Content of my undergraduate thesis
Switch branches/tags
Nothing to show
Clone or download
Fetching latest commit…
Cannot retrieve the latest commit at this time.
Permalink
Failed to load latest commit information.
4periodorbit.png
Anexos.tex
Est_all.png
Est_all2 (2).png
Est_all2.png
Est_ex1.eps
Est_ex2.eps
Est_pe12.png
Est_pe23.png
PlanoParametrico2_c1_1000pt_200it_rojo.eps
PlanoParametrico2_c1_2000pt_1000it_rojo.eps
PlanoParametrico2_c1_2000pt_1000it_rojo.png
PlanoParametrico3_c1_1000pt_200it_rojo.eps
PlanoParametrico3_c1_1000pt_200it_rojo.png
PlanoParametrico_c1_1000pt_200it_rojo.eps
PlanoParametrico_c1_2000pt_1000it_rojo.eps
PlanoParametrico_c1_2000pt_1000it_rojo.png
README.md
abstract.tex
agradecimientos.tex
antena.png
bibl.tex
cardioide.eps
cardioide.png
circlecardioide1.png
circlecardioide2.png
conceptosprevios.tex
crank.tex
dinamica.tex
dospuntosfijos.png
ecuaciones.tex
errorepsilon0005-eps-converted-to.pdf
errorepsilon0005.eps
errorepsilon01-eps-converted-to.pdf
errorepsilon01.eps
errorepsilon1-eps-converted-to.pdf
errorepsilon1.eps
est_ex1.png
est_ex2.png
estimatedU.png
example2epsilon001-eps-converted-to.pdf
example2epsilon001.eps
example2epsilon01-eps-converted-to.pdf
example2epsilon01.eps
figure_lower.png
figure_upper.png
futuro.tex
introduccion.tex
logo.png
logo_etsit.png
maxerror.png
mcode.sty
portada1.tex
puntofijo1.png
redpoint1.png
redpoint2.png
redpoint3.png
redpoint4.png
rightcircle.png
sistemas.tex
tesis.aux
tesis.log
tesis.out
tesis.pdf
tesis.synctex.gz
tesis.tex
tesis.thm
tesis.toc
twofixedpoints.png
uepsilon0005-eps-converted-to.pdf
uepsilon0005.eps
uepsilon01-eps-converted-to.pdf
uepsilon01.eps
uepsilon1-eps-converted-to.pdf
uepsilon1.eps

README.md

Undergraduate thesis

All the content, including figures, bibliography, front page, etc. of my undergraduate thesis (in Spanish). Written in Latex.

  • Title: "Numerical methods for nonlinear modeling"
  • Description: In this work we have tried and succeeded in designing new iterative methods for solving nonlinear equations and systems; these are compared with the already existing ones and it has been found that they are highly efficient and stable. Then, we applied these methods to some nonlinear equations which have a recognized physical interest: Bratu's problem and Burgers's equation; in both cases the goal is to find the solution of a nonlinear partial differential equation. Because the design has resulted in families of methods instead of unique methods, we used the dynamical techniques in order to choose which members of the family (although all of them have the same order of convergence) are the most stable. Furthermore, we have also designed and studied a new way of discretizing Burgers's equation in order to increase the accuracy of the solution and simplify the process of obtaining it.

The main files are titled tesis.tex and tesis.pdf