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Abstract

The application of the combined finite-discrete element method (FDEM) to simulate fracture propagation in fibre-reinforced-
concrete (FRC)-lined tunnels has been investigated. This constitutes the first attempt of using FDEM for the simulation
of fracture in FRC structures. The mathematical implementations of the new FDEM joint-element constitutive model are
first introduced, and the numerical model is then validated comparing the results for plain and FRC beams with three-point
bending experimental data. The code has also been applied to two practical tunnel design case studies, showing different
behaviours depending on the type of concrete and shape of tunnel section. The FDEM simulations of the linings are also
compared with results from a finite element code that is commonly used in the engineering design practise. These results
show the capabilities of FDEM for better understanding of the fracture mechanics and crack propagation in FRC tunnels. A
methodology for directly inferring the numerical parameters from three-point bending tests is also illustrated. The results of
this research can be applied to any FRC structure.

Keywords Numerical simulation - Combined finite-discrete element method - Joint-element constitutive model - Three-point

bending test

1 Introduction

Further developments in fibre-reinforced concrete (FRC)
technology, with the utilisation of a variety of fibre mate-
rials (e.g. steel, plastic, carbon, etc.) and geometries, have
increased the interest in FRC structures. FRC is now widely
used for tunnel linings. Following the collapse of the
Heathrow Express Rail Link tunnel in 1994 (and 39 other
major fibre-reinforced sprayed tunnel collapses worldwide),
a review by the Health and Safety Executive [1] concluded
that some safety-critical aspects of fibre-reinforced tunnel
design and construction were poorly understood. Moreover,
the complex interaction of fibres and concrete for the crack-
ing performance of FRC for its structural design still need to
be better understood and quantified. This opens the door to
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the application of computational methods for simulating the
mechanical behaviour and fracturing of FRC structures.

Interest in simulating fracture propagation extends across
a variety of scientific and engineering fields, such as struc-
tural analysis, material design, nuclear waste disposal risk
assessment, oil and gas reservoir engineering and subsurface
ore mining [2]. Numerical simulations are performed in order
to predict the formation and behaviour of these fracture sys-
tems, due to the geometric and physical complexity inherent
in fracture phenomena.

Two main modelling approaches can be identified in the
literature for fracture analysis: discrete crack and smeared
crack models, also known as geometric/non-geometric, or
grid/subgrid methods. They were introduced in the late 1960s
by Ngo and Scordelis and Rashid in application to concrete
structural analysis [3]. The smeared crack model is based
on the assumption that in concrete, due to its heterogene-
ity and the presence of reinforcement, many small cracks
nucleate which only in a later stage of the loading process
link up to form one or more dominant cracks. Since each
individual crack is not numerically resolved, the smeared
crack model captures the deterioration process through a
constitutive relation, thus smearing out the cracks over the
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continuum. In this kind of analysis, cracks are represented
as an isotropic or anisotropic damage concentration band
within a mesh element from which fracture geometry can be
inferred, instead of being explicitly defined [4]. Similarly
in phase-field approaches, fracture surfaces are approxi-
mated by the definition of a field that smears the boundary
of the cracks over a small region [5]. One of the major
advantages of phase-field approaches is that the evolution
of fractures follows from the solution of a coupled system
of partial differential equations. This drastically reduces the
complexity of the solver that is required to calculate the
simulated problems. In contrast, the discrete crack model rep-
resents cracks discretely and aims to simulate the initiation
and propagation of dominant cracks. This kind of analysis
can be performed with different approaches, e.g. boundary
element-based methods [6], peridynamics [7,8], finite ele-
ment simulations [9,10] extended finite element method [11],
discrete element method (DEM) [12—16] or combined finite—
discrete element method (FDEM) [17]. An important aspect
to underline is that the great majority of geometric meth-
ods do not maintain a representation of the fractures separate
from the mesh and rely on mesh editing techniques, such
as in-situ insertion of new crack nodes, edges and faces, to
capture mesh growth.

There are also several approaches presented in the litera-
ture aimed at describing solid fragmentation using DEM. In
[14], numerical simulations of uniaxial compression and cut-
ting processes of rock have been presented employing packed
discrete elements bonded together to represent the bulk rock
material. Similar examples are presented to describe tun-
nelling, flexural and Brazilian tests in [16]. The standard
approach consists of defining a packed structure of particles
(generally spheres) with a determined particle size distribu-
tion and then defining laws for the contact and interactions
between particles on the basis of parameters such as penalty
numbers, stiffness of the bonding and to obtain forces that,
once they are applied to the elements, define the movement
of the simulated bodies with Newton’s laws of motion.

Algorithms for FDEM simulations started to be proposed
from the 90s. Extensive developments and applications of
the FDEM method have been carried out after the release
of the open source Y-code in [17], and different versions
have been released, including the code developed from
the collaboration between Queen Mary University and Los
Alamos National Laboratory [18,19], the Y-Geo and Y-GUI
software that have been developed by the Geomechan-
ics Group led by Giovanni Grasselli at Toronto University
[20,21], and Virtual Geoscience Simulation Tools (VGeST)
released by the Applied Modelling and Computation Group
(AMCG) at Imperial College, London [22,23]. Recently,
the AMCG has upgraded and renamed VGeST as ’Solid-
ity’. A commercial FDEM code developed by Geomechanica
(www.geomechanica.com) has also been released in Canada,
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although its application has been limited to modelling geo-
materials. While the first Y-code employed finite strain
elasticity coupled with a smeared crack model to capture
deformation, rotation, contact interaction and fragmentation,
the AMCG has greatly improved the code, implementing a
range of constitutive models in 3D [24,25], thermal cou-
pling [26], parallelisation and a faster contact detection
algorithm [27].

Several models for the simulation of fibre-reinforced con-
crete have been proposed [28-30]. Most of the techniques
that have been presented, instead of inserting discrete frac-
tures, represent the concrete failure in a continuous fashion
with plastic deformations. A separate numerical representa-
tion of the fibres and concrete matrix has been presented in
[31], where the spatial location and orientation of the rein-
forcements have to be known or assumed a priori. Another
approach that has been proven to be effective in simulat-
ing fibres in cracked concrete is to smear their effects in
the traction versus crack opening law, which governs bridg-
ing stress across the crack faces of plain concrete [31]. In
[32], a cohesive fracture model for the simulation of FRC
has been presented. One of the limitations of this approach
is that the locations of the fractures must be known a pri-
ori in order to insert cohesive elements in the right locations
in the model. The advantage of using FDEM is that frac-
tures can initiate anywhere in the simulated system due to
stress criteria, without the need to know the failure mech-
anism of the simulated structure a priori, (i.e. in FDEM,
there is no requirement to seed pre-existing flaws or crack
tips within regions of the material and thereby constrain
crack propagation in the model). Furthermore, the multi-
body framework of FDEM allows for the fragmented material
interactions resulting from cracking to contribute to post-
peak strength behaviour, for example when lining failures
include compressive shear fracture behaviour and frictional
sliding.

FDEM simulations of geological and concrete structures
have attracted more and more attention in recent years. This
work constitutes the first attempt to extend the FDEM frame-
work to fibre-reinforced concrete structures. This will allow
designers to better assess the serviceability and ultimate limit
state behaviour of FRC tunnel linings, and it will contribute to
the development of detailed design guidance for FRC struc-
tures. The mechanical behaviour of FRC is different from the
brittle materials that were previously simulated with FDEM
codes (mainly rock and concrete). For this reason, a novel
joint-element constitutive model that introduces the soften-
ing behaviour induced by the presence of the fibres in the
concrete matrix was developed. This constitutive model is
presented in Sect. 2, and it contains several aspects of nov-
elty from previously proposed cohesive models for FRC,
e.g. in [32]. Instead of employing just multilinear func-
tions, this constitutive model utilises a more sophisticated
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stress-opening curve for the concrete matrix (i.e. the early
post-peak behaviour), which is based on heuristic curves
parameterised with actual tests on concrete. In Sect. 3, this
novel joint-element constitutive model is validated through
direct comparison with three-point bending experimental
results. In Sect. 4, the model is applied to two different tun-
nel lining designs, both a circular and a typical SCL lining
profile used at Heathrow in London Clay, both loaded up
to the ultimate limit state. The results are then compared to
those from standard elasto-plastic finite element models that
are commonly used in the engineering design practise but
lack discrete fracture representation. In Sect. 5, an extension
of the proposed joint-element constitutive model to represent
more complex post-peak behaviours (e.g. hardening) is intro-
duced. A methodology for directly inferring the numerical
parameters from three-point bending tests is also illustrated.
Section 6 contains a detailed discussion of the results that are
shown in this work. The key findings are then summarised
in Sect. 7.

2 Fracture initiation and propagation in
FDEM

2.1 Plain concrete

The Y-code, which was presented in [17], has provided the
fundamental theoretical aspects of the contact and cohesive
crack model employed in this work. The transition from a
continuous domain to a discontinuous domain is carried out
through fracture initiation and propagation processes. The
progressive fracture mechanisms implemented in the code for
the description of plain concrete is idealised with a distributed
micro-crack zone, a bridging zone and a traction free macro-
crack zone. This is based on the assumption that the stress—
strain curved consists of a hardening branch (before the peak)
and a strain-softening part (where the stress decreases with
the strain increasing), as illustrated in Fig. 1.

& €

Fig. 1 Objective stress—strain curve to be modelled for the plain con-
crete [17]

8¢ & &

Fig.2 Strain softening defined in terms of displacements for the plain
concrete

Figure 2 shows the strain-softening relation that has been
implemented in the code through the constitutive law of
the joint-elements in terms of stress and displacements. The
strain-softening part is also defined in terms of stress and dis-
placements in order to avoid the ill-posedness of the problem
generated by a stress—strain definition. The area under the
graph in Fig. 2 is the energy release rate (G.), i.e. the energy
dissipated in order to extend the surface of the crack. G is
also equal to twice the surface energy, which quantifies the
disruption of bonds that occur when a surface is created. The
relationship between stresses and displacements is modelled
through a single-crack model: when the size of separation
is zero, the bonding stress is equal to the tensile strength
(fo), implying that the separation begins only after reaching
this stress value equal to f;. Once the separation starts to
increase, there will be a decrease in bonding stress. When it
reaches a limit value of separation (3p), the bonding stress
tends to zero. In the actual implementation of this model, the
separation of adjacent element edges is assumed in advance
by introducing joint-elements and describing the topology of
adjacent elements with different nodes. As no two elements
share any nodes, the continuity between elements is enforced
through the penalty function method. Before the bonding
stress reaches the tensile strength, its value is given by Eq. (1),
where & is the separation corresponding to when the bond-
ing stress is equal to the tensile strength (6; = 2hf;/p), h is
the size of that particular finite element and p is the penalty
parameter.

3 28 §\? |
= |5 (3) v

After the bonding stress has reached the tensile strength,
the strain-softening law described in terms of stress and
displacements is given by Eq. (2), with a heuristic scaling
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function representing an approximation of the experimental
stress—displacement curves and the parameters a = 0.63,
b = 1.8 and ¢ = 6 are obtained from the interpolation of
experimental stress—displacement curves. These parameters
only define the shape of the softening curve, which is then
stretched depending on the material properties of the material
(i.e. the energy release rate and the tensile strength). How-
ever, the heuristic curve that was implemented in the first
Y-code was derived from direct tension experiments on con-
crete samples [33]. There are other materials that have been
tested to obtain a more representative softening curve shape,
such as granite, e.g. see [19]. The variable D is given by
Eq. (3), and the complete relationship for the normal bond-
ing stress as a function of separation can be written as shown
in Eq. (4).

+cb
1— %e@ 4<u+b‘§7(1‘—a—b>)
a+

o=l — (2
[a (1 - D)+b1 - D)]
0 8§ <6
D=1 ;7% di<8< 3)
(I
ﬁ% §<0
fil 2 - 2)? 0<8<$6
o= B % =o=" 4)
a+ch
1_7a:i;le(1’m)
fi [a(1—D)+b(1—D)°] §>8

2.2 Fibre-reinforced concrete

The fracture mechanism involved in the fibre-reinforced
spayed concrete is affected by the presence of discrete fibres
in the concrete matrix. Although the presence of fibres
increases the fracture process zone size, neither the tensile
strength nor the early post-peak behaviour is assumed to be
influenced by the presence of fibres at low volume frac-
tions. Figure 3 shows the modified stress-opening relation
that has been implemented in the code to account for the
concrete cracking, fibre de-bonding and fibre pull-out. The
concrete matrix fracture mechanisms dominate the post-peak
behaviour for small crack opening. For this reason, the stress,
after reaching the value of tensile strength ( f;), follows the
relation for the plain concrete with the previous exponen-
tial softening curve defined by Eq. (2) up to a crack opening
of (SI‘;, defined in Eq. (5). The value of crack opening 8£ is
reached when the fibres in the concrete matrix are activated.
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Fig.3 Strain softening defined in terms of displacements for the fibre-
reinforced concrete

At the beginning of the fibre pull-out phase, the bonding
stress between two fracture walls is defined by the post-crack
residual strength f. The stress then decreases linearly with
the crack opening &, up to a value of f, corresponding to
the crack opening limit é¢. The complete relationship for the
normal bonding stress as a function of separation is shown
in Eq. (6).
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The constitutive laws for the joint-elements that have been
defined in this section can be represented as the interposi-
tion of normal and shear springs between the joint nodes
of the elements in contact, as shown in Fig. 4. The grave
normal springs have a nonlinear stress—displacement law
given by Eq. (4), whereas the shear springs have analo-
gous laws representing shear failures. The normal and shear
springs between the joint nodes of the elements in con-
tact are removed once the separation reaches the value
8¢, meaning that the fracture has propagated through the
edge.
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Fig.4 Schematic representation of the joint-elements: normal and shear
springs transmit the residual bonding stress between the edges of two
finite elements during concrete cracking, fibre de-bonding and fibre
pull-out

3 Three-point bending test simulations
3.1 Numerical model

The implemented joint-element constitutive model has been
validated by comparing the simulated response with the
experimental data for three bending tests on plain and FRC
beams reported in [32]. The geometry of the tested samples
is shown in Fig. Sa.

The experiments have been modelled with 2D FDEM
simulations. The boundary conditions and the 2D triangular
mesh are illustrated in Fig. 5b. The simulation is performed
with a plane-strain assumption. The top roller is constrained
with constant velocity. To reduce the run time of the numeri-
cal simulation, the velocity of the constraint is set to 0.01 m/s.
Although this loading rate is higher than the one in the lab-
oratory experiment, it induces a quasi-static response in the
bar as there is no significant difference between the force
applied by the punch and the one applied by the two con-
straints. To further reduce the calculation time, when the
simulation starts, the roller is in contact with the specimen.
Since fracture initiates and propagates above the notch, the
specimen is discretised with an unstructured coarse mesh at
the two edges. Moreover, a fine mesh is employed in the cen-
tre of the specimen to better represent both the de-bonding
stress during the opening of the crack and the fracture path
along the element boundaries. The total number of elements
employed in the model is around 2200. The material prop-

erties used to describe the three-point bending apparatus are
E; =210GPa, vy =0.3 and ps =7850 kg/mz, where Eg is
the Young’s modulus, vy is the Poisson’s ratio and ps is the
density. The material properties used for the specimens are
E.=26.5GPa, v. =0.19, p. = 2333 kg/m3,ﬁ =3MPa and
Gy = 90 J/m?. The frictional interaction between the rollers
and the samples is modelled using a Coulomb coefficient of
friction equal to 0.01. The parameters that describe the FRC
post-peak behaviour due to its fibres are f ; = fr =0.5MPa
and § y = 3.5 mm. The materiel properties used in the numer-
ical simulations are summarised in Table 1.

3.2 Results

Results from the FDEM simulations on plain and fibre-
reinforced concrete and the corresponding experimental
load—crack mouth opening displacement (CMOD) curves of
three bending tests on the two types of concrete, are shown in
Fig. 6. The numerical results for the plain concrete specimens
are compared with the corresponding experimental curves in
Fig. 6a. The value of the peak load is correctly represented
in the simulated experiment. The numerical model slightly
overestimates the load in the initial part of the post-peak load-
CMOD curve and underestimates the load after a CMOD of
about 0.2 mm. This difference is due to the values of the
parameters a, b and ¢ that have been chosen to represent the
decay of the concrete stiffness during crack propagation.

Overall, the behaviour of the actual plain concrete spec-
imens is well represented in the corresponding numerical
simulation, with an ultimate CMOD of 0.8-0.9 mm. Fig-
ure 6b shows the results for the FRC specimens. Here, the
numerical results match very well the experimental data, not
only in terms of peak load, but also for the residual strength
during fibre de-bonding and fibre pull-out.

Figure 7 shows the difference in the horizontal stress
filed for the two types of concrete for an equivalent frac-
ture width. In the plain concrete beam, the two fracture walls
are unloaded, as shown in Fig. 7a. Differently, in the FRC
beam shown in Fig. 7b, even though the fracture has almost
split the specimen in two halves, the fracture walls are still
joined by some steel fibres and the cracked section is under
horizontal stress, in order to support the applied load that is
transmitted by the punch.

4 Tunnel simulations

4.1 Numerical model

The new joint-element constitutive model has been applied
to simulate the response of two FRC tunnels. The geome-

try and mesh of the simulated circular tunnel are shown in
Fig. 8a, whereas the typical NATM tunnel shape, which is
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Fig.5 a Geometry of i 700 mm d
three-point bending specimens ﬂ q

that have been tested in [32]. b
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of the same beam that have
simulated using FDEM
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Table 1 Material properties

-1’ Proper E v p fi Gi ff Ir 8f
used for the simulations: GP ke /m? MP. /m? MP. MP.
three-point bending apparatus (GPa) (kg/m") (MPa) /m (MPa) (MPa) (mm)
(Steel), plane concrete (PC) and
fibre-reinforced concrete (FRC) Steel 210 0.3 7850

26.5 0.19 2333 3 90
FRC 26.5 0.19 2333 3 90 0.5 0.5 35

that of the Heathrow Trial Tunnel (HTT) [34], is illustrated in
Fig. 8b. The tunnels have been modelled with 2D FDEM sim-
ulations, assuming plane-strain conditions. The two tunnels
are subjected to increasing in situ stresses: the vertical stress
is ramped from 100kPa to a value of 1 MPa. The horizon-
tal stress is ramped from 40 to 400kPa. Although the FDEM
code is capable of simulating the interactions between the soil
and the tunnel linings, the effects of the in situ soil stresses
and subsequent passive reaction have been directly applied
to the linings as an equivalent surface pressure. This has been
done to reduce the run time of the simulations.

A fine mesh is employed for the linings to better represent
the de-bonding stress during the opening of the crack. The
refinement of the triangular mesh employed for the tunnels is
illustrated in Fig. 8c. The total number of elements employed
in the model is around 36,100. The material properties used
to describe the soil (London Clay) are Eg =125 MPa, vg=0.2
and pg =2000 kg/rnz, where Ej is the Young’s modulus, vy is
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the Poisson’s ratio and ps is the density. The material prop-
erties used for the linings have been reported in the previous
section.

4.2 Results of circular tunnel shape

Figure 9 shows the horizontal stress field and fracture sur-
faces for the numerical simulations of the plain concrete and
FRC circular tunnel under ramping in situ stresses. Fractures
appear with an in situ vertical stress between 450 and 600 kPa
in the inner arch at the top and bottom of the linings. Figure 9c
and e shows the fractured sections of the plain concrete lin-
ing. After failure, the stress around the cracks drops to zero,
meaning that portion of the tunnel is not supporting the in
situ stresses. Differently, the fibres in the fractured sections
of the FRC lining are still transmitting some stress in order to
equilibrate the in situ stresses, as shown in Fig. 9d and f. The
horizontal stress at the bottom and top inner arch of the tunnel
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Fig.6 Experimental results T T T T T T
(dashed black) for three bending
tests on a plain and b FRC g
beams [32]. Numerical response .
(red) of the simulated a plain Z
and b FRC beams with the =
joint-element constitutive model '%
implemented in FDEM 3 ﬂ
0 | | | | | | ) | | |
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Fig.7 Horizontal stress [Pa] in
the simulated a plain and b FRC
beams with the joint-element
constitutive model implemented
in FDEM
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Fig.8 Geometries and finite

60 m
element mesh of a the circular

and b complex-shaped tunnel
that have been analysed using
FDEM. ¢ Detail of the mesh
discretisation used for the
complex-shaped tunnel

R 4.000 m - 4@‘“0250 m

(a)

60 m
R4458m
60 m R3.000m — ~—0.250 m 60 m
RO447 m
(b)

is plotted against the applied in situ vertical stress in Fig. 10.
The numerical results show that cracking is more localised
for the plain concrete lining (with a crack spacing of about
180-200 mm) compared to the FRC (with a crack spacing of
about 120-160 mm). The stress in these most vulnerable sec-
tions of the lining increases with the applied in situ stresses,
up to the value of tensile strength (3 MPa). At that point, the
stress carried by the plain concrete drops to zero, whereas
reaches the value of the residual strength (0.5MPa) in the
FRC.

Figure 11 shows the results of a similar analysis under-
taken with finite elements (FE). This figure shows the areas
where the model predicts tensile stresses in the tunnel lining.
The finite element model implements the nonlinear stress
strain curve of FRC shown in Fig. 12.

Comparing the FE analysis results with the FDEM anal-
ysis, it is apparent that the areas and magnitudes of stress
predicted by both are comparable. However, the FE model
is not able to capture the crack initiation and propagation.
Thus, crack widths, spacings and locations are not able to be
captured with this ‘smeared’ approach to modelling cracking.
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4.3 Results of Heathrow trial tunnel shape

Figure 13 shows the horizontal stress field and fracture sur-
faces for the numerical simulations of the plain concrete and
FRC HTT shape under ramping in situ stresses.

Fractures appear with an in situ vertical stress around
400kPa. The plain concrete lining in Fig. 13a shows a single
crack in the centre of the inner bottom arch of the tunnel. High
tensile stresses also occur on the extrados of the lining at the
‘knees’. The FRC lining in Fig. 13b shows a more distributed
crack pattern due to stress redistributions and post-crack duc-
tility provided by the fibres. In this case, the fibres have been
activated to keep the structure together. There is a certain
degree of asymmetry in the results due to the fact that the
computational mesh is not symmetric with respect to the ver-
tical axis.

Figure 14 shows the results of a similar analysis under-
taken with finite elements (FE), similar to the circular tunnel.
As with the circular shape, the FE analysis predicts similar
stresses to the FDEM analysis, and again the FE model is not
able to capture the crack initiation and propagation. More-
over, the zone of tensile stresses on the extrados at the knees
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Fig.9 Horizontal stress [Pa] in
the simulated a plain and b FRC
circular tunnel with the
joint-element constitutive model
implemented in FDEM. Details
of the damaged zones in ¢ the
upper and e the bottom inner
arch of the plain concrete
tunnel, and of the FRC lining
(d) and (f), respectively

3e+06 0

]
3e+06 36406 0 3e+06

Fig. 10 Numerical response of = 3
the simulated plain (dashed) and ch
FRC (continuous) tunnels with =
the joint-element constitutive ':
model implemented in FDEM. 2 2
The horizontal stress at the =
bottom (black) and top (red) E
inner arch of the tunnel is _f__,@ 1
plotted against the applied in g
situ vertical stress E

= 0

0 100 200

of the lining in the FE model is slightly above the locations
identified in the FDEM simulation. This is likely to be due to
the stress redistribution around discrete cracks that is mod-
elled with FDEM code but ‘smeared’ by the FE code.

5 Multilinear joint-element constitutive
model

In the previous sections, the residual strength of fibres has
been implemented in the FDEM code with a linear degra-

300 400 500 600 700 800 900

In Situ Vertical Stress [kPa]

dation of the joint-element stiffness. This allowed the model
to correctly simulate the experimental results presented in
[32]. In some cases, the post-peak behaviour of FRC cannot
be described with a linear curve, e.g. when it shows some
forms of hardening. With a similar approach to the one pre-
sented in the previous sections, more complex stress-opening
relations can be described with a multilinear degradation of
the joint-element stiffness. There is merit in extending the
current implementation of the strain-softening joint element
constitutive model to a multilinear function, which would
allow generalisation of the FDEM approach. The parameters
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Fig. 11 a Areas of horizontal
tensile stress [kPa] in circular
tunnel predicted by finite

Stress: xx (Pa)

element analysis. Details of the 3.1 x108
damaged zones in b the upper
and c the bottom inner arch

1.6 x 108

-~
(b)
o,
b)
Oy
Eon I
n |
|
£
] £y i
- 19 = -
g3 o i Eco Ecu rs
L

Fig. 12 Stress—strain response of FRC that has been implemented in
the FEM code

would then be calibrated to any measured FRC response. A
proposed approach is described herein.

Equation (7) describes a modified multilinear version of
the joint-element constitutive model, as shown in Fig. 15a.
The f; and §; parameters can either be directly calculated
from uniaxial tensile tests or inferred from load-CMOD
curves of bending tests, like the one shown in Fig. 15b. The
residual flexural tensile strength f; at any CMOD can be
approximated from the Euler—Bernoulli beam theory with
Eq. (9), in accordance with EN 14651 [35], where F; are the
recorded values of load, b is the width, / is the span length
and hgp is the distance between the tip of the notch and the
top of the specimen.
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The crack opening displacement §; corresponding to any
value of CMOD can be calculated assuming (i) rigid body
rotations of the two prism halves centred about the crack tip
and (ii) that the failure occurs along a single dominant crack.
An appropriately conservative estimation has been proposed
in [36] and can be calculated with Eq. (9), where D is the
total height of the specimen.

0.35 hyp

The f; and §; parameters might also be optimised with
inverse analyses to correct the errors introduced by the
oversimplified assumptions made for their calculation. For
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Fig. 13 Horizontal stress [Pa] in
the simulated a plain and b FRC
HTT tunnel with the
joint-element constitutive model
implemented in FDEM. Details
of the damaged zones in the
bottom inner arch: ¢ plain
concrete and d FRC lining.
Details of the bottom right outer
arch: e plain concrete and f FRC
lining

3e+06 0

3e+06

3e+06

(@) (b)
(c) (d)
(e) )
Fig. 14 Areas of horizontal Stress: xx (Pa)
tensile stress [kPa] in Heathrow /--—-\ -
Trial Tunnel shape predicted by
finite element analysis 1.4 x 107
7.4 x 108
0

example, the Euler—Bernoulli beam Eq. (9) assumes a lin-
ear profile of the stress within the cross-section of the beam.
This is definitely not the case for a FRC beam after the peak
load, when the fibres are activated in a portion of its cross-

section. For this reason, numerical simulations of the bending
experiments on fibre-reinforced concrete can be repeated for
different values of f; and §; until the numerical response
matches the experimental one.

@ Springer
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Fig.15 a Multilinear residual stress softening relation defined in terms
of displacements for the fibre-reinforced concrete. b Suggested method
to calculate the residual tensile strength of FRC from the load-CMOD
diagram [35]

0 CMOD,=0,5 CMOD, = 1,5 CMOD, = 3,5

6 Discussion

In the bonding stress model that has been described above,
the stress and strain fields close to the crack tip are influenced
by the magnitude and distribution of the bonding stress close
to the crack tip. In particular, the stress field is influenced
by the mesh topology close to the crack tip. For this rea-
son, in order to obtain accurate numerical representations
of the stress relaxation during fracture propagation, a suffi-
ciently fine mesh needs to be used. Since each joint-element
transmits a constant value of bonding stress, at least four ele-
ments should be used to discretise the plastic zone during
the crack opening. The size of the plastic zone, which is the
portion of material that is deforming under stresses that have
reached the value of the tensile strength, is defined by the
material properties of the simulated structure (Young’s mod-
ulus, fracture toughness and tensile strength) and is normally
of the order of few millimetres for standard concretes. For
many engineering applications, when a system of dozens of
metres is simulated, this constraint on the mesh size might be
impractical as it would extend too much the runtime of the
simulations. For this reason, a coarser mesh is often employed
when simulating big systems, reducing the accuracy of the
calculations.

The mesh size is not the only constraint on the numer-
ical discretisation of the simulated body. The fracture path
is constrained to follow the element edges, where the joint-
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elements are located. For this reason, since a crack cannot
propagate through finite elements but only through their
edges, a structured mesh would artificially constrain the
cracks to follow some preferential paths. The fracture paths
are generally not known a priori, and they should be only
governed by the direction of maximum tensile stress at the
crack tip. The fracture grows at a crack tip when the stress
field reaches the value of tensile strength in the orthogonal
direction to the closest joint-element and the kinematics of
the structure activated by the external loads needs to allow
an opening displacement in that same direction. Unstructured
meshes can minimise the mesh dependency on the final crack
paths, but the fact that the joint-elements are not necessar-
ily aligned to the direction of maximum stress at the crack
tip can cause an artificial overestimation of the structural
strength and toughness at the mesoscale.

The code has an explicit solver; in other words, it discre-
tises the continuous time in time steps, and then, it calculates
the state of a system at a later time step on the basis of the state
of the system at the current time step. This implies that, even
if only the status of the system at an exact time is required
(e.g. when the tunnel is loaded up to the ultimate limit state),
the code needs to calculate the output for every prior time
step until it reaches the required one. To give an example:
if you want to calculate the state of a modelled system after
three seconds from the initial conditions, the total run time
is equal to the run time of a single iteration multiplied by the
number of time steps before the required one; in this case,
three seconds divided by the length of the time step used for
the time integration in the simulation (which is normally in
the order of the nanoseconds). At the beginning of the simula-
tion, the whole model is at rest, with zero stress everywhere.
This means that the in situ stresses need to be applied during
the simulation slowly enough to avoid dynamic effects in the
simulated system. In other words, to assure the stability of
the simulation, the code needs to calculate the whole system
for many time steps. In some cases, this makes the run time
of a simulation unfeasible.

In spite of the modelling limitations that have been illus-
trated in this section, the FDEM code is capable of capturing
the failure mechanisms of FRC structures with a sufficient
level of accuracy, as demonstrated in the previous sec-
tions. On the one hand, this alone constitutes a considerable
improvement from the potentially over conservative contin-
uum methods, such as FEM. These methods do not explicitly
capture fracture initiation and propagation and consequently
cannot describe with adequate accuracy the stress redistri-
bution in the structure during failure. On the other hand, the
discrete representation of fractured portions in the simulated
structures allows a quantitative estimation of the damage
under a defined loading condition. Not only is it possible
to assess the overall performance of the simulated structures,
but it is also possible to extract information such as crack
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widths and crack spacing. This capability of the FDEM code
can also be useful during tunnel design in order to identify
the most vulnerable sections of the lining. Moreover, para-
metric studies can be done to take into account uncertainties
during the tunnel construction. Parameters such as the varia-
tion in the thickness of the lining and actual density of fibres
in the mix can be changed in the simulation to study the ser-
viceability and ultimate limit state behaviour of FRC tunnel
linings under different scenarios.

7 Conclusions

In conclusion, the work that has been presented is the first
attempt to use a joint-element constitutive model in FDEM
for the simulation of fracture in FRC structures. The new
FDEM joint-element constitutive model that has been devel-
oped provides a promising prediction of peak and post-crack
behaviour of a published data set [32] for plain concrete
and fibre-reinforced concrete three-point bending test. The
proposed constitutive model is sufficiently versatile to be
adapted to any fibre response based on its three-point bending
test results.

The FDEM code has been applied to a circular and typ-
ical SCL lining profile in London Clay loaded up to the
ultimate limit state. The numerical results show that crack-
ing is more localised for a plain concrete lining compared
to the FRC. Some of the limitations of the code have been
presented and discussed. Although the FDEM code is capa-
ble of simulating the interactions between the soil and the
tunnel linings, in the proposed examples, the effects of the
in situ stresses have been directly applied to the linings as
a surface pressure in order to reduce the run time of the
simulations.

The simulations that have been shown in this work were
limited to FRC tunnels, but the model can be applied to any
FRC structure. Continuum methods, such as FEM, do not
explicitly capture fracture initiation and propagation and con-
sequently cannot describe with adequate accuracy the stress
redistribution in the structure during failure. For this reason,
they generally give over conservative results.

The proposed method allows the discrete representation
of fractured portions in the simulated structures that enable a
quantitative estimation of the damage under defined loading
condition. For instance, it is possible to extract information
such as crack widths and crack spacing. The novel techniques
employed in this study will help to increase knowledge of the
serviceability and ultimate limit state behaviour of FRC tun-
nel linings, and so significantly contribute to the development
of detailed design guidance for FRC structures.

The FDEM code can be used during tunnel design in
order to identify the most vulnerable sections of the lining
and therefore to target improved design efficiency. Moreover,

parameters such as the variation in the thickness of the lin-
ing and actual density of fibres in the mix can be changed in
the simulation to study the serviceability and ultimate limit
state behaviour of FRC tunnel linings under different scenar-
ios. More research needs to be undertaken to reduce the run
time of the simulations and model explicitly the interaction
between the soil and the FRC linings.
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