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Anew component of the combinedfinite-discrete elementmethod (FDEM) is employed to estimate the effects of
geometrical features, friction and energy dissipation parameters on the bulk properties of rigid pellet packs. This
work constitutes the first systematic validation of the Solidity FDEM code for rigid particles. The experimental
and numerical axial and radial packing density profiles and orientation distributions have been compared,
confirming that the numerical simulations of packing of cylindrical catalyst supports, glass beads and trilobe pel-
lets deposited in a cylindrical containermatch the corresponding emergent bulk properties obtained from X-Ray
CT scans. The presented results are a first confirmation of the applicability of FDEM based methods to the simu-
lation of this class ofmulti-body problems. The assessment of the accuracy of the simulated topology of the pellet
pack that is established in this work is encouraging for further investigations of the multi-physical engineering
systems of interest for catalyst pellets involving hydro-thermo-mechanical, fracturing and fragmentation inter-
actions using coupled FDEM formulations.

© 2020 Elsevier B.V. All rights reserved.
1. Introduction

Heterogeneous catalysts are employed in a large number of indus-
trial chemical plants. Catalyst pellets can be extruded or moulded with
different shapes: spheres, cylinders, trilobes, etc. These shapes can in-
clude internal holes to increase the surface area of the pellets. To design
a pellet shape several aspects have to be taken into account: the
manufacturing costs, the catalytic efficiency, the tendency to break
and increase pressure drops, just to name a few. Other factors to take
into account include the loading method used to fill the reactor and
the ratio between the container and pellet size.

Pseudohomogenous approaches (i.e. models based on a continuous
representation of the packed bed) fail to produce accurate predictions
of the behaviour that are used to evaluatefields of interest (e.g. the tem-
perature field) inside fixed-bed reactors, especially for narrow to mod-
erate tube-to-pellet diameter ratios [1]. The aim of improved
discontinuous simulations is therefore to create highly accurate descrip-
tions of the void geometry for further heat and flow modelling, as well
as to represent more realistic loading conditions that can lead to the
crushing of catalyst supports, such as during the shrinkage of the reactor
tubes.

Numerous papers address the packing of spherical pellets in a cylin-
drical container. Nolan and co-authors [2] propose an iterative
algorithm that displaces spheres that are initially randomly located in
a cylindrical container, until they reach”gravitational stability” without
relative interpenetration. Salvat and co-authors [3] employ a so
called”soft spheres algorithm” (that allows some degree of interpene-
tration between particles) to simulate packs of mono-sized spheres in
cylindrical containers. Muller [4] computes themean and radial packing
density of spheres in a cylinder employing a sequential placing algo-
rithm. Caulkin and co-authors [5] discretise the simulated domain
with a grid, where the space occupied by the spherical particles and
the cylindrical container is defined by voxels. The packing is then calcu-
lated with a semi-stochastic approach, where the particle path is ran-
domly determined on the basis of the overlapping of voxels.

Recently, simulations of spherical bodies have been used for the
modelling of pebble beds in [6]. The effects of the packing structure on
the effective thermal conductivity have been modelled in [7]. The pack-
ing structure, container shape and structure-indices relations have also
been investigated with multi-body simulations of spherical particles. In
particular, the boundary/wall effects on the pack of spheres have been
investigated in [8,9], comparing both numerical simulations and x-ray
scans.

On the other hand, the literature dealing with non-spherical pellets
has been scarce until recently. In [10,11] the packing process is simu-
lated with both a semi-stochastic approach, where the particle path is
randomly determined on the basis of the overlapping of voxels
(DigiCGP), and a deterministic approach, where the repulsive forces
and torques applied to the particles are calculated by measuring the
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number of their overlapping voxels and their voxel-level contact forces
(DigiDEM). Boccardo and Partopour [12,13] use the discrete element
method (DEM) implemented in Blender [14]. Dorai, Wachs and co-
authors [15–17] employ a variant to DEM with the
GilbertJohnsonKeerthi algorithm to compute the distance between
non-spherical convex particles. A so called rigid dynamics algorithm is
used in [18],where the transition betweenmoving and resting perfectly
rigid particles is controlled by a cutoff on the relative contact velocities,
instead of employing the contact stiffness and damping used in DEM
based codes.

A combined finite-discrete element method (FDEM) has been
employed for the evaluation of the strength of individual catalyst pellets
for simplified loading conditions [19–21]. To allow the representation of
more realistic pellet loading and tube filling conditions the whole
packed structure of catalysts in fixed-bed reactors need to be correctly
captured in the simulation. The capabilities of FDEM codes for the sim-
ulation of packed structures of catalysts in fixed-bed reactors therefore
need to be assessed for both the creation of the void topology associated
with the solid skeleton and the accurate creation of contact loading on
individual pellets. In either case, the problem begins with simulating
the packing of pellets.

In this context, a validation study for the simulation of rigid particles
with a FDEMcode is presented in thiswork,where the focus is on repro-
ducing experimental packing results when pellets are released into cy-
lindrical containers. The final aim of this work is to verify the
capabilities of the FDEM framework for the accurate representation of
pack structures of systems of complex-shaped pellets. This constitutes
the first and a necessary step for the application of the code to other
coupled systems, such as involving fluid and thermal interactions,
stress, deformation and fragmentation of packing structures.

To highlight the capabilities of FDEM methods for the simulation of
stresses and deformations in the pack of catalyst supports, the simu-
lated stress chains resulting from a gentle compression of a pack of cyl-
inders is shown in Fig. 1 [22]. Rather than simulate both the packing and
compaction processes with deformable FDEM, the most efficient
Fig. 1. Differential stress in a vertical cross section of the 3D
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workflow is as follows. First, harness the rigid component of the FDEM
code to simulate the packing process for which the rigid assumption is
excellent. The rigid component of the FDEM code is the main subject
of this paper. Second, apply the deformable component of the FDEM
code to enable the rigid body packing structure to make fine adjust-
ments to form its new equilibrium state, taking account of the realistic
elastic parameters for catalyst supports from [23]. Finally, simulate a
gentle vertical compaction to illustrate the calculation of local stress
concentrations and deformations of catalyst supports. These prelimi-
nary simulation results show how stress chains and vulnerability to
crushing or tensile fracture might be examined by analysing different
stress components from the output of FDEM simulations.

The history of particle entry and coalescence (e.g. entry rate and ve-
locity) can influence the final pack in terms of spacing and the random-
ness of the orientation. As has been pointed out in [24], regular
deposition grids of particles and with random orientations tended to
generate packed structures with artificial regularities. For this reason
in this work the particles are introduced into the domain inside the con-
tainer in a random irregular grid from a fixed height, with random ori-
entations. It is worth mentioning that the literature has a considerable
number of recommended procedures to generate random orientations,
but when implemented show a marked lack of randomness.
Moghaddam and co-author have recently shown in [18] the role of
the loading methods and filling speed in the final topology of the pack
pellets. Although more research needs to be carried out to study in de-
tail the relation between feeding conditions and properties of the ob-
tained packed structures and to design a range of new improved
deposition algorithms that can be recommended for different practical
cases of particle entry, this has not been the focus of the current work.

Packing simulations with DEM are normally employed to estimate
the packing density and topological structure. As summarised in [25],
in order to characterise natural and industrial packed structures emer-
gent properties of the pack are normally inferred from simulation re-
sults. For the same reason, these emergent bulk properties, i.e. axial
and radial packing density profiles, pellet orientation distributions,
pack of cylindrical pellets in a cylindrical container [22].



A. Farsi, J. Xiang, J.-P. Latham et al. Powder Technology 380 (2021) 443–461
etc., are the quantities that are employed for packing simulations valida-
tions in previous publications and in the current work. The potentially
confusing term”vertical orientation distributions” has been used in pre-
vious works (e.g. [10,11]) to describe the statistics of the angles be-
tween the principal axis of the pellets and the vertical axis of the
container. The way in which these statistics, and the other packing
property descriptors, are calculated in thiswork are described in theAp-
pendices. To help the reader compare the results that are presented
herewith the relevant literature, the same term”vertical orientation dis-
tributions” has also been used in this work.

After introducing the key aspects of the FDEM technology in
Section 2, this paper describes the computational models that have
been used for the packing simulations in Section 3. A study of the effects
of themesh resolution, contact, friction and energy dissipation parame-
ters on the bulk properties of cylindrical pellet packs is shown in
Section 4. The comparison between the numerical results and experi-
mental X-Ray CT scans for packs of cylinders, spheres and trilobes is
shown in Section 4.6 and Section 5.

2. FDEM theory

Algorithms for FDEM simulations started to be proposed from the
90s. Developments and applications of the FDEM method have been
carried out after the release of the open source Y-code in [26] by
Munjiza. Modelling methods that can accommodate the effect of
shape on packing, including DEM and FDEM, were summarised in a re-
cent publication [27], where the class of particulate problems that are
well-suited to FDEM are presented and discussed. Imperial College
London, in a collaboration with Queen Mary University of London, re-
leased the first open source FDEM code for geoscience problems in the
late 2000s [28]. This code, initially named Virtual Geoscience Simulation
Tools (VGeST), has been recently upgraded to simulate more general
mechanical problems and renamed’Solidity’ [29,[30]]. The key features
of FDEM are the following: (a) compute the contact interactions and
motion of bodies, (b) calculate the stresses and deformations and
(c) compute the transition fromcontinua to discontinuawhen fragmen-
tation occurs. Since in this work the pellets and the containers are sim-
ulated as rigid bodies, the focus of this section will be mainly on the
calculation of the contact forces and the computation of the trajectories
of the simulated bodies. Details on the theoretical underpinnings of the
algorithms used to calculate the stresses and trajectories of deformable
bodies will be also introduced in this section. More background on the
original and novel implementations of smeared crack model in FDEM
can be found in [31,32]. Some details on the feasibility of the algorithm
in practical applications are discussed in [33]. Further details of the algo-
rithms that have been used for thiswork are covered in a separate paper
that is currently in preparation.

2.1. Contact interactions

In FDEM all simulated bodies are discretised with a finite-element
mesh. When two bodies are in contact, some of the elements of the
mesh of the two bodies overlap. A contact detection algorithm detects
all the couples of elements that are more likely to be in contact,
discarding all the couples that are too far to be in contact. This is done
to avoid processing the contact interaction of all the possible couple of
elements in the system and therefore reducing the run time of the sim-
ulation. The contact interaction is implemented through a variational
formulation. The penalty function method is used to compute the nor-
mal component of the contact force between two bodies by imposing
the stationarity of a functional subject to the contact constraints over
the boundaries. The contact potential function is defined in the form
of Eq. (1), where PT is the penalty term, while f(p) is a function of the
point p in the overlapping elements of the two contacting bodies. The
function f(p) is defined in such a way that it is zero outside the discrete
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element, constant on the boundaries and increasing while moving to-
wards the centre of the elements.

φ pð Þ ¼ PT ⋅f pð Þ ð1Þ

The infinitesimal contact force is defined as the gradient of the corre-
sponding potential function dF= − ∇ φ dV, where dV is the infinites-
imal overlapping volume. The total contact force can then be calculated
by integrating the infinitesimal contact force field over the overlapping
volume, as shown in Eq. 2, where βt and βc are the target and contactor
bodies in contact. This ensures that the the energy during the contact in-
teraction is conserved, independently of the penalty term, element
shape or magnitude of the penetration, as the so-defined contact force
field is conservative.

fcn ¼
Z

V¼βt∩βc

∇φc−∇φt½ �dV ð2Þ

By replacing integration over the overlapping volumeswith the inte-
gral over the boundaries of the overlapping volumes, see [34], the total
normal contact force fcn can be calculated with Eq. (3), where n is the
outward unit normal to the surface of the overlapping volume of the
two bodies in contact.

fcn ¼
Z

Sβt∩βc

n φc−φtð ÞdA ð3Þ

Since both the target and contactor bodies in contact are discretised
with finite elements, each body can be represented as the union of its fi-
nite elements, as shown in Eq. 4. The indexesm and n are the total num-
ber of finite elements of the contactor and target respectively. The
potentialsφc andφt can also be expressed as the sumof potentials asso-
ciated with each finite element, as shown in Eq. (5).

βc ¼ βc1∪βc2 . . .∪βci . . .∪βcn

βt ¼ βt1∪βt2 . . .∪βtj . . .∪βtm
ð4Þ

φc ¼ φc1∪φc2 . . .∪φci . . .∪φcn

φt ¼ φt1∪φt2 . . .∪φtj . . .∪φtm
ð5Þ

By replacing the integral over the boundaries of the overlapping vol-
umes of Eq. (3)with the summation of the integration over the finite el-
ement boundaries, the total normal contact force fcn can be calculated
with Eq. 6. In this way the contact force between overlapping bodies is
calculated by summation over the surfaces of the corresponding over-
lapping finite elements.

fcn ¼ ∑
n

i¼1
∑
m

j¼1

Z
Sβci ∩βtj

n φci−φtj

� �
dS ð6Þ

Since the solution obtained through the minimisation of the poten-
tial function satisfies the constraint of impenetrability only approxi-
mately, the contacting couples tend to penetrate into each other,
generating distributed contact forces along their boundaries.With a suf-
ficiently large penalty term (PT) the extent of the overlapping is negligi-
ble as is the related error in the response of the simulated system. In the
case of deformable bodies, the difference between the effects of two dif-
ferent but statically equivalent loads becomes very small at sufficiently
large distances from load, see [35], therefore the structural response of a
body to contact forces can be well represented even though the mesh
discretisation and penalty term might locally influence the correct dis-
tribution of the pressure on the contact surfaces of two colliding bodies.

The tangential contact force, or sliding frictional force formulation is
based on the Coulomb model of friction. This force is calculated with
Eq. (7), where FC is the sliding friction coefficient, dt is the tangential



Table 1
Geometries of the pellets and containers that have been used in [37,38] and simulated in
this work.

Pellet
diameter
[mm]

Pellet
length
[mm]

Pellet
equivalent
diameter [mm]

Container
diameter
[mm]

Cylinders 3.42 3.46 3.9 44.5
Spheres 2 2 19
Trilobes 1.3 4 2 19
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displacement vector and kt is the tangential contact stiffness (normally
set to 0.1 ∗ PT).

fct ¼ −kt dt for fctj j≤FC fcnj j
fct ¼ −FC fcnj j dt

dtj j for fctj j>FC fcnj j

8<
: ð7Þ

For deformable bodies, the damping forces are calculated by inte-
grating the portion of the visco-elastic stresses that are proportional to
the rate of deformation. In the case of rigid bodies, the damping formu-
lation is similar to the formulation used by Cundall and co-authors in
[36,37]. The damping force applied to each particle fcd is proportional
to the constant DC and is given by Eq. (8). The vector F is the net unbal-
anced force acting on the body, i.e. the sum of the normal and frictional
contact forces (F = fcn + fct). The term sign(V) is the sign (positive or
negative) of the velocity of the body.

fcd ¼ −DC∣F∣sign Vð Þ ð8Þ

2.2. Motion of bodies

When the bodies are simulated as rigid particles, there are no inter-
nal forces acting on the element nodes and the relative displacements
between nodes of all the elements belonging the same body is zero.
For this reason the governing equation can be rewritten in the form of
the dynamic equilibrium equation with respect to the centres of mass
of each body. The trajectory of each simulated body can therefore be ob-
tained by integrating over time the dynamic translational and rotational
equilibrium equations given by Eq. (9) and Eq. (10).
Fig. 2. Parameter space for the friction and damping coefficients: the grey plane corresponds
cylindrical pellet named A38 in [38]. The black circles correspond to the bulk packing dens
parameters, and then interpolated with a surface in the parameter space. The red dashed line
PT 3.5 × 106]. (For interpretation of the references to colour in this figure legend, the reader is
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mp,i€xp,i ¼ fd,i þmp,igþ∑
ki

j¼1
fcn,ij þ fct,ij þ fcd,ij
� � ð9Þ

Ip,i€θp,i ¼ ∑
ki

j¼1
Tc,ij ð10Þ

where mp, i and Ip,i are the mass and moment of inertia of each body i.
€xp,i and €θp,i are the linear and angular acceleration of the body i. Tc, ij is
torque generated by the normal (fcn, ij) contact forces, frictional forces
(fct, ij) and by the damping forces (fcd, ij). These torques and forces are
computed for all the ki elements j in contact with each body i.

When the deformable components of the FDEM code are employed
(e.g. in the simulation in Fig. 1), the coordinates of the nodal points of
the elements that discretise the bodies are determined by the dynamic
equilibrium of the forces that are acting on the element nodes. These
forces are either internal nodal forces (fint) given by the visco-elastic el-
ement deformations or external nodal forces (fext). For each element,
the internal and external nodal forces are given by Eq. (11) and
Eq. (12) respectively [32].

f int ¼
Z

Ve

∂N
∂x

σdV ð11Þ

fext ¼
Z

Ve

NbdV þ
Z

Se
NtdA ð12Þ

where N is the element shape function, σ is the stress tensor, b is the
body force acting on the volume of element and t is the traction acting
on the surface of the element. The trajectory of the simulated bodies
can be obtained by integrating over time the dynamic equilibriumequa-
tion given by Eq. (13).

M€xT
n þ f int ¼ fext þ fc ð13Þ

where fc is the total force that is generated during the contact interac-
tions between different bodies. This is given by the sum of the normal
contact force (fcn) to avoid body interpenetration, and the tangential
force (fct) due to friction and the damping force (fcd) due to other forms
of energy loss during contact. The nodal mass matrixM is calculated for
each element based on the initial element configuration with Eq. (14),
where ρ0 is the density of the element.
to the bulk packing density (0.591) that was calculated from the physical experiment of
ity calculated from 180 numerical simulations with different combinations of the two
is the intersection between the experimental plane and the interpolated surface [CY16 -
referred to the web version of this article.)



Fig. 3. Effects of friction and damping coefficient on the bulk packing density of cylinders named A38 in [37] deposited into a cylindrical container. a) Bulk packing density against friction
coefficient for damping coefficients in the 0.01 (blue) - 0.95 (yellow) range. b) Bulk packing density against damping coefficient for friction coefficients in the 0.01 (blue) - 1.3 (yellow)
range [CY16 - PT 3.5× 106]. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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M ¼
Z

V0

ρ0NN
TdV ð14Þ
3. Model setup

Packs of solid cylindrical, spherical and complex-shaped (trilobes)
particles are simulated using FDEM. The geometries of cylindrical cata-
lyst support (A38) and their corresponding cylindrical container refer
to [37], whereas the geometries of the spheres, trilobes and their corre-
sponding container refer to [38]. All the geometries have been
summarised in Table 1. The geometries of complex-shaped bodies and
the container itself have been imported from CAD files and then
discretised with a tetrahedral mesh, as shown in Fig. 7 and Fig. 20. The
contact forces are calculated with the penaltymethod and the Coulomb
model of friction that has been described in the previous sections. The
energy loss during impacts is modelled with a damping force
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proportional to the particle unbalanced net force during the impact, as
described in the previous section.

As has been pointed out in [24], regular deposition grids of particles
(i.e. particles with their centres of gravity placed with equal spacing in
the two horizontal directions) and with random orientations tended
to generate packed structures with artificial regularities. With the pur-
pose of simulating the depositing of pellets in a manner similar to real
pouring processes and in ways that can be expected to be highly ran-
dom, the pre- and post-processing tools have been further improved.
This improvement has included the specific task to verify that during
the container filling stage, and prior to switching gravity on, particles
were generated within the domain with random orientations.
Futhermore, a procedure to prevent regular spaced grid locations in a
user-defined deposition volume was also implemented. This verifica-
tion has been carried out first by analysing the orientation distributions
on a stereo-net of the generated particles and then by examining the
distributions of the coordinates of the centroids. The particles are intro-
duced in the domain above the container base with random orienta-
tions and zero initial velocity. This process is completely automated



Fig. 4.Optimal combination of friction and damping coefficients tomatch the experimental data of cylindrical pellet named A38 in [37]. The red dashed line is the intersection between the
experimental plane and the interpolated parameter surface in Fig. 2 [CY16 - PT 3.5× 106]. (For interpretation of the references to colour in this figure legend, the reader is referred to the
web version of this article.)

Table 2
Parameters and mesh discretisation used to simulate the packing of A38 catalyst support.

Penalty term Mesh resolution Friction coef. Damping coef.

Min 3.5 × 104 CY04 0.01 0.01
Max 3.5 × 106 CY24 1.3 0.95
Opt 3.5 × 106 CY16 0.55 0.16
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through a pre-processing tool that facilitates the control of filling condi-
tions and avoids the need for amanually defined 3D space for the initial
conditions of each single pellet. The simulation runs in parallel on 34
cores in less than twenty-four hours. The numerical results are then
analysed with a post-processing tool to estimate the axial and radial
packing density profiles and the pellet orientation distribution. These
post-processing tools are described in the Appendices sections.

The state-of-rest can also be easily visualised and scrutinised with
post-processing tools such as Paraview [40].

4. Packing of cylinders

The A38 catalyst support (one specific size and aspect ratio consid-
ered by Caulkin and co-workers in their experiments for which X-Ray
CT analysis is available) is a cylinder of 3.42 mm in diameter and
3.46mm in width, which gives a 3.90mm volume-based particle diam-
eter (i.e. the diameter of a sphere with the same volume as one of the
pellets is 3.90 mm). To model this experiment a 44.5 mm inner diame-
ter cylindrical container has been filled with two thousand ceramic pel-
lets. The A38 pellet was simulated with different numerical
discretisations, from 48 to 507 tetrahedra, and the cylindrical container
with 29,327 tetrahedra, for a total of approximately five hundred thou-
sand elements for the whole model. In the numerical simulations the
particles are modelled as rigid bodies with a density of 2.41 g/cm3. In
order to avoid an artificial regularity of the pack, the particles are intro-
duced into the domain inside the container in a random irregular grid of
two hundred pellets each, from a fixed height, with random orienta-
tions and zero initial velocity.

4.1. Parameter space

The experimental bulk packing density (0.591)was calculated by in-
tegrating the axial packing density profile thatwas obtained from the X-
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Ray CT analysis [37]. In this work, one hundred and eighty simulations
with values of friction coefficient in the 0.01–1.3 range and damping co-
efficient in the range0.01–0.95 were then performed to inspect the best
combination of these two parameters to achieve the experimental bulk
packing density. The penalty termwas set to a value of 3.5 × 106 and the
pellets were discretised with 16 edges on their bases (CY16), as in Fig. 7
(d), to ensure high accuracy in the numerical results, as demonstrated in
the next sections. In Fig. 2 the grey plane corresponds to the bulk pack-
ing density that was calculated from the physical experiment. The black
circles represent the bulk packing density from the numerical simula-
tions for different combinations of the two parameters. These values
were then interpolated with a degree three polynomial surface in the
parameter space. The red dashed line is the interception between the
experimental plane and the interpolated surface, which corresponds
to the optimal combinations of friction and damping coefficients. The
results show that for any given value of friction coefficient the optimal
damping coefficient is unique, and vice versa. Fig. 3(a) shows that the
smaller the value of friction coefficient, the less the bulk packing density
is affected by a change in damping coefficient. Fig. 3(b) shows an even
stronger reduction in sensitivity to a change in friction coefficient for
smaller values of damping coefficient. The optimal combinations of fric-
tion and damping coefficients to represent the physical experiment of
cylindrical pellet named A38 in [37] based on just the bulk packing den-
sity is shown in Fig. 4. A value of 0.55 for the friction coefficient and a
corresponding value of 0.16 for the damping coefficient were then de-
termined also taking into account published values of sliding friction
and restitution coefficients for ceramic pellets [41,42]. A summary of
the input parameters and mesh resolutions used in the simulations is
provided in Table 2.

4.2. Penalty term sensitivity analysis

The following sensitivity analysis was performed to evaluate the
sensitivity of the results to different values of the penalty term which
is used in the simulation to limit the interpenetration of the pellets.
Values from 3.5 × 104 to 3.5 × 106 were considered. The friction and
the damping coefficientwere set to a value of 0.55 and 0.16 respectively.
The circular base of the pellets was discretised with 16 edges (CY16).
Fig. 5(a) shows that the vertical orientation distribution is not affected
by this parameter. The radial packing density distribution instead
shows a small change in the propagation of the boundary effects, as
shown in Fig. 5(b). This is because a small penalty term allows more



Fig. 5. Effects of the penalty term (PT) on thepacking structure of cylinders in a cylindrical container: a) Vertical orientation distributions, b) radial packing density distributions and c) axial
packing density distributions calculated from numerical simulations with different values of penalty term [CY16 - FC 0.55 - DC 0.16].
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interpenetration between the pellets, effectively reducing their sizes. At
the same time, the higher interpenetration associated with small pen-
alty terms, reduces the effective solid volume in the pack. Moreover,
Fig. 5(c) shows that the total height of the pack of 2000pellets decreases
Fig. 6. Effects of the penalty term (PT) on the bulk packing density of cylinders in a cylindrical co
of penalty term [CY16 - FC 0.55 - DC 0.16].
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when reducing the penalty term, as a result of the increase in interpen-
etration. In Fig. 6 the effects of the penalty term on the bulk packing
density has been extended to a larger value (PT 1.5 × 107) to show
the convergence behaviour in more detail and that the bulk packing
ntainer. Bulk packing densities calculated fromnumerical simulationswith different values



Fig. 7. Numerical mesh of cylindrical pellet named A38 as used in [37], discretised with a) 4, b) 8, c) 12, d) 16, e) 20 and f) 24 edges on its bases.

Fig. 8. Final simulated packing structures of cylindrical pellets for two mesh resolutions: a) CY04 and b) CY24.
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Fig. 9. Effects of themesh resolution on the packing structure of cylinders in a cylindrical container: a) Vertical orientation distributions, b) radial packing density distributions and c) axial
packing density distributions calculated from numerical simulations with different pellet meshes [PT 3.5 × 106 - FC 0.55 - DC 0.16].
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density converges to a value of 0.59 for penalty terms that are larger
than 1.5 × 106.

4.3. Mesh size sensitivity analysis

This analysis was performed to evaluate the sensitivity of the results
to different resolutions of the mesh of the cylindrical pellet in [37]. Pel-
lets were discretised with 4, 8, 12, 16, 20 and 24 edges on their bases, as
Fig. 10. Effects of themesh resolution on the bulk packing density of cylinders in a cylindrical co
meshes [PT 3.5 × 106 - FC 0.55 - DC 0.16].
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shown in Fig. 7. The six meshes have the same height and base surface
area, in order to maintain an identical volume to the cylindrical pellet
named A38 in [37]. The penalty term and the damping coefficient
were set to a value of 35 × 105 and 0.16 respectively. The friction coef-
ficient was set to a value of 0.55. The final simulated packing structures
for two different mesh resolutions (CY04 and CY24) are shown in Fig. 8
(a) and Fig. 8(b) respectively. Fig. 9(a) shows that the vertical orienta-
tion distribution is not affected by the change in the pellet mesh. The
ntainer. Bulk packing densities calculated from numerical simulationswith different pellet



Fig. 11. Effects of the friction coefficient (FC) on the packing structure of cylinders in a cylindrical container: a) Vertical orientation distributions, b) radial packing density distributions and
c) axial packing density distributions calculated from numerical simulations with different friction coefficients [CY16 - PT 3.5 × 106 - DC 0.16].
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radial and axial packing density distribution, as shown in Fig. 9(b) and
Fig. 9(c) respectively, show a change in the first peaks, due to the cube
like pellet shape. Moreover, the axial packing density profile associated
with this six-sided pellet (CY04) is on average slightly lower than the
ones of the other pellets. This effect may be associated with the greater
void space left between cube-like pellets that don't have enough energy
to reach a more ordered packed structure (e.g. flat against flat). By re-
ducing the damping and friction coefficients or vibrating the system
this shapewill generate a denser pack. Fig. 10 shows that the bulk pack-
ing density converges to a value of 0.59 for cylinders with a number of
edges greater or equal to 16.
Fig. 12. Effects of the friction coefficient (FC) on the bulk packing density of cylinders in a cyl
different friction coefficients [CY16 - PT 3.5 × 106 - DC 0.16].
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4.4. Friction coefficient sensitivity analysis

This sensitivity analysis was performed to evaluate the sensitivity of
the packing results to different values of the friction coefficient. The fric-
tional interaction between each pellet is computed with a Coulomb co-
efficient of friction in the 0.01–1.3 range. The penalty term and the
damping coefficient were set to a value of 3.5 × 106 and 0.16 respec-
tively. Fig. 11(a) shows that the vertical orientation distribution is af-
fected by the friction coefficient. The lower the value of friction, the
higher the tendency for the axis of the pellets to be horizontal (80∘-
90∘), which is the most stable configuration. The radial packing density
indrical container. Bulk packing densities calculated from the numerical simulations with



Fig. 13. Effects of the damping coefficient (DC) on the packing structure of cylinders in a cylindrical container: a) Vertical orientation distributions, b) radial packing density distributions
and c) axial packing density distributions calculated from with different damping coefficients [CY16 - PT 3.5 × 106 - FC 0.55].
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distribution shows a change in the propagation of the boundary effects,
as shown in Fig. 11(b). This is because by reducing the friction coeffi-
cient the pellets retain more kinetic energy to reduce the voids by
reaching a more ordered, dense and lower potential energy
Fig. 14. Vertical orientation distributions for the lower and upper bounds of penalty term (PEl a
(DCl and DCu). The fixed parameters for each pairing in this plot are taken from the appropriate
of 0.16.
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configuration. The regularity of these configurations is represented by
a larger number of peaks in packing density for multiples of the particle
diameter. Fig. 11(c) shows that the total height of the pack of 2,000 pel-
lets increases when increasing the friction coefficient, as a result of the
nd PEu), mesh discretisation (CY4 and CY24) friction coefficient (FRl and FRu) and damping
converged PE of 3.5 × 106, convergedmesh resolution of CY16, FR of 0.55 and calibratedDC



Fig. 16. Axial packing density distributions: data calculated from the X-Ray CT scans after pouring (continuous black) and after tapping (dashed black) in [37]. Data calculated from the
numerical simulations of cylindrical catalysts with different seeding for the initial random location and orientation [CY16 - PT 3.5 × 106 - FC 0.55 - DC 0.16].

Fig. 15. Effects of the damping coefficient (DC) on the bulk packing density of cylinders in a cylindrical container. Bulk packing densities calculated from the numerical simulations with
different damping coefficients [CY16 - PT 3.5 × 106 - FC 0.55].
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increase in void space between pellets. Fig. 12 shows that the bulk pack-
ing density is less sensitive to an increase in friction coefficient for
values above 0.6.

4.5. Damping coefficient sensitivity analysis

The following analysis was performed to evaluate the sensitivity of
the packing results to the damping coefficient. The energy loss due to
the impacts between pellets and the container walls was computed
with a damping coefficient in the 0.01–0.95 range. The penalty term
and the friction coefficient were kept to a value of 3.5 × 106 and 0.55
Fig. 17. Radial packing density distributions: data calculated from the X-Ray CT scans (in black)
seeding of the the initial random locations and orientations [CY16 - PT 3.5 × 106 - FC 0.55 - DC
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respectively. Fig. 13(a) shows that the higher the value of damping,
the more all the orientations became equally likely.

A comparison of the vertical distributions for the lower and upper
bounds of penalty term (PEl and PEu), mesh discretisation (CY4 and
CY24) friction coefficient (FRl and FRu) and damping (DCl and DCu) is
shown in Fig. 14. The adjacent bar pairs for the extremes of PT show re-
markably little difference in orientation distributions, the converged PT
value adopted for themain study being near to the upper value. The ad-
jacent bar pairs for extremes of mesh discretization suggest that only in
the 70∘-80∘ angle interval is there a marked tendency for the cube-like
particle to orientate noticeably differently to the smooth cylinder for
from [37], and from the numerical simulations of simple cylindrical catalysts with different
0.16].



Fig. 18. Vertical orientation distributions calculated from the X-Ray CT scans from the poured experiment (in black) from [37], and from the numerical simulations of simple cylindrical
catalysts with different seeding of the the initial random locations and orientations [CY16 - PT 3.5 × 106 - FC 0.55 - DC 0.16].

Fig. 19. Equal Angle stereographic projection representing the pellet axis orientations of
the pack (Model D) for numerical simulations of simple cylindrical catalysts.Note the
sparse number of dots near the centre which represents the subvertical (0–10 degrees)
cylinder axes, with many more dots representing subhorizontal axes near the perimeter
80–90 degrees [CY16 - PT 3.5 × 106 - FC 0.55 - DC 0.16].

Fig. 20. Numerical discretisation of particle geometry a) spherical glass b

A. Farsi, J. Xiang, J.-P. Latham et al. Powder Technology 380 (2021) 443–461

455
this realistic friction value of 0.55. As discussed above, for the friction pa-
rameters that extend well beyond realistic values to survey friction ef-
fects, the extreme pairing of 0.01 and 1.3 shows up marked
differences in two angle intervals. For thenear frictionless pellets, nearly
5% fewer occur in the 40∘-50∘ angle rangewhereas about 8%more pellets
settle down to the near horizontal 80∘-90∘ angle range, reflecting the
latter's lower energy state. Interesting too are the marked differences
observed for the damping coefficient pairing of 0.01 to 0.95 in the low
angle ranges 0∘-10∘, 10∘-20∘ and even 20∘-30∘, where it is clear that the
extremely high damping coefficient allows the final pack to retain
many more (5%) of the near vertical attitudes that were fed from the
original domain entry randomdistribution, for the case of a realistic fric-
tion coefficient of 0.55.

The radial packing density distribution, as shown in Fig. 13(b), ex-
hibits a change in the propagation of the boundary effects, as a conse-
quence of damping. Similarly to a reduction in friction coefficient,
when reducing the damping coefficient the pellets have more energy
to reduce the voids by reaching a more ordered configuration. Fig. 13
(c) shows that by increasing the damping coefficient, as a result of the
increase in void space between pellets, the average axial packing den-
sity decreases. A comparison between Fig. 15 and Fig. 12 for the param-
eter range investigated Fig. 15 shows that the bulk packing density is
more sensitive to an increase of the damping coefficient than friction
coefficient.

4.6. Comparison with experimental results

The axial packing density profiles that have been calculated for the
numerical simulations for the packing of the A38 catalyst supports
have been plotted with the corresponding curve obtained from the X-
ead and b) trilobe ceramic pellet as used for the experiments in [39].



Fig. 21. Deposition process for the simulated packing structures of the two particle geometries: a) glass beads and b) trilobe pellets.
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Ray CT scans in Fig. 16. To explore the repeatability from separate
realisations with identical input parameters, eight simulations, corre-
sponding to different seeding of the the initial random location and ori-
entation have been compared to the experimental results. The standard
deviation for the bulk densities that were calculated from these eight
tests [0.5886 0.5824 0.5824 0.5897 0.5821 0.5898 0.5874 0.5903] is
equal to 0.0037. Therefore the standard deviation is about 0.625% of
themean (0.5866), i.e. a low coefficient of variation. Due to experimen-
tal constraints, the profile that has been reported in [37] represents the
axial packing density from 3 to 13 particle diameters only. Because of
this, it has not been possible to compare the wall effects at the bottom
of the container that have been captured by the FDEM simulations
Fig. 22. Final simulated packing structures of the two particle
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with the experimental curve. The numerical results for the axial packing
density are in agreement with the corresponding experimental results
from the X-Ray CT scans (black continuous line). The results in [37]
also provide the packing density profiles after a vibration (tapping)
has been applied to the pack of pellets (black dashed line). The vibra-
tions allow the pellets to reduce the void space and readjust in a denser
and more ordered configuration. The fact that the simulated profiles
present a higher amplitude and a frequency close to the particle size
when compared to relatively flat experimental profiles (even after vi-
bration) suggests that the calculation of the density profile is more sen-
sitive in the simulation than the one used for the experiments.
Moreover, the numerical results for the particle deposition (i.e. without
geometries; pack of a) glass beads and b) trilobe pellets.



Fig. 23. Packing density fluctuations for spheres: radial packing density distributions calculated from the X-Ray CT scans (in black) from [38], and from the numerical simulations (red)
[Spheres - PT 3.5 × 106 - FC 0.1 - DC 0.16]. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 25. Variation of packing density for spheres: average packing density perpendicular to
the axis of the container as sampled within each x,y location as described in Section 6
[Spheres - PT 3.5 × 106 - FC 0.1 - DC 0.16].
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vibration) are below the experimental axial packing density after tap-
ping, confirming the fidelity of the simulated pack.

The radial packing density profiles in Fig. 17 also show a goodmatch
between the numerical and the experimental results. The numerical re-
sults seem to have a higher amplitude periodicity in the simulated pack
when considering the region 0.5 and 1.5 particle diameters from the
container wall. In this region the numerical results are closer to the vi-
brated pack (black dashed line) than the deposited pack (black con-
tinues line). This could be an effect of possible differences in the
loading i.e. particle entry conditions that have not been reported in
[37], such as the dropping height, the number per batch and the way
the particles have been dropped inside the container, i.e. already having
acquired a non-random orientation due to the pouring mechanism etc.
Another possible cause might be the simulation boundary conditions.
The container walls are fixed in the numerical simulation but free to
move in the real experiment. Some of the energy might be dissipated
through small vibrations of the container in the real experiments. It is
not clear whether the expected slight excitation of the walls occurring
in the real dynamic experiment would enhance wall effect ordering
compared to the static constraint in the simulation or whether this en-
ergy transferred to the cylinder walls is simply reducing the energy
available for the neighbouring particles to reach more ordered
configurations.

The statistics of the pellet orientations for the angle between the
axes of the cylindrical pellets and the vertical axis of the container
were calculated in [37] from their X-Ray CT scans. The corresponding
numerical simulations of the A38 catalyst support pack are shown in
Fig. 18. The key differences are that the simulations show slightly
more sub-horizontal and slightly fewer sub-vertical cylinder axes with
Fig. 24. Packing density fluctuations for trilobes: radial packing density distributions calculated
[Trilobes - PT 3.5 × 106 - FC 0.55 - DC 0.16]. (For interpretation of the references to colour in t
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the simulations also showing slightly more mid-range (40–70 degree)
axes pellets. Given the uncertainties in being able to match Caulkin
et al.'s experimental procedure for”pouring into the container a handful
at a time” and adding pellets at the same coalescence rate, until such
from the X-Ray CT scans (in black) from [38], and from the numerical simulations (blue)
his figure legend, the reader is referred to the web version of this article.)



Fig. 26. Variation of packing density for trilobes: average packing density perpendicular to
the axis of the container as sampled within each x,y location as described in Section 6
[Trilobes - PT 3.5 × 106 - FC 0.55 - DC 0.16].
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time thatmore controlled packing tests can be performed together with
XRay CT analysis, the numerical results for axis inclinations are consid-
ered in general terms to be in close agreement with the Caulkin exper-
imental distributions. Needless to say, many speculative explanations
can be offered for these small differences. One might be that the ‘hand-
ful’ batches are nominally entering more densely with more neighbour
contacts than in the simulation's deposition process, hence constraining
the experimental packs to retain their pseudo random initial distribu-
tions to a greater extent than the slightly freer simulated deposition
process. The experiments would in this case tend to inhibit the rota-
tional freedom to a greater degree during collision impact compared
to the case for the simulations. The slightly greater freedom from a sup-
posedly less dense feed in the simulations will allow the particle's
shortest dimension axis to rotate more easily towards the upwards fac-
ing direction which typically has lower potential energy.

The stereographic projections representing the pellet orientations of
one of the four numerical simulations is shown in Fig. 19. Since the ex-
perimental statistics for the pellet axis azimuth angles have not been
provided in [37], it has not been possible to make a comparison for
this data set. However, it is interesting to comment on the stereographic
projection pattern which suggests some qualitative differences
confirming what is already seen in Fig. 18, i.e., the large proportion of
Fig. 27. Axial packing density variations calculated as derived from the numerical simulation
references to colour in this figure legend, the reader is referred to the web version of this artic
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pellets with axes inclined at about 40∘-70∘ to the vertical axis of the con-
tainer. To derive the same data from the stereoplot as presented in the
histogram plots, the frequency within each 10∘ bin would be derived
by counting all the points in each concentric circular strip, progressing
from the inner (0∘-10∘) circle to the outer (80∘-90∘) strip which has a
much greater area. The point density variation seen in the stereoplot
needs to be interpreted in the realisation that if all inclinations are
equally represented, there would be a very dense dark cloud of points
at the centre with progressively sparser point density as the perimeter
is approached. The relative sparsity in the centre is therefore a very pro-
found lack of near vertical pellets.

5. Packing of spheres and trilobes

A 19 mm inner diameter cylindrical container has been filled first
with two thousand glass beads and thenwith one thousand six hundred
ceramic trilobes. The spheres that have been packed have a diameter of
2 mm. Trilobes are catalyst supports with a base of approximately
1.3 mm in diameter and 4 mm in width, which gives a 2 mm volume-
based particle diameter, see Table 1. As shown in Fig. 20(a) and (b),
each sphere is discretised with 1,372 tetrahedra and each trilobe with
2,190 tetrahedra, for a total of approximately two million and seven
hundred thousand elements for the whole pack of trilobes. In the nu-
merical simulations the particles are modelled as rigid bodies with a
density of 2.5 g/cm3. The interaction between each pellet is computed
with a Coulomb coefficient of friction of 0.1 for the glass beads and
0.55 for the trilobes. The damping coefficient employed to represent
the energy loss due to the impacts is 0.16. The values of sliding friction
and damping (e.g. restitution coefficient) were not provided in [38].
For this reason an informed guess of these two parameters was made
with a parametric study, taking into account the values for glass and ce-
ramics that are generally reported in the literature. With a similar pro-
cedure adopted for the cylindrical catalyst deposition, in order to
avoid imposing an artificial regularity on the pack, the spheres and
trilobes are introduced into the domain above the container base in a
random irregular grid of one hundred pellets each, from a fixed height,
with random orientations and zero initial velocity, as shown in Fig. 21
(a) and (b) respectively.

The simulation results corresponding to the two particle shapes, as
shown in Fig. 22, have been compared to experimental results, but
this time only the experimental radial packing density profiles were re-
ported in [38]. Because of this, it has not been possible to compare the
axial packing density profiles and particle axis orientations calculated
from the simulations to the correspondent experimental data. The radial
packing density profiles in Fig. 23 show a good match between the nu-
merical and the experimental results for the pack of glass beads. More-
over, the periodicity of the boundary effects is well represented by the
numerical simulation, showing five distinctive peaks in the density
s of spheres (red) and trilobes (blue) in a cylindrical container. (For interpretation of the
le.)



Fig. 28. a) Orientation distribution derived from the numerical simulations of packing of
trilobes in a cylindrical container. b) Stereographic projections representing the pellet
orientations as derived from the numerical simulations of packing of trilobes in a
cylindrical container [Trilobes - PT 3.5 × 106 - FC 0.55 - DC 0.16].
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distribution profile. The radial packing density profiles in Fig. 24 show
almost as good a match between the numerical and the experimental
results for the pack of trilobes, with the simulated density marginally
lower. In this case, both the experimental and numerical results have
a single drop in the radial profile between 0.5 and 1 particle diameters
from the container walls, suggesting that the boundary effects are lim-
ited to the proximity of the container. This difference in the pack struc-
ture for the twoparticles can be found alsowhen comparing the average
packing density perpendicular to the axis of the container calculated
from the numerical simulations. In Fig. 25 the glass beads are arranged
in concentric rings that propagate from thewall to the centre of the con-
tainer. For trilobes, the periodicity away from the wall cannot be main-
tained. In Fig. 26 the trilobesmake just one ring in proximity of thewall,
resulting in a less ordered packing structure for the inner part of the
container. This difference in the order of the packed structure for the
two particle geometries could be explained as follows. For each possible
location that a particlemay assume, the number of all the possible stable
configurations that are available for a trilobe pellet (i.e. all the possible
orientations that are allowed by the neighbouring particles) is much
larger if compared to the only possible stable configuration of a sphere,
since all the orientations of a sphere are equivalent due to its symmetry.
For this reason, while the container wall effects are propagated through
the whole pack by the spheres, the trilobe pellets attenuate the bound-
ary effects due to their much larger degree of freedom. In Fig. 27 the
axial packing density profile calculated from the numerical results of
the pack of glass beads is compared to the one obtained from the simu-
lation of trilobes. Again, the boundary effects are much more pro-
nounced in the pack of spheres, with four distinctive peaks in the
proximity of the container base. Both profiles have a gentle negative
slope, representing the higher compaction of the deeper layers of parti-
cles as determined by the over-burden mass of the particles above, as
shown in the case of cylindrical pellets in the previous sections. Fig. 28
(a) shows the statistics of the trilobe orientations for the angle between
the axis of the pellet and the axis of the container that have been ex-
tracted from the numerical simulations. Due to the large aspect ratio
of these particles, the configurations nearer to vertical (from 0∘ to 50∘)
are unstable upon first contacts and therefore the trilobes in the pack
structure are mostly in the sub-horizontal orientations. This is in stark
contrast to the cylinders shown in Fig. 18. The cylinders simulated in
the previous Section had an aspect ratio close to one, which encouraged
the stability orientations to be more widely distributed and to include
virtually all angles including close to the vertical. This difference is
expressed very clearly in the stereographic projections for the cylinders
in Fig. 19, which are scattered across all orientations throughout the
whole domain, whereas for the trilobes in Fig. 28, they tend to occupy
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the outer region of the plot, representing the sub-horizontal
configurations.

6. Conclusions

The effects on the bulk properties of rigid cylindrical pellet packs of
mesh resolution, friction, energy dissipation and other numerical pa-
rameters have been presented and discussed. The optimal parameters
for the simulation of the A38 cylindrical catalyst supports in [10] have
been inferred by means of a sensitivity analysis using the mesh resolu-
tion and penalty term values that have been shown to be sufficiently
converged, and by studying the parameter space to find valid pairings
for the friction and damping coefficients. Experimental and numerical
axial and radial packing density profiles and orientation distributions
have been compared, confirming that the FDEM numerical simulations
of packing of rigid A38 cylindrical catalyst supports, glass beads and
trilobe pellets deposited in a cylindrical container match the corre-
sponding emergent bulk properties obtained from X-Ray CT scans
within very encouraging limits. These results give a first confirmation
of the capabilities of the FDEM based code Solidity for the simulation
of packed structures of catalysts in fixed-bed reactors. The results in
this work also constitute a necessary step towards future studies with
coupled FDEM formulations involving hydro-thermo-mechanical, frac-
turing and fragmentation interactions of catalysts in fixed-bed reactors.
It will also allow the representation of more realistic loading conditions
and deformable material responses that can lead to the crushing of cat-
alyst supports for future extensions of the work employing the deform-
able FDEM code as presented in [31]. In the present work the fidelity of
the pellet skeleton topology output from the rest state of the FDEM sim-
ulations has been assessed by means of emergent bulk properties such
as axial and radial packing density profiles, orientation distributions,
etc. It is anticipated that more confirmation of the high degree of accu-
racy of the packing structures that are generated with FDEMwill be ob-
tained in future work when comparing other mechanical properties of
the pack. For example, the simulated values of pressure on the container
walls can be comparedwith thepressure results fromactual packing ex-
periments. Another interesting prospect is to simulate the effects on
packing structures of different aspect ratios in packs of cylindrical pel-
lets or other geometric forms. More research also needs to be carried
out to study the relation between the history of particle entry, such as
hopper feeds, hand-batches, custom made feed regulator (e.g. uni-
dense), with the properties of final packed structures.
Declaration of Competing Interest

The authors declare no competing financial interests.

Acknowledgement

This research was supported by the Engineering and Physical Sci-
ences Research Council (EPSRC) with a Case studentship in collabora-
tion with Johnson Matthey (Ref: 1402780) and an Impact Acceleration
Account grant (Ref: EP/R511547/1).

Appendix A. Axial and radial packing density profiles

The numerical results are analysed with a post-processing tool that
has been specifically developed to reproduce the calculation process
employed to evaluate the axial and radial packing density profiles and
the pellet orientation distribution from the voxelised data format of
the X-Ray CT scans that has been employed in [37,38]. A regular grid
to generate an equivalent voxel structure is defined in the domain of
the numerical results. A value of 1 is assigned to the centroid of the
voxel cells that are inside a tetrahedron of the solid mesh and 0 is
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assigned otherwise. For the sake of clarity, in Fig. 29 the cell dimension
is shown here to be similar to the dimension of the pellets. The real cell
dimension chosen for the calculations is less than one tenth of the ele-
ment size, allowing amore precise discretisation of the packing density.
The binary values of each cell are then summed and averaged within
each horizontal plane from bottom to top to calculate the axial packing
density profile, as shown in Fig. 30(a) and (b). The cells are then aver-
aged along columns to obtain a planar profile of the average packing
density perpendicular to the axis of the container as shown in Fig. 30
(c). The values on the plane are then averaged along concentric rings
to calculate the radial packing density profile, as illustrated in Fig. 30
(d), from concentric halos of equal areas.

Fig. 29. Representation of the regular grid in the domain of the numerical results. Note, a
much finer voxel size is actually used to calculate the solid volume fraction in each slice.
Fig. 30. a) Averaging the values of cells along horizontal planes; b) axial packing density profile, c) averaging the values of cells along vertical columns; d) visualisation of the simulated
average packing density as if observed perpendicular to the axis of the container together with superimposed radial packing density profile showing periodicwall effect as also seen in the

visualisation.
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Appendix B. Vertical orientation distributions and stereographic
projections

The coordinates of the axis of each pellet are calculated using the in-
ertia tensor of the bodies that are calculated to compute the rotational
effects of contact forces in the rigid FDEM simulations. This data set is
exported at the end of the simulation to further characterise the packed
structure. In particular, the angle between the axis of the catalyst sup-
port and the axis of the container Fig. 31(a) is employed to generate sta-
tistics of the pellet orientation distributions that are then compared
with the corresponding data form the X-Ray CT scans from [37]. Lam-
bert Equal Area lower hemispherical projections are generally used for
presenting three-dimensional information on a two-dimensional plot.
Stereographic projections are commonly employed in structural geol-
ogy and geotechnical engineering applications [43], but they have
been used also for assessing randomness and clustering of orientations
of symmetry axes of concrete armour units within breakwater armour
layers [44] and pharmaceutical tablets [45] orientation representation.
Visual representation of the relationships between the angles of crystals
are also provided by stereographic projections [46]. In Fig. 31(b) the
equatorial reference frame represents the plane of the container base
and the plotted pellet orientations are illustrated as they would appear
from a top view. In Fig. 31(c) the stereographic projection for the orien-
tations of a simulated cylindrical catalyst support packed structure has
been shown.
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Fig. 31. a) Angle between the axis of the catalyst support and the axis of the container;
b) plotted pellet orientations as they would appear from above the container;
c) stereographic projection of the orientations of a cylindrical catalyst support packed
structure.
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