

Code Jam Proposal:
Algorithmic Trading Application

Contents
1 Overview ... 2

2 Strategies .. 3

I Simple Moving Average (SMA) ... 4

II Linear Weighted Moving Average (LWMA) .. 4

III Exponential Moving Average (EMA) ... 4

IV Triangular Moving Average (TMA) .. 5

3 Architecture & Specifications.. 6

I Trading .. 6

II Scheduling ... 7

III Reporting... 7

4 Judging Criteria ... 9

I Trading .. 9

II Scheduling ... 9

III Reporting... 9

5 Judging and Submission Procedures ... 10

6 Appendix ... 11

I Strategies .. 11

II Exchange ... 11

III Reporting... 12

1 Overview
You have been selected by Morgan Stanley’s Electronic Trading group (MSET) to provide a platform for

testing out new low-latency trading strategies on electronic exchanges. Trading strategies are a

predefined set of rules for making trading decisions. Certain strategies are better suited to be executed

algorithmically, via a computer, to take advantage of faster processing time. On a given exchange, there

are many trading strategies being executed, and often the speed in which an algorithm reacts to a given

market condition can greatly influence its profitability. MSET would like to benchmark several strategies

in order to find the best one.

Your task is to build an application that will handle trading, scheduling, and reporting for MSET. Your

application will connect to an exchange’s price feed, process incoming prices and make trades according

to the several strategies. The application will also display real-time graphs for the price feed, as well as

the indicators of the various strategies. Finally, the trade history must be tracked, and supervised by

trade managers that your application will schedule.

2 Strategies
MSET would like to try out several variations of Moving Average Crossovers. These involve tracking two

moving average signals for a given stock price and executing a trade according to the movement of

these indicators.

A moving average, also called a running average, is a set of data points, each of which is the average of

the corresponding subset of a larger set of data points.

Given a series of numbers and a fixed subset size, the first element of the moving average is obtained by

taking the average of the initial fixed subset of the number series. Then the subset is modified by "shifting

forward", that is excluding the first number of the series and including the next number following the

original subset in the series. This creates a new subset of numbers, which is averaged. This process is

repeated over the entire data series.
1

Moving averages of price feeds show the trend of that price over the period averaged. Often, in

technical analysis, we observe two moving averages: A short-term (i.e. with a smaller period) and a long-

term average (i.e. with a larger period). A short-term average is considered faster because it only

considers the latest prices and is more reactive, where as a long-term average is slower as it includes

prices over a longer period of time and reacts more sluggishly. The slower average also tends to smooth

out the volatility of short-term price changes. A moving average crossover occurs when the faster

average crosses the slower average; it indicates a change in trend for a given data-set. The faster

average can cross the slower average “from the bottom,” indicating an upward trend (an indication to

buy) or “from the top,” indicating a downward trend (an indication to sell).

Figure 1. Example price feed with EMA crossover

1
 Moving average. Wikipedia, The Free Encyclopedia. http://en.wikipedia.org/wiki/Moving_average

http://en.wikipedia.org/wiki/Moving_average

There are several types of moving averages that can be computed, MSET would like to try the following

types:

I Simple Moving Average (SMA)

The SMA is the unweighted mean of the last N data points. When calculating successive values, a new

value comes into the sum and an old value drops out, meaning a full summation each time isn’t

necessary. We can use the formula:

However, this would require gathering at least N data points before we can obtain any values.

Therefore, for the first N data points we simply take the average:

II Linear Weighted Moving Average (LWMA)

The LWMA is similar to the SMA, however it uses weighting factors to assign more importance to the

most recent data points. For a period N, the current price is multiplied by N, the previous price is

multiplied by N-1, and so on. The sum of these weighted prices is then divided by the sum of the

weighting factors. This can be represented by the formula:

As with the SMA, for the first N data points, we have to modify the formula:

III Exponential Moving Average (EMA)

The EMA, is similar to the LWMA, except it applies exponentially decreasing weighting factors to the

data points, once again, giving more importance to the latest data points. For a price feed, the EMA for a

period N can be calculated recursively using the formula:

Because N and t are not dependant on each other in this formula, we can let , then use

the formula for all t > 1

IV Triangular Moving Average (TMA)

The TMA is a smoothed version of the SMA. It can be calculated at a given time, over a period N, as

follows:

For the first N values, it is calculated similar to LWMA:

All of the strategies employed will use a “fast” period of 5, and a “slow” period of 20.

3 Architecture & Specifications

I Trading

 Figure 2. System Architecture

The exchange will be using two channels for communication. The price feed, a TCP socket, and the trade

booking and confirmation service, a TCP socket. The port numbers for the two sockets will be

configurable.

The exchange has the following usage:

 msexchange OPTIONS

 -p <priceFeedPort>

 -t <tradeBookingPort>

 -d <dataFileLocation>

The exchange will read in the prices from a supplied input file. The file is a standard ASCII text document

with one price per line. We have included several sample files along with the exchange.

Once the exchange is started, it waits for a control signal to begin the price feed. The client must send

the character ‘H’ to start the price feed. This should be done manually on the GUI with some sort of

button or visual tool.

The exchange will send prices with a delimitating character ‘|’ (pipe). The prices will be positive decimal

numbers, from 0 to 999, with 3 decimal places of precision.

In order to execute a buy trade, the client sends the character ‘B’. In order to execute a sell trade, the

client sends the character ‘S’. In both cases, the exchange responds with the price at which the trade

was executed. These trade executions should be perform automatically and autonomously by the

application according to the strategies.

When the trading session is over, the exchange will send the special control character ‘C’. Note that the

exchange will stop accepting trades as soon as the exchange closes (i.e. the last price was sent).

The exchange will respond with the error code ‘E’ for any unsupported operations (i.e. A trade sent after

the exchange close or an unknown message).

Price Feed

Trade booking/confirmation

Trading Server

(client)
Exchange

(server)

Price

file

 Price Feed Client Trade Booking

 Receive 54.550

 Detect crossover

 Send ‘B’

 Book at 54.620

 Confirmed

 Figure 3. Sequence diagram for a trade

II Scheduling

The stock exchange is open from 9:00 AM to 6:00 PM for electronic trading. Because MSET is using your

application to test out a new strategy, they want to have a trade manager to look over each trade. Your

application must take care of the scheduling for these managers. For simplification, we will run the

exchange on a modified time scale. The exchanges opening hours (9 hours) can be represented as 32400

seconds. We will assume that each time a price is received from the exchange it corresponds to 1

second; therefore, your application must keep track of “time” and increase it for every price you receive.

Here are the specifications for manager scheduling:

 A manager can monitor an unlimited number of trades.

 A manager can only monitor trades for a maximum of 2 strategies at a time.

 We assume there is a limited pool of managers available.

 For simplicity, name your managers Manager1, Manager2, …, ManagerX.

 A trade manager works a maximum of 4.5 hours per day (total) including a break of exactly 0.5

hours after exactly 2 hours of work.

Each trade must be assigned to a manager, and the application should minimize the number of

managers required during the exchange hours. The manager’s schedule should be available before the

start of the trading session.

III Reporting

At the end of the trading day all of the trades need to be entered into the company’s books for record

keeping. Due to the official nature of this information, the file must be submitted as a signed PDF. We

are going to use Silanis’ e-SignLive service for this purpose. Your application must have a button that

becomes enabled only at the end of the trading day. By clicking the button your application will send a

list of executed trades to the Silanis API. The call is an HTTP POST to https://stage-api.e-

signlive.com/aws/rest/services/codejam.

To authenticate your request you must provide the CodeJam API key by setting an HTTP request header

"Authentication: Basic Y29kZWphbTpBRkxpdGw0TEEyQWQx"

https://stage-api.e-signlive.com/aws/rest/services/codejam
https://stage-api.e-signlive.com/aws/rest/services/codejam

The body of the POST request must contain the following:

 CodeJam Team Name

 The Judge's information (mcgillcodejam2012@gmail.com)

 List of transactions

o Each transaction should include the time (in milliseconds from the start of the day), the

type of trade (“buy” or “sell”), the executed price, the trade manager’s name, and the

strategy used (“SMA”, “LWMA”, “EMA” or “TMA”).

Note: A sample JSON document is provided in the Appendix.

The return value of this request is a JSON formatted signing ceremony id. Your application needs to

display this ID upon successfully completing the API call.

4 Judging Criteria
Your application will be judged on the following criteria:

I Trading

 The correct number of trades was made for each crossover strategy given the price feed.

 The latency of trades with respect to the point of the crossover. [minimized]

 The GUI

o Real-time graph of price, fast and slow moving averages for each strategy. [4]

 In order to get a decent granularity of the prices and averages on the graph, it is

suggested to show a “rolling window” of the last N (i.e. 100) prices. [optional]

o Trade history, for each strategy, indicating, the time, type and price. Can be tabular,

integrated with the graph or some other visual representation.

II Scheduling

 A schedule was generated prior to the start of the trading session.

o The schedule should be represented visually from your application. It can be tabular, in

the form of a Gant chart or otherwise.

 Each trade was assigned to the appropriate manager.

 The number of managers required was minimized.

III Reporting

 Button to send report is only functional at end of trading session.

 Successful API call to e-SignLive service (Judge receives signing ceremony email).

 A copy of the JSON data is saved locally.

 Ceremony ID is displayed on GUI.

5 Judging and Submission Procedures
You will be provided with a virtual box image (Windows and/or Linux) on a USB key. You will install your

application into this image. You will return the USB key at the end of the weekend. Make sure you

provide with your image the following information:

 How to start and stop your application from inside the virtual image. There should be clear and

simple instructions for starting your application. The use of a start-up script is encouraged when

multiple processes need to be started.

Note: Failure for the judges to run your application will result in DISQUALIFICATION

 The TCP ports you are using for the price and trade confirmation feed. (optionally, these can be

made configurable in your application)

 If you are providing your GUI through a web based paradigm include the home page URL (e.g.

http://localhost:8080/mset/home) of your GUI.

Make sure you leave yourself plenty of time to configure the application in your virtual OS image. Last

year a surprising number of submissions didn’t run for the committee in the judging phase after the

weekend.

Make sure that your trading application can connect to the exchange running outside the virtual

machine from another physical host on a local LAN. This is how the judges will test your application.

Host PC

Exchange
Trading

Server

VM

LAN

6 Appendix

I Strategies

Here are some sample values for each type of Moving Average:

Time Price SMA[5] LWMA[5] EMA[5] TMA[5]

1 61.590 61.590 61.590 61.590 61.590

2 61.440 61.515 61.490 61.540 61.553

3 61.320 61.450 61.405 61.467 61.518

4 61.670 61.505 61.511 61.534 61.515

5 61.920 61.588 61.647 61.663 61.530

6 62.610 61.792 61.988 61.979 61.570

7 62.880 62.080 62.351 62.279 61.683

8 63.060 62.428 62.677 62.539 61.879

9 63.290 62.752 62.965 62.790 62.128

10 63.320 63.032 63.154 62.966 62.417

11 63.260 63.162 63.230 63.064 62.691

12 63.120 63.210 63.216 63.083 62.917

13 62.240 63.046 62.893 62.802 63.040

14 62.190 62.826 62.607 62.598 63.055

15 62.890 62.740 62.629 62.695 62.997

II Exchange

If you want to test the exchange before writing your application you can use Telnet.

From one terminal, start the exchange:

java -jar msExchange.jar -p 3000 -t 3001 -d data/amd.txt

From another terminal

telnet localhost 3000

//send 'H'

From another terminal

telnet localhost 3001

//send B or S

III Reporting

Example JSON data: (codejam.json)

{
 "team" : "Flying monkeys",
 "destination" : "mcgillcodejam2012@gmail.com",
 "transactions" : [
 {

"time" : "8004",
"type" : "buy",
"price" : 120,
"manager" : "Manager1"
"strategy" : "EMA"

 },
 {

"time" : "9589",
"type" : "sell",
"price" : 122,
"manager" : "Manager2",
"strategy" : "LWMA"

 },
 {

"time" : "16542",
"type" : "buy",
"price" : 118,
"manager" : "Manager1",
"strategy" : "TMA"

 }
]
}

Example HTTP Request using curl:

#! /bin/sh

create signing process

curl -X "POST" -H "Authorization: Basic Y29kZWphbTpBRkxpdGw0TEEyQWQx" -H "Content-

Type:application/json" --data-binary @codejam.json "https://stage-api.e-

signlive.com/aws/rest/services/codejam"

Example response:

{ "ceremonyId" : "12345..." }

https://stage-api.e-signlive.com/aws/rest/services/codejam
https://stage-api.e-signlive.com/aws/rest/services/codejam

