Home
ADOpy is a Python implementation of Adaptive Design Optimization (ADO; Myung, Cavagnaro, & Pitt, 2013), which computes optimal designs dynamically in an experiment. Its modular structure permit easy integration into existing experimentation code.
ADOpy supports Python 3.5 or above and relies on NumPy, SciPy, and Pandas.
Features
- Grid-based computation of optimal designs using only three classes: :py:class:`adopy.Task`, :py:class:`adopy.Model`, and :py:class:`adopy.Engine`.
- Easily customizable for your own tasks and models
- Pre-implemented Task and Model classes including:
- Psychometric function estimation for 2AFC tasks (:py:mod:`adopy.tasks.psi`)
- Delay discounting task (:py:mod:`adopy.tasks.ddt`)
- Choice under risk and ambiguity task (:py:mod:`adopy.tasks.cra`)
- Example code for experiments using PsychoPy (link)
Citation
If you use ADOpy, please cite this package along with the specific version. It greatly encourages contributors to continue supporting ADOpy.
Yang, J., Pitt, M. A., Ahn, W., & Myung, J. I. (2019). ADOpy: A Python Package for Adaptive Design Optimization. https://doi.org/10.31234/osf.io/mdu23
References
Myung, J. I., Cavagnaro, D. R., and Pitt, M. A. (2013). A tutorial on adaptive design optimization. Journal of Mathematical Psychology, 57, 53–67.
Content
.. toctree:: :maxdepth: 1 :glob: getting-started.md dev-guide.rst
.. toctree:: :maxdepth: 1 :glob: :caption: examples examples/*
.. toctree:: :maxdepth: 1 :glob: :caption: API Reference api/base.rst api/tasks/*