this research project is to

achieve a better understanding of different pellet shapes and their inherent mechan-

ical properties by means of numerical simulations, the findings of which could be

of industrial interest by contributing to improvements in the performance of cat-

alysts. To obtain realistic simulations of fracture propagation of ceramic pellets

it is essential to first characterise the mechanical properties of the material that

makes up the particles and to define all the numerical parameters that are needed

for their numerical simulations. These parameters have been described in Section

3.1.2.5, where their physical meaning has also been illustrated. As seen in Section

2.1, the mechanical characterisation of engineered high performance materials (e.g.

the ceramics employed as catalyst supports) is a crucial field in material science.

Since porous ceramics are generally considered to be brittle elastic [David (2015)],

Young’s modulus and tensile strength are two of the main parameters needed in

order to predict the mechanical behaviour of systems made from such components.

Among various testing methods illustrated and employed in this research (e.g. ul-

trasonic test, nanoindentations, mercury (Hg) intrusion, etc.), quasi-statically de-

termined parameters such the elastic modulus from uniaxial compression and the

flexural modulus, are generally preferred because they require more conventional

and simpler testing machineries and specimen preparation. In addition, they are

also generally considered to be more representative of in-service loading conditions

[Eissa & Kazi (1988)]. As discussed in more detail below, the ceramic materials

needed to be addressed in this study were found to raise numerous challenges when

it came to strength testing.

The material properties of small ceramic samples with different geometries (i.e.

prismatic bars, discs and cylindrical pellets with four holes) were needed in order to
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perform Solidity FEMDEM numerical simulations and thereby evaluate the likely

fracture behaviour of complex shaped pellets. These sets of samples provided by

Johnson Matthey were stated to have been sintered with an alumina powder and

procedures similar to the processes commonly employed to produce standard catalyst

supports used in industrial processes.

4.11.1 Cylindrical samples

The aim of using four-holed pellets under Brazilian disc type compression testing

is to compare a complex fracture evolution seen from experiment with that pre-

dicted by simulation and hence gain confidence that the code can capture the overall

strength reduction of having holes and to a reasonable extent capture the fracture

patterns. This was successfully achieved and the effect of the stronger and weaker

orientation of the hole positions with respect to the disc loading axis, as captured

by the simulations was described in Chapter 3. However, to set the correct material

properties for these simulation was somewhat problematic as ceramic properties can

easily vary with compaction pressure and firing temperature and it was therefore

necessary to perform new Brazilian disc indirect tensile tests on disc pellets with the

same compaction pressure and firing temperature as the four-holed pellets. As the

four-holed pellets were larger and used a different compaction die than the standard

discs used for the Brazilian test, two disc sizes were used to represent the possible

ceramic material strength variation. The two sets of values of the Brazilian indi-

rect tensile strength were then calculated and the results were reported in Section

4.3.1. The strengths of the three sets of cylindrical pellets with four holes were then

assumed to be equal to the average strengths of the corresponding sets of discs.

Since standard Brazilian disc tests do not provide an estimate of Young’s modulus,

the values for the four-hole cylindrical samples were inferred by nanoindentations
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and the results have been reported in Section 4.5. It is important to point out

that the values of strength and stiffness obtained for these cylindrical specimens

were lower than the expected values for similar porous alumina samples that have

been reported in the literature [Lam et al. (1994)]. Figure 4.23 summarises the

tensile strengths of the tested samples with different geometries. Arising from this

discussion, it is therefore proposed that further research needs to be undertaken

to understand how different die compaction and sintering tools can affect the final

material properties of catalyst pellets.

In this context, it is interesting to revisit the problem faced early in this research

when an estimate for the strength and stiffness parameters of the three prismatic

bars samples was also needed to proceed with the code validation campaign. The

challenges were to lead to the development of a new three-point bending testing

procedure.

4.11.2 Prismatic bars

Three-point bending tests were to be employed to evaluate the flexural strengths of

the three sets of bars and the results have been presented in Section 4.8.2. Prima

facie estimates of Young’s moduli of the three sets of bars could have also been eval-

uated with the same tests. As illustrated in Section 4.9, the European Standard EN

843-2:2006 Section 4 describes the standard methodology to determine the Young’s

modulus of monolithic ceramics at room temperature. These international guide-

lines refer to samples that are required to be big enough to employ spans greater

than 40 mm. The specimens that were to be tested in the present work were needed

to be representative of the small industrially used pellets and were therefore too

small to allow for a 40 mm span. Moreover, Methods A.2 and A.3 from Section 4

of EN 843-2:2006 could not be applied to these specimens, because they were too

114



4.11: Concluding remarks

Figure 4.23: Summary of the tensile strengths evaluated for the prismatic bars

(squares), small and big cylinders (circles) fired at different temperatures. The

results are compared with values of strength of alumna samples with similar

green densities and fired at the same temperatures that have been reported in

the literature [Lam et al. (1994)].
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small to allow a displacement transducer or strain-gauge to be accurately installed

and employed with a high level of confidence. In summary, the prismatic bars that

need testing were too small for the standard method to be applied. For this rea-

son a new methodology for the calculation of the full deflection profile from video

recordings of bending tests and an optimisation algorithm for the characterisation

of Young’s modulus were developed, as shown in Section 4.8.5 and 4.8.6. In order

to investigate the applicability of the new method, a quantification of the effects of

optical distortions and a comparison with other standard tests have been presented

in Section 4.8.7 and 4.9. The presented results not only confirmed that the method

could be used to estimate the stiffness of the specimens that were to be tested in

the present work, but also showed the capabilities of this procedure to evaluate the

Young’s modulus of small and highly stiff specimens with greater accuracy than

previously possible with bending tests, by employing all the available information

from the video recording of the tests. In other words, the proposed methodology

extends to this class of materials the possibility to evaluate both the elastic mod-

ulus and the tensile strength with a single mechanical test, without the need for

other experimental tools. Although the experiments that have been reported refer

to prismatic alumina bars, the methodology can be extended to cylindrical or other

extruded shapes or even samples with higher aspect ratio that exhibit brittle elastic

behaviours. Further research could also be undertaken to extend the method to

materials with more complex constitutive behaviour, such as specimens that exhibit

significant plastic deformations before failure. Current developments in the Solidity

FEMDEM code now allow the simulation of plastic deformations [Karantzoulis et al.

(2013)]. A possible avenue for future work could be to use the code to perform back

analysis of the plastic parameters needed in any given elastic-plastic constitutive

model to simulate the performance of structures with elastic-plastic components.
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FIVE

Fracture simulations

5.1 Introduction

The ultimate purpose of this research project is to investigate the fragility of porous

ceramic pellets under complex stress conditions due to the contact interactions be-

tween pellets in a container. In this chapter, the Solidity FEMDEM code has been

used to first investigate its capabilities in the simulation of fragmentation of porous

ceramic specimens, and then to investigate the structural strength of complex-

shaped pellets under simplified loading conditions. As pointed out in previous chap-

ters, it is important to recognise that cohesive zone joint element implementations in

FEMDEM codes have rarely, if at all, been applied to the modelling of fracture and

fragmentation for any materials other than geomaterials. The challenges of obtain-

ing suitable material properties to perform such simulations on porous ceramics were

presented in Chapter 2. Here, the focus is on proving through a series of validation
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studies that the method can also be applied to fracture of very strong (by compar-

ison with most geomaterials) porous ceramic bodies, ones that could be designed

to take on any shape suitable to deliver advantages for the catalyst performance.

The chapter therefore follows a progression from simple specimen geometry strength

tests towards more complex shape specimens, leaving the reader to infer that given

quite complex shapes sometimes resulting in mixed mode failures have been simu-

lated to an unprecedented accuracy, that the same methods will handle fracturing

in arbitrarily complex loadings and shapes as the stresses would be captured in just

the same way.

5.2 Three-point bending test simulation

As illustrated in the previous chapter, the three-point bending test consists of placing

a specimen on two supports and applying a vertical load in the middle of the two

supports by means of a punch. The apparatus in Figure 5.1(a) was used for the

experiments. A metal support with a 20 mm span is fixed to a steel cylinder. The

punch is a steel cross-head instrumented with a load cell and attached to an actuator.

The experiment is executed in displacement control, with a cross-head velocity of

0.5 mm/min or 0.0000084m/s

The three-point bending apparatus was mounted on actuators of different size, de-

pending on the velocity of the test. The testing machine can record forces and

displacements during the experiment. A second data logger is connected to the

force transducer that has been fixed on the cross-head. This makes it possible to

record the force at a higher frequency and to have a more consistent set of measure-

ments, for example when the experiment is performed with different actuators. The

experiment was also recorded with a high-speed camera, which enables the correc-

tion of errors in the force-deflection curve resulting from possible rig compliances
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5.2: Three-point bending test simulation

(a) (b)

Figure 5.1: (a) Photograph of the real three-point flexural test apparatus and (b)

tetrahedral mesh for the case of a 3D numerical simulation.

and localised plastic deformation at the points of contact. The high-speed video was

also employed to determine the fracture path and velocity of the fragments.

The experiment has been modelled with 2D and 3D FEMDEM simulations. In this

chapter only the 2D simulation results are presented. The boundary conditions and

the 2D triangular mesh are illustrated in Figure 5.12. The top of the punch is con-

strained with constant velocity. To reduce the run time of the numerical simulation,

the velocity of the constraint is set to 0.01 m/s. Although this loading rate is higher

than the one in the laboratory experiment, it induces a quasi-static response in the

bar as there is no significant difference between the force applied by the punch and

the one applied by the two constraints. To further reduce the calculation time,

when the simulation starts, the punch is in contact with the specimen and for this

reason an initial velocity equal to the one applied to the constraint is imposed to

the whole punch. The discretisation of the punch and constraints is refined only
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Figure 5.2: (a) Boundary conditions for the three-point flexural experiment and

triangular mesh of its 2D numerical simulation. (b) Detail of the specimen

discretisation and c) corresponding frame from the high-speed video.
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5.2: Three-point bending test simulation

where the contact occurs so as to better represent the geometry of their contours

without considerably increasing the computational burden. Since fractures are only

allowed within the joint elements, the specimen is discretised with an unstructured

fine mesh to better represent both the de-bonding stress during the opening of the

crack and the fracture path along the element boundaries. The total number of

elements employed in the model is around 20,000. The material properties used to

describe the three-point bending apparatus are Es=210 GPa, νs=0.3 and ρs=7850

kg/m2, where Es is the Young’s modulus, νs is the Poisson’s ratio and ρs is the den-

sity. The material properties used for the specimens vary depending on the porosity

of the tested sample. Figure 5.3 shows the simulation results of a bar from Set 1,

with Ec=71.67 GPa, νc=0.17, ρc=2580 kg/m2, ft=78.1 MPa and GI=11 J/m2 (val-

ues of GI for similar porous alumina samples have been reported in the literature

[Lam et al. (1994)]). The frictional interaction between the rig supports and the

alumina sample is modelled using a Coulomb coefficient of friction equal to 0.01.

The mean and horizontal stress fields in the apparatus and in the tested specimen

respectively at different time lapses are reported in Figure 5.3. The simulated stress

field in the bar sample before failure agrees with the theoretical predictions of Euler-

Bernoulli beam theory. Equation (5.1) represents the relation between load and the

horizontal stresses experienced by the material point between the two supports in

the bottom side of the beam before failure. In Figure 5.5 this analytical solution

is compared with the horizontal stress calculated in the corresponding FEMDEM

simulation. In accordance with the analytical solution, the horizontal stress that has

been extrapolated from the simulation increases linearly until it reaches the value

of the tensile strength (78 MPa) and then, when the fracture starts to propagate, it

drops to zero. The numerical model slightly overestimates the displacements (and

thus underestimates the stiffness) due to the joint element discretisation Lorentz

(2008). This leads to a slightly lower gradient for the numerical curve in Figure 5.5
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Figure 5.3: Stress field in a 2D numerical model showing a crack propagating at

different times during a three-point flexural test: the mean stress for each time

lapse is shown on the image of the apparatus on the left and the horizontal

stress is shown on the magnified beam on the right.
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5.2: Three-point bending test simulation

Figure 5.4: Comparison between the model of the specimen after failure in the 2D

numerical simulation and a frame from the high-speed video recording of the

actual experiment.

and an overestimation of the simulated bending profile, as shown in Figure 5.7.

This aspect relating to the potential for a numerically induced slightly reduced

stiffness being caused by the use of discontinuous joint elements needed to capture

fracture paths will be discussed in Section 5.3 in more detail. In Figure 5.6 the

load-deflection curve calculated in the numerical simulation is compared with the

experimental results. The maximum value for the contact force is slightly higher in

the numerical results than in the theoretical prediction.This can be caused by the

mesh elements not being perfectly aligned across the vertical plane where the stress

field develops its maximum tension. The fracture path produced in the numerical

simulations is close to the one observed in the experiments as shown in Figure 5.4.

σh =
3s

2H3
F (5.1)
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Figure 5.5: Comparison of the applied load and the horizontal stress experienced

by the material point as sampled centrally between the two supports just within

the bottom side of the beam in the 2D numerical model (red) and in the corre-

sponding analytical solution (black).
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Figure 5.6: Comparison of the load-deflection curve calculated in the numerical

simulation (red) and obtained from a test on a bar from Set 1 (black).
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Figure 5.7: Comparison of the deflection profile calculated in the numerical simu-

lation (red) and obtained from a test on a bar from Set 1 (black).

5.2.1 Uniaxial compression simulations

The uniaxial compression test apparatus was mounted an actuators to apply a uni-

axial load, as described in the previous sections. The loading plates and the tested

samples have been modelled with 2D simulations. Both tests and simulations have

been performed on discs with and without holes, the mesh and boundary conditions

are shown in Figure 5.8(a) and 5.11 respectively. The experiment was also recorded

with a high-speed camera to determine the fracture path and velocity of the frag-

ments. The top loading plate is constrained with constant velocity. The velocity

of the constraint is set to 0.01 m/s, which is the loading rate that was set in the

laboratory experiments. To reduce the calculation time, when the simulation starts,

the top plate is in contact with the specimen and for this reason an initial velocity

equal to the one applied to the constraint is imposed on the loading plate. The

specimen is discretised with an unstructured fine mesh to correctly represent both

the de-bonding stress during the opening of the crack and the fracture path along

the element boundaries. The total number of elements employed in the simulations

of discs with and without holes is about 37,000 and 53,000 respectively. The ma-

terial properties used to describe the loading plates are Es=210 GPa, νs=0.3 and
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ρs=7850 kg/m2, where Es is the Young’s modulus, νs is the Poisson’s ratio and ρs is

the density. The material properties used for the specimens vary depending on the

porosity of the tested sample. Figure 5.8 shows the simulation results of a disc with

no holes from Set 1, with Ec=40.05 GPa, νc=0.17, ρc=2310 kg/m2, ft=50.7 MPa and

GI=0.2 J/m2. The strength and stiffness of the prismatic samples were reasonably

aligned with values of energy release rate for the three sets of bars were available

in the literature [Lam et al. (1994)]. Since a value of fracture toughness was not

available for the cylindrical samples (the different tools employed for the sintering of

these pellets generated weaker sets of specimens compared to the sets of prismatic

bars), in this case values GI have been optimised for the three sets of sample to

obtain the correct failure mechanism for the uniaxial compression of a disc. In other

words GI have been selected from the simulation showing a fracture initiating from

the centre of the disc and propagating to the two contact points. The same values

of energy release rate have been used for the simulations of uniaxial compression of

pellets with four holes.

The interaction between the steel and the alumina sample is modelled using a

Coulomb coefficient of friction equal to 0.01. Figure 5.8(b) shows the horizontal

stresses reaching the value of tensile stress (red) in the centre of the disc before

failure. After that point, a fracture initiates from the centre and propagates dia-

metrically to the two points of contacts, as shown in Figure 5.8(c). While the fracture

reaches the two points of contact, also the applied load drastically decreases and the

two halves of the disc fragment under the action of the two loading plates as shown

in Figure 5.8(d). The simulation results can be compared with two frames obtained

from the high-speed video recordings of the test of a disc with no holes from Set

1 shown in Figure 5.8(e) and 5.8(f). Assuming an elastic response of the disc and

that the applied load is transmitted by each loading plate on a flat 200 µm portion

of the disc surface (α = 0.6◦), an approximate solution for the relation between the
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plate displacement and applied load during the test can be defined in equation (5.2)

[Wang et al. (2004)].

d = − 2P

π E t
[(1− µ)− log(1 +

4

sin2(α)
)]

α

sin(α)
(5.2)

In Figure 5.9 the load-displacement curve calculated in the numerical simulation

is compared with the approximated experimental curve. The maximum value for

the contact force is slightly higher in the numerical results than in the theoretical

prediction. This could be because the mesh elements are not all perfectly aligned

across the vertical plane where the stress field develops its maximum tension.

Numerical simulations of the uniaxial compression tests on the disc with four holes

have been carried out loading the specimens in different orientations, i.e. with

respect to the angles between the line of the contact points and the symmetry

axes of the discs created by the four hole locations. When the two hole centres

lie directly in line with the loading points, this is the weak orientation. Loading

orientations at intervals of 5◦ have been considered between the weak (0◦) and

the strong (45◦) orientation configuration of the four-hole disc. Figure 5.10 shows

the load-displacement curves obtained from uniaxial compressive test simulations

on the four-hole specimens from Set 1. The load that makes the first fracture

initiating within the pellet (i.e. when the first joint element reaches breakes) is

determined by inspecting the fracture walls in the numerical results. This value of

load is generally a few order of magnitude smaller than the loads related to the post-

failure fragmentation precess. Figure 5.11 and 5.12(a) respectively, show boundary

conditions and the the stresses reaching the value of tensile stress (blue) in the top

right and bottom left hole. After that point, almost simultaneously, two fractures

initiate and propagate towards the two points of contact with the loading plates,
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and at the same time two new fractures propagate horizontally between the two top

and two bottom holes. While the fracture reaches the two points of contact, also the

applied load decreases and the two bigger fragments of the disc can break under the

action of the two loading plates. The simulation results can be compared with two

frames obtained from the high-speed video recordings of the test of a disc with four

holes from Set 1 shown in Figure 5.12(b) and 5.12(c). The similarity is remarkable,

consider for example the shape of the central piece broken out when the four holes

are all joined by fractures as seen in the last frame.

In Figure 5.14 the load at failure calculated in the numerical simulation for the dif-

ferent orientations is compared with the experimental data. The values of load have

been normalised with respect to the strength of an equivalent cylinder of identical

geometry without holes. The load required to break the samples from Set 3 in their

strong configuration exceeded the capabilities of the experimental apparatus used

in this study. The numerical results are in good agreement with the experimen-

tal data and provide a relation between the loading orientation and the structural

strength of the four-hole discs which is consistent between different sets of samples.

The numerical results slightly overestimate the structural strength of the four-hole

discs at 0◦ and underestimate the strength at 45◦. This could be due to material

inhomogeneity defects in the real sample and difficulties in the definition of a precise

value of load at failure in the actual experiments.

5.3 Mesh sensitivity analysis

A mesh sensitivity analysis has been carried out for the three-point bending test

simulations. The sample bar from Set 1 was discretised with four meshes with four

different sizes: 1 mm, 150 µm and 100 µm, as shown in Figure 5.15. The force-

deflection curves calculated in the numerical simulations for the three mesh sizes
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(a) (b)

(c) (d)

(e) (f)

Figure 5.8: Simulation of the uniaxial compressive test on a cylinder without holes

from Set 1: (a) triangular mesh discretisation of the specimen and loading

plates. (b) Horizontal tensile stress field before failure reaching the value of

tensile strength in the centre of the disc. (c) Crack propagating from the centre

of the disc to the two sides and (d) splitting of the two sides of the disc and

post failure fragmentation. Two frames from the video recording of the uniaxial

compressive test on a cylinder without holes from Set 1: (e) before and (f) after

failure.
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Figure 5.9: Load-displacement curve for the uniaxial compressive test on a cylinder

without holes from Set 1: comparison between the numerical results (red) and

the the theoretical curve (black) calculated with equation (5.2).

are shown in Figure 5.16. The peak force at failure for the three simulations is

consistent with the experimental value and it is relatively insensitive to the mesh

size. Figure 5.16 and 5.17 show that the structural stiffness of the simulated bar is

strongly sensitive to the mesh size. This is due to the fact that when the element

size is reduced, the number of finite elements and joint elements is increased. Each

joint element allows a certain degree of relaxation of the constraint on the relative

displacements between adjacent finite element nodes and the larger the number

of joint elements, the higher is the artificial compliance that they generate. This

artificial compliance problem has been discussed in Lorentz (2008).

A mesh sensitivity analysis has also been carried out on the uniaxial compression

test simulations. The disc without holes from Set 1 has been discretised with four

different realisations of a 150 µm element size mesh (Figure 5.18) obtained with

three different values for the rigid rotation about the centre of the disc. With the

same process, four different realisations of a 100 µm element size mesh have also

been obtained, as shown in Figure 5.19. The load-displacement curves for the four

realisations of a 150 µm element size mesh are shown in Figure 5.20. Figure 5.21
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Figure 5.10: Load-displacement curves obtained from uniaxial compressive test

simulations on the four-hole specimens from Set 1 for orientation angles of: (a)

0◦ (red), 5◦ (blue), 10◦ (orange), 15◦ (green), 20◦ (magenta) and (b) 25◦ (red),

30◦ (blue), 35◦ (orange), 40◦ (green) and 45◦ (magenta).
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Figure 5.11: Boundary conditions for the Brazilian test of a ceramic pellet with

four holes diametrically compressed against two steel plate and triangular mesh

of its 2D numerical simulation.

shows the load-displacement curves for the four realisations of a 100 µm element

size mesh. The initial part of the plots show the load take up with displacement

is sensitive to the initial contact condition of the specimen with the two loading

plates, which varies in due to the rigid rotation of the mesh. This causes small

fluctuations in the load-displacement curves in Figure 5.21. The peak values of the

load for the 8 realisations of the 150 µm and 100 µm element size are consistent

with the theoretical peak load values also plotted in the figures, suggesting there

are no significant unintended anisotropies in stiffness and strength imposed by the

unstructured meshing tool employed.

5.4 Concluding remarks

The results that have been presented in Chapter 4, provided considerably more in-

formation than simply the material property parameters that were needed for the

numerical simulations. The availability of full deflection profiles in which the effects
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(a)

(b) (c)

Figure 5.12: a) Time-lapse numerical results immediately before failure and after

failure. Two frames from the video recording of the uniaxial compressive test

on a cylinder with four holes from Set 1: (b) before and (c) after failure.
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Figure 5.13: Numerical simulations of the the uniaxial compression tests on the

disc with four holes loaded in different orientations.
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Figure 5.14: Relation between the loading orientation and the structural strength

of four-hole pellets, normalised with respect to the strength of an equivalent

cylinder of identical geometry without holes. Experimental (dots) and numer-

ical (dashed lines) results for Set 1 (blue), Set 2 (black). Experimental results

for the weak orientation for Set 3 (red).
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(a)

(b)

(c)

(d)

Figure 5.15: Mesh sensitivity analysis for the three-point bending test simulations:

(a) triangular mesh discretisation of the test setup and (b) detail of the 1 mm

mesh for the bar. (c) Detail of the 150 µm mesh of the bar. (d) Detail of the

100 µm mesh of the bar.
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Figure 5.16: Mesh sensitivity analysis for the three-point bending test simulations:

comparison of the load-deflection curve calculated in the numerical simulations

for the 1 mm (blue), 150 µm (green), 100 µm (red) mesh and obtained from a

test on a bar from Set 1 (black).
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Figure 5.17: Mesh sensitivity analysis for the three-point bending test simulations:

comparison of the deflection profile calculated in the numerical simulations for

the 1 mm (blue), 150 µm (green), 100 µm (red) mesh and obtained from a test

on a bar from Set 1 (black).

136



5.4: Concluding remarks

Figure 5.18: Mesh sensitivity analysis for the uniaxial compression test simula-

tions: triangular mesh discretisation of the test setup for the 150 µm mesh.

The mesh is then rotated of 10◦, 20◦ and 30◦ to preform a comparison of four

different mesh realisations with the same element size.
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Figure 5.19: Mesh sensitivity analysis for the uniaxial compression test simula-

tions: triangular mesh discretisation of the test setup for the 100 µm mesh.

The mesh is then rotated of 10◦, 20◦ and 30◦ to preform a comparison of four

different mesh realisations with the same element size.
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Figure 5.20: Mesh sensitivity analysis for the uniaxial compression test simula-

tions: comparison of the load-displacement curve calculated in the numerical

simulations for the 150 µm mesh obtained with 0◦ (yellow), 10◦ (green), 20◦

(blue) and 30◦ (red) rotation of the original mesh of the disc. The numerical

results are compares to the theoretical curve given by the experimental results

for Set 1 (black).
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Figure 5.21: Mesh sensitivity analysis for the uniaxial compression test simula-

tions: comparison of the load-displacement curve calculated in the numerical

simulations for the 100 µm mesh obtained with 0◦ (yellow), 10◦ (green), 20◦

(blue) and 30◦ (red) rotation of the original mesh of the disc. The numerical

results are compared to the theoretical curve given by the experimental results

for Set 1 (black).
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of the rig self-compliance and bar specimen readjustments (due to geometrical im-

perfections and local crushing) were corrected, offered also a great opportunity to

investigate the Solidity FEMDEM code capabilities in the simulation of stiff porous

ceramic specimens. Solidity, previously named VGEST (virtual geoscience simula-

tion tools), has to date been largely used for the study of the mechanical behaviour

of geomaterials [Lisjak & Grasselli (2014)]. The focus of Chapter 5 has been to pro-

vide confirmation, through a series of validation studies, that the FEMDEM method

can also be applied to the simulation of fragmentation of very strong (by comparison

with most geomaterials) porous ceramic bodies, ones that could be designed to take

on any novel or traditional shape suitable to deliver advantages for the catalyst per-

formance. In Chapter 3, a progression from simple specimen geometry strength tests

towards more complex shape specimens was presented in the context of a validation

study.

5.4.1 Three-point bending tests

In Section 5.2 results from the numerical simulations of three-point bending tests

have been compared to the corresponding experimental results confirming that the

simulations of mode I fracture in porous ceramic bars matches the experimental

results. Some limitations of the code were identified and are worthy of further

discussion.

The value of peak force is slightly higher in the numerical results than in the theo-

retical prediction. This is probably caused by the mesh elements not being perfectly

aligned across the vertical plane where the stress field develops its maximum ten-

sion. This is a marginal issue that has not a great impact on the final results and

one that can be minimised by employing an unstructured mesh.
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5.4.2 Artificial compliance

Another code limitation that became very apparent from the verification work that

has been presented in section 5.2 is the artificial compliance generated by the joint

element discretisation. The same process that was used to generate the corrected

full deflection profiles from the experimental data described in Chapter 4, have also

been applied to the displacement field that was calculated in the Solidity FEMDEM

simulations. This has been done to obtain comparable sets of data since the idealised

three-point bending experiment reproduced in the numerical simulation is not capa-

ble of representing small specimen imperfections, local crushing near contact points

and the self-compliance of the rig actuator. The results that have been presented

in Section 5.3 show that the simulated structural stiffness is strongly sensitive to

the mesh size. This is due to the fact that when the element size is reduced, the

number of finite elements and joint elements is increased. Each joint element al-

lows a certain degree of relaxation of the constraint on the relative displacements

between adjacent finite element nodes and the larger the number of joint elements,

the higher is the artificial compliance that they generate Lorentz (2008). This is a

strong limitation in the applicability of the code for the simulation of these types

of stiff porous ceramics. On the one hand, as shown in Section 3.1.2.4, the high

strength and relatively low energy release rate require the code user to reduce the

element size and in turn increase the number of joint elements. On the other hand,

the large number of joint elements generate an artificial compliance in the simulated

elastic behaviour that does not allow the correct representation of the actual high

stiffness of the ceramic samples. New code implementations in the Solidity FEM-

DEM code are now under development to reduce this artificial compliance and will

be discussed in Section 7.2.
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5.4.3 Brazilian tests

The numerical simulation results of uniaxial compressive tests on cylinders without

holes (Brazilian disc tests) have been presented in Section 5.2.1. The contact force

extrapolated from the numerical simulations has been compared to the correspond-

ing theoretical values giving further confirmations of a correct simulation of mode

I fracture in porous ceramic pellets. The strength and stiffness of the prismatic

samples were reasonably aligned with values of energy release rate for the porosities

of the three sets of bars that were available in the literature [Lam et al. (1994)].

As was pointed out, since a value of fracture toughness was not available for the

cylindrical samples (the different tools employed for the sintering of these pellets

generated weaker sets of specimens compared to the sets of prismatic bars), in this

case values GI were optimised for the three sample sets to obtain the correct tensile

initiation and failure mechanism for the uniaxial compression of a disc. For each

set of samples, a series of numerical simulations with different values of GI in the

0.01-4 J/m2 range were performed. Consequently, a value of GI was selected when

the simulation was showing a fracture initiating from the centre of the disc and

propagating to the two contact points. The same values of energy release rate were

used for the simulations of uniaxial compression of pellets with four holes. It is

important to point out that the values of GI deduced in this way as being applicable

were lower than the corresponding values obtained in the literature for a similar

porous alumina sample.

5.4.4 Structural strength of complex-shaped pellets

The experimental results of the uniaxial compressive tests that were performed on

the three sets of four-hole cylinders have been presented in Section 4.3.2. The exper-

imental results give an insight into the mechanical behaviour of catalyst supports,
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since they quantify the structural strength of these type of pellets for two loading

configurations (weak and the strong orientation of the holes). Even though, as it

has been pointed out, limitations in the experimental apparatus did not allow suf-

ficiently accurate results to obtained for the strongest set of pellets (Set 3), the

results from the other two sets of samples have shown a quite consistent relation

between loading orientation, tensile strength and the structural strength of the pel-

lets. When normalising the load at failure with the failure load of an equivalent

cylinder of identical tensile strength and geometry but without holes, all the results

converged to a value of about 2% for the weak orientation and about 20% for the

strong orientation. As previously pointed out, the load values at failure could have

been affected by errors as the examination of the video recordings of the tests was

required to define the time when the first fracture was visible on the samples, which

might have occurred later than when that fracture was actually initiated.

The structural strength of complex-shaped pellets under simplified loading condi-

tions was investigated also with numerical simulations and the results have been

presented in Section 5.2.1. Loading orientations at intervals of 5◦ have been con-

sidered between the weak (0◦) and the strong (45◦) orientation configuration of the

four-hole discs. The load at failure calculated in the numerical simulation for the

different orientations have been compared with the experimental data. The values

of load normalised with respect to the strength of an equivalent cylinder of identical

geometry without holes not only have been shown to be in good agreement with

the experimental data for the weak and strong orientations, but also provide a rela-

tion between the loading orientation and the structural strength of four-hole discs

which is consistent between different sets of samples. As previously pointed out,

the reason why the numerical results slightly overestimate the structural strength

of the four-hole specimens at 0◦ and underestimate the strength at 45◦ might be

due to difficulties in the definition of the experimental failure loads and material
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inhomogeneity defects in the real samples.

Apart from the structural strength of catalyst supports, other interesting insights

can be obtained from the Solidity FEMDEM numerical results. These include the

capability of extracting the fragment size distribution from the simulated crushed

pellets leading to the characterisation of the post-failure behaviour associated with

a certain shape. Future research can be undertaken to determine numerically the

tendency of a certain shaped catalyst support to break into fine or bigger fragments

which could be of industrial interest by contributing to pressure drop prediction and

improvements in the performance of catalysts.

As shown in Section 3.1.2.5, the Solidity FEMDEM code can also simulate shear

failure and given the complex shapes and loading conditions, it should not be as-

sumed that the compressions of pellets would not result also in different modes of

failure initiation i.e. both shear, tensile and mixed fracture. Since only Mode I

parameters were characterised (with the generally accepted assumption that ceram-

ics fail mostly in tension) shear failure was not taken into account in the presented

simulations. Future research on microstructure and its representation in simulating

failure with FEMDEM could be carried out to study the alternative modes of failure

of the samples and will be discussed in Section 7.2.

Turning now to dynamic fracture, the results that have been presented in Chapter

5 have only described quasi-static loading conditions. Catalyst supports could also

experience dynamic loads, for instance during the pouring process, when the pellets

are deposited inside the reactor. Preliminary investigations of the Solidity FEM-

DEM code capabilities in the description of pellet fragmentation due to dynamic

loads have also been conducted though not reported in Chapter 3 and these have

given first confirmations of the applicability of the code. Indeed this is known to be

one of the strengths of the FEMDEM method and will be discussed in Section 7.2.
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Packing simulations

6.1 Introduction

As stated earlier, the ultimate purpose of this research project is to investigate the

fragility of porous ceramic pellets under complex stress conditions due to the contact

interactions between pellets in a container. In the previous Chapter it has been

shown how Solidity FEMDEM simulations can be employed for the evaluation of

the structural strength of catalyst support for simplified loading conditions, to study

ways to improve their mechanical performance and ideally reduce the number of fine

fragments at failure. The optimisation that designers seek is complex and although

finer broken fragments increase surface area for catalytic reaction, they reduce bulk

permeability which is detrimental overall. The aim of simulation must therefore

be to create highly accurate descriptions of the void geometry for further CFD

and heat flow modelling, as well as to represent more realistic loading conditions
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that can lead to the crushing of catalyst supports. The capabilities of the Solidity

FEMDEM code for the simulation of packed structures of catalysts in fixed-bed

reactors therefore need to be assessed for both the creation of the void topology

associated with the solid skeleton and the accurate creation of contact loading on

individual pellets. In either case, the problem begins with simulating the packing of

pellets. The packing of solid cylindrical bodies in a cylindrical container has been

approached with numerous computational techniques in the literature. In Caulkin

et al. (2008) the packing process is simulated with both a semi-stochastic approach,

where the particle path is randomly determined on the basis of the overlapping of

voxels (DigiCGP), and a deterministic approach, where the repulsive forces and

torques applied to the particles are calculated by measuring the number of their

overlapping voxels and their voxel-level contact forces (DigiDEM).

In this context, a validation study of Solidity FEMDEM simulations is presented

in this chapter where the focus is on reproducing experimental packing results

when pellets are released into cylindrical containers. Solid cylindrical, spherical

and complex-shaped (trilobes) catalyst supports once at-rest in their cylindrical

containers are compared to the corresponding experimental results from X-Ray CT

scans. The geometries of cylindrical catalyst support (A38) and their corresponding

cylindrical container refer to Caulkin et al. (2015), whereas the geometries of the

spheres, trilobes and their corresponding container refer to Nguyen et al. (2005). All

the geometries have been imported from CAD drawings.The geometries of complex-

shaped bodies and the container itself can be discretised with a tetrahedral mesh,

as shown in Figure 6.1 and 6.2. As seen in Section 3.1.2.2 and 3.1.2.5 the contact

forces are calculated with a penalty method and a Coulomb model of friction. The

energy loss during the impacts is modelled with a damping force proportional to the

particle velocity during the impact.

The particles are introduced in the domain above the container base with random
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Figure 6.1: Numerical discretisation of the cylindrical container using the geometry

from the experiments presented in Caulkin et al. (2015).

orientations and zero initial velocity. This process is completely automated through

POSITIT, a pre-processing tool that facilitates the control of filling conditions and

avoids the need for a manually defined 3D space for the initial conditions of each

single pellet. The history of particle entry and coalescence (e.g. entry rate and

velocity) can influence the final pack in terms of spacing and the randomness of the

orientation. This will be discussed later in this chapter. The simulation runs in

parallel on ten cores in less than twenty-four hours. The numerical results are then

analysed with a post-processing tool (PORO) to estimate the axial and radial pack-

ing density profiles and the pellet orientation distribution. These post-processing

tools are described in the following Sections. The state-of-rest can also be easily vi-

sualised and scrutinised with remarkable detail. In Figures 6.3, Paraview has been

used to show the entire pack and a window into the details, where the complexity

of the pellet geometry and its resulting pack derived from the FEMDEM solver

appears to be only limited by CAD description and mesh resolution.
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(a) (b) (c)

Figure 6.2: Numerical discretisation of a) the solid simple cylindrical pellet named

A38 as used in Caulkin et al. (2015), b) a cylindrical pellet with one hole and

c) a tridecagram-shaped pellet.

(a) (b) (c)

(d) (e) (f)

Figure 6.3: Final simulated packing structures for the three particle geome-

tries; details of the pack of a,d) A38 cylinders, b,e) one-hole cylinders and

c,f) tridecagram-shaped pellets
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6.2 Axial and radial packing density profiles

The numerical results are analysed with PORO, a post-processing tool that has been

specifically developed to reproduce the calculation process employed to evaluate the

axial and radial packing density profiles and the pellet orientation distribution from

the voxelised data format of the X-Ray CT scans that has been employed in Caulkin

et al. (2015) and Nguyen et al. (2005). A regular grid to generate an equivalent

voxel structure is defined in the domain of the numerical results. A value of 1 is

assigned to the centroid of the voxel cells that are inside a tetrahedron of the solid

mesh and 0 is assigned otherwise. For the sake of clarity, in Figure 6.4 the cell

dimension is shown here to be similar to the dimension of the pellets. The real cell

dimension chosen for the calculations is less than one tenth of the elements size,

allowing a more precise discretisation of the packing density. The binary values of

each cell is then summed and averaged within each horizontal plane from bottom

to top to calculate the axial packing density profile, as shown in Figure 6.5(a) and

6.5(b). The cells are then averaged along columns to obtain a planar profile of

the average packing density perpendicular to the axis of the container as shown in

Figure 6.5(c). The values on the plane are then averaged along concentric rings

to calculate the radial packing density profile, as illustrated in Figure 6.5(d), from

concentric halos of equal areas.

149



Chapter 6: Packing simulations

Figure 6.4: Representation of the regular grid in the domain of the numerical

results. Note, a much finer voxel size is actually used to calculate the solid

volume fraction in each slice.
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(a) (b) (c)

(d)

Figure 6.5: a) Averaging the values of cells along horizontal planes; b) axial pack-

ing density profile, c) averaging the values of cells along vertical columns; d)

visualisation of the simulated average packing density as if observed perpen-

dicular to the axis of the container together with superimposed radial packing

density profile showing periodic wall effect as also seen in the visualisation.

6.3 Vertical orientation distributions and stereo-

graphic projections

The coordinates of the axis of each pellet are calculated using the inertia tensor of

the bodies that are calculated to compute the rotational effects of contact forces
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in the rigid Solidity FEMDEM simulations. This data set is exported at the end

of the simulation to further characterise the packed structure. In particular, the

angle between the axis of the catalyst support and the axis of the container (Fig-

ure 6.6(a)) is employed to generate statistics of the pellet orientations distributions

that are then compared with the corresponding data form the X-Ray CT scans from

Caulkin et al. (2015). Lambert Equal Area lower hemispherical projections are

generally used for presenting three-dimensional information on a two-dimensional

plot. Stereographic projections are commonly employed in structural geology and

geotechnical engineering applications [Lisle & Leyshon (2004)], but they have been

used also for assessing randomness and clustering of orientations of symmetry axes

of concrete armour units within breakwater armour layers [Latham et al. (2013)]

and pharmaceutical tablets [Ketterhagen (2011)] orientation representation. Visual

representation of the relationships between the angles of crystals are also provided

by stereographic projections [Smallman (1969)]. In Figure 6.6(b) the equatorial

reference frame represents the plane of the container base and the plotted pellet

orientations are illustrated as they would appear from a top view. In Figure 6.6(c)

the stereographic projection for the orientations of a simulated cylindrical catalyst

support packed structure has been shown.
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(a)

(b) (c)

Figure 6.6: a) Angle between the axis of the catalyst support and the axis of

the container; b) plotted pellet orientations as they would appear from above

the container; c) stereographic projection of the orientations of a cylindrical

catalyst support packed structure.

6.4 Comparison study for packs of cylinders

A 44.5 mm inner diameter cylindrical container has been filled with more than three

thousand ceramic pellets. The A38 catalyst support (one specific size and aspect

ratio considered by Caulkin and co-workers in their experiments for which X-Ray

CT analysis is available) is a cylinder of 3.42 mm in diameter and 3.46 mm in width,

which gives a 3.90 mm volume-based particle diameter (i.e. the diameter of a sphere
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with the same volume as one of the pellets is 3.90 mm). As shown in Figure 6.1 and

6.2(a), this pellet is discretised with 159 tetrahedra and the cylindrical container

with 29,327 tetrahedra, for a total of approximately five hundred thousand elements

for the whole model. In the numerical simulations the particles are modelled as

rigid bodies with a density of 2.41 g/cm3 and the interaction between each pellet is

computed with a Coulomb coefficient of friction in the range 0.6-0.9. This range was

considered on the basis of the of published sliding friction coefficients for ceramic

materials [Denape & Lamon (1990)]. The damping coefficient employed to represent

the energy loss due to the impacts is in the range 0.4-0.6. The particles are intro-

duced in the domain above the container base in layers of forty-nine pellets each,

from a fixed height, with random orientations and zero initial velocity. The axial

packing density profiles that have been calculated for the numerical simulations for

the packing of the A38 catalyst supports have been plotted with the corresponding

curve extrapolated from the X-Ray CT scans in Figure 6.7. Four Solidity FEMDEM

simulations, corresponding to the four possible combinations of the extreme values

for the friction and damping coefficients in the considered parameter space have

been compared to the experimental results. Due to experimental constraints, the

profile that has been reported in Caulkin et al. (2015) represents the axial packing

density from 3 to 17 particle diameters only. Because of this, it has not been possible

to compare the wall effects at the bottom of the container that have been captured

by the FEMDEM simulations with the experimental curve. The numerical results

for the average packing density within the range of friction and damping coefficients

investigated are in agreement with the corresponding experimental results from the

X-Ray CT scans. The fact that the simulated profiles present a higher amplitude

and a frequency close to the particle size when compared to a relatively flat experi-

mental profile suggests that the final packing structure in the numerical simulations

is more ordered than the experimental pack. This could be an effect of possible
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Figure 6.7: Axial packing density distributions extrapolated from the X-Ray CT

scans (in black) from Caulkin et al. (2015), and from the numerical simulations

of simple cylindrical catalysts with different values for friction and damping

coefficients (in blue, green, red and yellow).

differences in the loading i.e. particle entry conditions that have not been reported

in Caulkin et al. (2015), such as the dropping height, the number and the way the

particles have been dropped inside the container, etc. Similarly, the radial packing

density profiles in Figure 6.8 show almost as good a match between the numerical

and the experimental results and confirm the stronger regularity in the simulated

packing structures.

The statistics of the pellet orientations for the angle between the axes of the cylin-

drical pellets and the axis of the container were extrapolated by Caulkin et al.

(2015) from their X-Ray CT scans. The corresponding numerical simulations of the

A38 catalyst support pack are shown in Figure 6.9. Also in this case the numerical

results are in general terms in close agreement with the experimental distributions.

The stereographic projections representing the pellet orientations of the four numer-

ical simulations are shown in Figure 6.10. Since the experimental statistics for the

pellet axis azimuth angles have not been provided in Caulkin et al. (2015), it has

not been possible to make a comparison for this dataset. However, it is interest-

ing to comment on the four stereographic projection patterns which suggest some

qualitative differences already seen in Figure 6.10 are indicated such as the large

proportion of 45◦ inclinations for these cylindrical pellets.
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Figure 6.8: Radial packing density distributions extrapolated from the X-Ray CT

scans (in black) from Caulkin et al. (2015), and from the numerical simulations

of simple cylindrical catalysts with different values for friction and damping

coefficients (in blue, green, red and yellow).

Figure 6.9: Vertical orientation distributions extrapolated from the X-Ray CT

scans (in black) from Caulkin et al. (2015), and from the numerical simulations

of simple cylindrical catalysts with different values for friction and damping

coefficients (in blue, green, red and yellow).
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Figure 6.10: Stereographic projections representing the pellet orientations of the

numerical simulations with four combinations of friction and damping coeffi-

cients.
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6.5 Comparison study for packs of spheres and

trilobes

A 19 mm inner diameter cylindrical container has been filled first with two thousand

glass beads and then with two thousand glass or ceramic trilobes. The spheres that

have been packed have a diameter of 2 mm. Trilobes are catalyst supports with

a base of approximately 1.3 mm in diameter and 4 mm in width, which gives a 2

mm volume-based particle diameter. As shown in Figure 6.11(a) and 6.11(b), each

sphere is discretised with 1372 tetrahedra and each trilobe with 2190 tetrahedra,

for a total of approximately two million and seven hundred thousand elements for

the whole model. In the numerical simulations the particles are modelled as rigid

bodies with a density of 2.5 g/cm3. The interaction between each pellet is computed

with a Coulomb coefficient of friction of 0.1. The damping coefficient employed to

represent the energy loss due to the impacts is 0.1. The values of sliding friction and

restitution coefficient were not provided in Nguyen et al. (2005). For this reason

an informed guess of these two parameters was made with a parametric study,

taking into account the values for glass and ceramics that are generally reported in

the literature. In order to avoid an artificial regularity of the pack, this time the

spheres and trilobes are introduced into the domain above the container base in a

random irregular grid of one hundred pellets each, from a fixed height, with random

orientations and zero initial velocity, as shown in Figure 6.12(a) and Figure 6.12(b)

respectively.

The two Solidity FEMDEM simulations, corresponding to the two particle shapes

have been compared to the experimental results but this time only the experimental

radial packing density profiles were reported in Nguyen et al. (2005). Because

of this it has not been possible to compare the other set of data that have been

extrapolated from the numerical results. The radial packing density profiles in
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Figure 6.14 show a good match between the numerical and the experimental results

for the pack of glass beads. Moreover, the periodicity of the boundary effects is

well represented by the numerical simulation, showing five distinctive peaks in the

density distribution profile. The radial packing density profiles in Figure 6.15 show

almost as good a match between the numerical and the experimental results for

the pack of trilobes, with the simulated density marginally lower. In this case,

both the experimental and numerical results have a single drop, suggesting that

the boundary effects are limited to the proximity of the container. This difference

in the pack structure for the two particles can be found also when comparing the

average packing density perpendicular to the axis of the container extrapolated

from the numerical simulations. In Figure 6.16 the glass beads are arranged in

concentric rings that propagate from the wall to the centre of the container. For

trilobes, the periodicity away from the wall cannot be maintained. In Figure 6.17

the trilobes make just one ring in proximity of the wall, resulting in a less ordered

packing structure for the inner part of the container. This difference in the order

of the packed structure for the two particle geometries could be explained with the

following consideration. For each possible location that a particle may assume, the

number of all the possible stable configurations that are available for a trilobe pellet

(i.e. all the possible orientations that are allowed by the neighbouring particles) is

much larger if compared to the only possible stable configuration of a sphere, since

all the orientations of a sphere are equivalent due to its symmetry. For this reason,

while the container walls effects are propagated through the whole pack by the

spheres, the trilobe pellets attenuate the boundary effects due to their much larger

degree of freedom. In Figure 6.18 the axial packing density profile extrapolated from

the numerical results of the pack of glass beads is compared to the one obtained from

the simulation of trilobes. Again, the boundary effects are much more pronounced

in the pack of spheres, with four distinctive peaks in the proximity of the container
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(a) (b)

Figure 6.11: Numerical discretisation of particle geometry a) spherical glass bead

and b) trilobe ceramic pellet as used for the experiments in Nguyen et al.

(2005).

base. Both profiles have a negative slope, representing the higher compaction of the

deeper layers of particles as determined by the over-burden mass of the particles

above which has a more pronounced effect for this low friction packing than the case

of solid simple cylinders . Figure 6.19 shows the statistics of the trilobe orientations

for the angle between the axis of the pellet and the axis of the container that have

been extracted from the numerical simulations. Due to the large aspect ratio of

these particles, the configurations nearer to vertical (from 0◦ to 50◦) are unstable

upon first contacts and therefore the trilobes in the pack structure are mostly in the

horizontal orientations. This is in stark contrast to the cylinders shown in Figure 6.9.

The cylinders simulated in the previous Section had an aspect ratio close to one,

which encouraged the stability orientations to be more widely distributed and to

include virtually all angles including close to the vertical. This difference is expressed

very clearly in the stereographic projections for the cylinders in Figure 6.10, which

are scattered across all orientations throughout the whole domain, whereas for the

trilobes in Figure 6.10, they tend to occupy the outer region of the plot, representing

the sub-horizontal configurations.
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(a) (b)

Figure 6.12: Deposition process for the simulated packing structures of the two

particle geometries: a) glass beads and b) trilobe pellets.

(a) (b)

Figure 6.13: Final simulated packing structures of the two particle geometries;

pack of a) glass beads and b) trilobe pellets.
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Figure 6.14: Packing density fluctuations in spheres: radial packing density dis-

tributions extrapolated from the X-Ray CT scans (in black) from Nguyen et al.

(2005), and from the numerical simulations in a cylindrical container (red).
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Figure 6.15: Packing density fluctuations in trilobes: radial packing density dis-

tributions extrapolated from the X-Ray CT scans (in black) from Nguyen et al.

(2005), and from the numerical simulations in a cylindrical container (red).
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Figure 6.16: Variation of packing density in spheres: average packing density

perpendicular to the axis of the container as sampled within each x,y location

as described in Section 6.2.

Figure 6.17: Variation of packing density in trilobes: average packing density

perpendicular to the axis of the container as sampled within each x,y location

as described in Section 6.2.
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Figure 6.18: Axial packing density variations extrapolated as derived from the

numerical simulations of spheres (continuous line) and trilobes (dashed line) in

a cylindrical container.
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Figure 6.19: Orientation distribution derived from the numerical simulations of

packing of trilobes in a cylindrical container.
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Figure 6.20: Stereographic projections representing the pellet orientations as de-

rived from the numerical simulations of packing of trilobes in a cylindrical con-

tainer.

6.6 Concluding remarks

Some examples of Solidity FEMDEM simulations for modelling multi-body inter-

actions have been presented in Chapter 6. These have included the representation

of the dynamic interactions between the catalyst supports during the loading (i.e.

container filling) phase. As has been pointed out in Section 5.2.1, regular deposi-

tion grids of particles (i.e. particles with their centres of gravity placed with equal

spacing in the two horizontal directions) and with random orientations tended to

generate packed structures with artificial regularities. With the purpose of simu-

lating the depositing of pellets in a manner similar to real pouring processes and

in ways that can be expected to be highly random, the pre- and post-processing

tools (POSITIT and PORO) have been further improved with algorithms developed

in collaboration between the author and supervisor Dr Xiang and finally validated.

This has included the specific task to verify that during the container filling stage,
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and prior to switching gravity on, particles were generated within the domain with

random orientations and a procedure to prevent regular spaced locations in a user-

defined deposition volume. This verification has been carried out first by analysing

the orientation distributions on a stereo-net of the generated particles and second

by examining the distributions of the coordinates of the centroids. It is worth men-

tioning that the literature has a considerable number of recommended procedures

to generate random orientations, but when implemented show a marked lack of

randomness. More research needs to be carried out to study in detail the relation

between feeding conditions and properties of the obtained packed structures and to

design a range of new improved deposition algorithms that can be recommended for

different practical cases of particle entry.

6.6.1 Emergent bulk properties

Packing simulations with DEM are normally employed to estimate the packing den-

sity and topological structure. As summarised in Stitt et al. (2015), in order to

characterise natural and industrial packed structures emergent properties of the

pack are normally extrapolated from simulation results. For the same reason, these

emergent bulk properties, i.e axial and radial packing density profiles, orientation

distributions, etc., are the quantities that are employed for packing simulations

validations. In Chapter 6, experimental and numerical axial and radial packing

density profiles and orientation distributions have been compared, confirming that

the Solidity FEMDEM numerical simulations of packing of the A38 cylindrical cat-

alyst supports, glass beads and trilobe pellets deposited in a cylindrical container

match the corresponding emergent bulk properties obtained from X-Ray CT scans

within very encouraging limits. Future research is needed to quantify the improve-

ments in accuracy comparing the results from Solidity FEMDEM simulations with
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corresponding results from other simulation tools (e.g. DigiPack, Rocky, etc.). A

different criterion for validation would be to evaluate the contact force statistics in

the packing structure and will be discussed in Section 7.2.

167





Chapter

SEVEN

Conclusions and future research

7.1 Conclusions

Based on the observations and results of the research work presented, the following

conclusions were made:

• The mechanical characterisation of engineered high performance materials

(e.g. the ceramics employed as catalyst supports) is a crucial field in ma-

terial science. The material properties of small ceramic samples with different

geometries (i.e. prismatic bars, discs and cylindrical pellets with four holes)

were needed in order to perform Solidity FEMDEM numerical simulations and

thereby evaluate the likely fracture behaviour of complex shaped pellets. The

specimens were tested employing different testing techniques, including uniax-

ial compression (creating indirect tension in disc specimens), ultrasonic test,
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nanoindentations, mercury (Hg) intrusion, Brunauer-Emmett-Teller (BET)

adsorption and three-point bending test. The prismatic bars that need testing

were too small for the standard method to be applied. For this reason a new

methodology for the calculation of the full deflection profile from video record-

ings of bending tests and an optimisation algorithm for the characterisation

of Young’s modulus were developed. The presented results not only confirmed

that the method could be used to estimate the stiffness of the specimens that

were to be tested in the present work, but also showed the capabilities of this

procedure to evaluate the Young’s modulus of small and highly stiff speci-

mens with greater accuracy than previously possible with bending tests, by

employing all the available information from the video recording of the tests.

In other words, the proposed methodology extends to this class of materials

the possibility to evaluate both the elastic modulus and the tensile strength

with a single mechanical test, without the need for other experimental tools;

• The series of validation studies that have been conducted have provided first

confirmations that the FEMDEM method employed in Solidity can also be

applied to the simulation of fragmentation of very strong (by comparison with

most geomaterials) porous ceramic bodies;

• The results that have been presented have shown that the simulated structural

stiffness is strongly sensitive to the mesh size. This is a strong limitation

of the applicability of the code for the simulation of certain types of stiff

porous ceramics. The large number of joint elements that is generally needed

to correctly discretise the plastic zone during fragmentation can generate an

artificial compliance in the simulated elastic behaviour that may not allow the

correct representation of the actual deformations of the ceramic samples;

• The experimental results give an insight into the mechanical behaviour of
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catalyst supports with four holes, since they quantify the structural strength of

this type of pellets for two loading configurations (weak and strong orientations

of the holes). Even though limitations in the experimental apparatus reduced

the accuracy of the results, the data obtained suggest a consistent relation

between loading orientation, tensile strength and the structural strength of

the pellets. When normalising the load at failure with the failure load of

an equivalent cylinder of identical tensile strength and geometry but without

holes, all the results converged to a value of about 2% for the weak orientation

and about 20% for the strong orientation;

• The structural strength of complex-shaped pellets under simplified loading

conditions was investigated also with numerical simulations. Loading orienta-

tions at intervals of 5◦ have been considered between the weak (0◦) and the

strong (45◦) orientation configuration of the four-hole discs. The load at failure

calculated in the numerical simulation for the different orientations has been

compared with the experimental data. The values of load normalised with

respect to the strength of an equivalent cylinder of identical geometry without

holes has not only been shown to be in good agreement with the experimen-

tal data for the weak and strong orientations, but also to provide a relation

between the loading orientation and the structural strength of four-hole discs

which is consistent between different sets of samples. The numerical results

slightly overestimate the structural strength of the four-hole specimens at 0◦

and underestimate the strength at 45◦. This might be due to difficulties in the

definition of the experimental failure loads and material inhomogeneity defects

in the real samples;

• Regular deposition grids of particles (i.e. particles with their centres of gravity

placed with equal spacing in the two horizontal directions) and with random

orientations tended to generate packed structures with artificial regularities.
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The pre-processing tool (POSITIT) has been further improved to simulate the

deposition of pellets in a manner similar to real pouring processes and in ways

that can be expected to be highly random and finally validated. This improve-

ment was verified by analysing the orientation distributions on a stereo-net of

the generated particles and by examining the distributions of the coordinates

of the centroids, confirming that the code is capable of depositing pellets with

random grids;

• Experimental and numerical axial and radial packing density profiles and

orientation distributions have been compared, confirming that the Solidity

FEMDEM numerical simulations of packing of the A38 cylindrical catalyst

supports, glass beads and trilobe pellets deposited in a cylindrical container

match the corresponding emergent bulk properties obtained from X-Ray CT

scans within very encouraging limits.

7.2 Future research

Suggested extensions of the presented research work include the following:

• Further research needs to be undertaken to understand how different die com-

paction and sintering tools can affect the final material properties of catalyst

pellets;

• Further research could also be undertaken to extend the method to materi-

als with more complex constitutive behaviour, such as specimens that exhibit

significant plastic deformations before failure. Current developments in the

Solidity FEMDEM code now allow the simulation of plastic deformations. A

possible avenue for future work could be to use the code to perform back anal-

ysis of the plastic parameters needed in any given elastic-plastic constitutive
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model to simulate the performance of structures with elastic-plastic compo-

nents;

• New code implementations in the Solidity FEMDEM code should be devel-

oped to reduce the artificial compliance due to the large number of joint ele-

ments that is generally required to correctly discretise the plastic zone during

fragmentation. A possible future research approach to address this shortcom-

ing might be to replace the current employed cohesive law with an extrinsic

traction separation law. The strategy would be to calculate the stress and dis-

placement field employing an extrinsic traction separation (or cohesive) law

[Kubair & Geubelle (2003) and Nguyen (2014)]. The constraint on the relative

displacements between adjacent finite element nodes is then relaxed only when

the stresses reach the value of tensile or shear strength and a fracture propa-

gates. The difference between the current and the proposed cohesive laws is

schematised in Figure 7.1.

(a) (b)

Figure 7.1: (a) Intrinsic and (b) extrinsic cohesive law or traction separation law.

They are also known as initially elastic and initially rigid traction separation

laws [Nguyen (2014)].

• Experiments on pellets with four holes might be repeated with a different
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higher loading capacity apparatus to obtain results for the strongest set of

pellets (Set 3), and to increase the level of accuracy in the definition of the

load values at failure;

• Apart from the structural strength of catalyst supports, other interesting in-

sights can be obtained from 2D Solidity FEMDEM numerical results. These

include the capability of extracting the fragment size distribution from the

simulated crushed pellets leading to the characterisation of the post-failure

behaviour associated with a certain shape. Future research can be undertaken

to determine numerically the tendency of a certain shaped catalyst support

to break into fine or bigger fragments which could be of industrial interest by

contributing to pressure drop prediction and improvements in the performance

of catalysts;

• The Solidity FEMDEM code can also simulate shear failure and given the

complex shapes and loading conditions, the importance of this mode of failure

may have been under-estimated . Future research on microstructure and its

representation in simulating failure with FEMDEM could be carried out to

study the alternative modes of failure of catalyst supports.

• A microstructural characterisation of the geometry of elementary elements

(i.e. grains) that constitute the porous ceramic microstructure could be car-

ried out. The dissemination of these elementary elements in a representative

volume might be used to define the model domain, as shown in Figure 7.2.

These data could be recovered with a reasonable accuracy from 3D micro-

images of samples where the geometrical features of the structure are carefully

resolved and digitally represented in the computer. Such images are available

from high-resolution X-ray tomography, also known as CT-scanning. How-

ever, high-resolution scanning devices are prohibitively expensive and time
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consuming. A statistical reconstruction of 3D volume from 2D sections could

be an alternative to avoid expensive pieces of equipment. These sections are

relatively easy and cheap to prepare and they can be image-processed to cap-

ture void and grain geometries. The statistical properties of this 2D geometry,

such as porosity, autocorrelation length, grain size distribution, etc. could

then be calculated from the images. Finally, it could be assumed that a 3D

space has the same statistical properties as the thin section, and an algorithm

(e.g. the sequential indicator simulation, Voronoi tessellation) could be used

to create a 3D structure with approximately the same properties distribution,

as shown in Figure 7.3. With these assumptions, a representative volume of

the microstructure can be defined (generally 50-150 grains). The mechanical

behaviour of ceramic grain structures can then be modelled on the basis of

the following hypotheses: the single grain behaves as an elastic orthotropic

medium, fragmentation is modelled only between grain boundaries with a lin-

ear cohesive law, and friction between grains after grain boundary failure and

between fragments is implemented with a Coulomb linear model. Applying

different boundary conditions to the representative volume it may be possible

to reconstruct the mechanical behaviour of the grain structure and infer the

parameters that best describe porous ceramics at the macroscale, as shown in

Figure 7.4. With the definition of the shear failure parameters, similar simula-

tions to the ones that have been shown in Section 5.2.1 could handle fracturing

in arbitrarily complex loadings and shapes as the stresses would be captured

in just the same way;
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Figure 7.2: Grains constituting the microstructure of a ceramic sample and their

equivalent in a simulated volume of ceramic.

Figure 7.3: A statistical reconstruction of 3D volume from 2D sections.
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Figure 7.4: Different boundary conditions that can be applied to the representative

volume to reconstruct the mechanical behaviour of the grain structure and infer

the parameters that best describe both ceramics and rocks at the macroscale.

• Catalyst supports could also experience dynamic loads, for instance during the

pouring process, when the pellets are deposited inside the reactor. Preliminary

investigations of the Solidity FEMDEM code capabilities in the description of

pellet fragmentation due to dynamic loads have been conducted and have given

first confirmations of the applicability of the code. Future research can be

undertaken to further validate the Solidity FEMDEM code for the simulation

of dynamic process with porous ceramics. The structural laboratory of the

Civil Engineering Department at Imperial has an Instron test machine with a

three-point bending test set up. The test machine is completely computerised.

Bars from Set 1 were tested with a dynamic three-point flexural test performed

on an impact-testing machine, as shown in Figure 7.5. The experiment was

performed on the same three-point bending apparatus used for the mechanical

characterisation in Chapter 4 (the distance between its two supports is 20 mm).

The impactor is a steel cross-head instrumented with a gauge which was placed

to record the force experienced by the punch during the experiment: force-
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displacement curves was recorded. With the aim of reaching a velocity of 3

m/s, the impactor, which has been attached to a mass of 4 kg, was released

about half a meter above the specimen. A high-speed camera was used to

record the crack-front propagation process through the specimen thickness. In

order to determine the motion of the tested specimen, a set of 22 points were

marked on the surface of the beam and the displacements of these markers

have been measured by means of a free video analysis software (Tracker). The

experiment was modelled with 2D and 3D Solidity FEMDEM simulations.

The mesh discretisation for the 2D numerical simulation and the preliminary

results from the 3D numerical simulation of a dynamic three-point bending test

are shown in Figure 7.6 and 7.6 respectively. Figure 7.6 shows the comparison

between the numerical results before and after failure in the 2D simulation

and a frame from the high-speed video recording of the actual dynamic three-

point bending experiment. Implementing fracture in the 2D and 3D to capture

the physical phenomena during a dynamic three-point flexural test with great

accuracy is still very much a ’work in progress’ as some of the mechanical

properties of the specimens need to be achieved and certain aspects of the

code that are relevant to the correct representation of fracture need to be

validate. One very intriguing development was the observation both in the

experimental (Figure 7.9) and simulated test was the occurrence of a double

peak in the load deflection response and this would be an interesting target of

further research as it points towards the capability to capture complex dynamic

stress waves in machine-specimen responses during impact testing.

An example of the possible applications of the code in describing dynamic

processes involving catalyst supports can be found in Figure 7.10, where a

cylindrical pellet with four holes is fragmenting during an impact at 3 m/s

against a steel plate;
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(a)

(b)

Figure 7.5: Dynamic three-point bending experiments on bars from Set 1 recorded

with (a) standard and (b) high-speed camera.
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Figure 7.6: Triangular mesh of the 2D numerical simulation of a dynamic three-

point bending test.

Figure 7.7: Horizontal displacement field in a 3D numerical model of a dynamic

three-point bending test.
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(a)

(b)

Figure 7.8: Comparison between the model of the specimen (a) before and (b)

after failure in the 2D numerical simulation and a frame from the high-speed

video recording of the actual dynamic three-point bending experiment.
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Figure 7.9: Double peak in the load-time response of dynamic three-point bending

experiments on three sample bars from Set 1.

Figure 7.10: Fragmentation of a cylindrical pellet with four holes during an impact

at 3 m/s against a steel plate.

• More research needs to be carried out to study in detail the relation between

feeding conditions and properties of the obtained packed structures and to de-

sign a range of new improved deposition algorithms that can be recommended
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for different practical cases of particle entry;

• Future research is needed to quantify the improvements in accuracy comparing

the results from Solidity FEMDEM simulations with corresponding results

from other simulation tools (e.g. DigiPack, Rocky, etc.);

• A different criterion for validation to the popular one based on packing den-

sity would be to evaluate the contact force statistics in the packing structure.

This type of work has been done by evaluating the maximum contact force

statistics in experiments with photo-elastic stress analysis [Da Silva M & Ra-

jchenbach (2000) and Majmudar & Behringer (2005)] and compare them with

corresponding numerical results [Majmudar et al. (2007)]. Future research

can be carried out to obtained experimental statistics of the contact force

history against the container floor and walls during particle deposition. The

AMCG at Imperial College London acquired two different load and frequency

range pressure sensor pads (supplied by Teckscan) and has undertaken pre-

liminary research to obtain experimental statistics of the contact force history

against a surface that has been instrumented with such sensors, as shown in

Figure 7.11. The research group has also been provided with about five hun-

dred complex-shaped catalyst supports. As shown in Figure 7.12(a), these

pellets have a cylindrical cogged shape with four holes. The shape of these

pellets has been reconstructed with photogrammetry and CAD software, in

order to define the equivalent numerical mesh shown in Figure 7.12(b). Fig-

ure 7.13 shows the mesh discretisation from the preliminary results of a pile

test with four hundred and ninety of these complex-shaped pellets. Future

research can be undertaken to preform pile experiments on a surface that has

been instrumented with the pressure sensor to obtain the contact force his-

tory of a collapsing pile against the flat surface during the filling and lifting

of the container. Figure 7.14 shows the time-lapse of the corresponding nu-
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merical simulation from which the contact force history can be extracted and

compared with the experimental results;
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(a)

(b)

Figure 7.11: (a) Scheme and (b) actual rig for the AMCG’s pressure sensors that

can be employed to obtain experimental statistics of contact force history.
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(a) (b)

Figure 7.12: Cylindrical cogged shaped pellet with four holes: (a) photograph and

(b) its equivalent numerical mesh.

Figure 7.13: Mesh discretisation of the collapsed pile after lifting the container.
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Figure 7.14: Collapsing pile after filling a cylinder (1-2) and lifting it up (3-4).
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• The results that have been shown in Chapter 6 have given a first confirmation

of the capabilities of the Solidity FEMDEM code in the simulation of packed

structures of catalysts in fixed-bed reactors. In Chapter 6 the code has also

been used to investigate the structural strength of complex-shaped pellets

under simplified loading conditions. The natural extension of the research work

that has been undertaken, is to use the Solidity FEMDEM code to represent

more realistic loading conditions that can lead to the crushing of catalyst

supports when in service inside a reactor. Preliminary simulations have been

done to study the effects of a vertical load on a pack of pellets. A pack of one

thousand cylindrical pellets, each with one hole in a 19 mm diameter cylindrical

container have been simulated. Each pellet has an equivalent diameter of 2

mm and a mass of 10 milligrams. After deposition, the pack is uniaxially

compressed with a weight of 250 g. Figure 7.14 shows the force chains and

the magnitude of the maximum contact force in [N] experienced by the pellets

in the chains. These simulation results show the mechanism utilised by the

structure of pellets to transmit the load that have been applied at the top of

the pack to the container walls. Since the pellets in the chains are transmitting

most of the load, these are also the most vulnerable particles in the pack. The

topology and magnitude of the contact force that is transmitted in the force

chains is strictly related to the properties of the pack and ultimately to the

shape of the pellets. Future research can be undertaken to study the relation

between pellet shapes and quality of the force chains;
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Figure 7.15: Force chains and the magnitude of the maximum contact force [N]

experienced by cylindrical pellets of 2mm diameter with one central hole.

• The industrial problem that has been investigated in this research work is
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mainly focused on preventing fracture and fines production in fixed bed re-

actors. For this reason, the ability to evaluate contact forces and stresses in

packed structures remains a major future objective. This is especially the case

in the light of strong evidence that 2D and 3D FEMDEM simulations can

provide excellent fracture prediction. In principle, the 3D structure meshes

representing an at-rest packed equilibrium state from rigid Solidity FEMDEM

simulations (e.g. the packs simulated in Chapter 6) can be used as input

meshes to the deformable Solidity FEMDEM code. Readjustments in the

packing structure can then be simulated in order to represent an even more

realistic pack where stress varies within particles. However, there are still al-

gorithmic problems to be solved, such as ways to relax the magnitudes of the

initially unstably high repulsion forces caused by the inevitably present small

but significant overlaps carried over from the rigid simulation. Figure 7.16

shows some preliminary simulations of the stresses experienced by cylindrical

pellets in a container. Future work needs to be done to improve the compati-

bility and interchangeability of the rigid and deformable solvers in the Solidity

FEMDEM code and to obtain stable numerical simulations of the stresses

experienced by the catalyst supports in a fixed bed reactor. Further code de-

velopments are needed to exploit a range of coupled physical processes such

as the thermal coupling. Work on introducing many of these in Solidity is

underway [Joulin et al. (2017)] (i.e. heat conduction, expansion/contraction

and thermal transmission at contacts). Solidity has also been coupled with the

advanced CFD code Fluidity. It seems reasonable to suggest that thermal and

fluid interactions with the solid catalyst pellets in a fixed-bed reactor could,

in the near future, be investigated with the simulation methods built from use

of the Solidity FEMDEM code;
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Figure 7.16: Preliminary simulations of the stresses experienced by cylindrical

pellets in a container.
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