RELATÓRIO DE AVALIAÇÃO DO MODELO

1)Informações Gerais:

Modelo: Brazilian developments on the Regional Atmospheric Modeling

System (BRAMS) – Versão 6.0 8KM Meteorológico

Líder do Grupo: Luiz F. Rodrigues

Data do Relatório: 12/07/2022

Características e Especificações:

CARACTERÍSTICAS	ESPECIFICAÇÕES	OBSERVAÇÕES
1. Computador/clus ter (XE, XC, etc)	Cray-XC50	
2. Versão no SVN	5.6.1	
3. Resolução Horizontal	Nominal: 8 km	
4. Coordenada Vertical	Sigma-z (terrain-following)	
5. Domínio	50S – 20N 90W-30W	
6. Passo de Tempo (s)	Modos lentos com 45 s, ondas acústicas com 11.25 s	
7. No. de Pontos de Grade	nlonXnlatXnvert 1017 x 993 x 45	
8. Tipo de Grade	Horizontal: Arakawa-C Vertical: Lorenz	
9. Fonte das Condições Iniciais	GFS para estado termodinâmico e dinâmico	
10.Fonte das Condições de Contorno	GFS	
11.Topo do Modelo	20km	
12.Prazo da Previsão	168h	
13.Projeção do Mapa	Polar-estereográfica	
14.Compilador	Cray	
15.Versão Pré-Processamen to	1.1	Parte integrante do mesmo código do modelo – no mesmo repositório
16.Versão Pós-Processame nto	Nativo. Não existe software para pós processar	

17.Formato Outputs	dos	grads	
18.Variáveis Output	de	'precip','acccon','sea_press','sfc_pr ess','press','ue_avg','ve_avg','u10 mj','v10mj','td2mj','t2mj','t2mj_mi n','t2mj_max','tempc','geo','smoist ','sst','rh','rv','u','v',	
19.Frequência Outputs	dos	3h	
20.Espaço total p Rodada	para	120GB	Dados de entrada + dados fixos. Não há necessidade de armazenar
21.Espaço t Pós-Processad	total do	94GB	Somente as saídas geradas pela rodada

Dinâmica	Integração temporal baseado em Runge-Kutta de 3ª ordem. Operador de advecção de 5ª ordem na horizontal e 3ª ordem na vertical para U,V,W,PI,THETA.	Rodrigues et al. 2019
	Advecção com preservação de monotonicidade para escalares	Freitas et al., 2012.
	Núcleo não-hidrostático, <i>Quasi-Boussinesq</i> compressível.	Freitas et al., 2017.

ESOUEMAS DA FÍSICA			
Radiação Atmosférica	 RRTMG_SW para radiação de onda curta 3.8; RRTMG_LW para radiação de onda longa 4.85; 	<i>Oreopoulos et al., 2012; Morcrette et al., 2018; Tie et al., 2003.</i>	
Superfície Continental Fluxos superficiais ar-mar	Modelo de solo/vegetação JULES (Joint UK Land Environment Simulator), fornecendo fluxos superficiais de momentum, calor latente e sensível e radiativo, bem como CO ₂ e outros gases traços.	Moreira et al., 2013; Moreira et al., 2017; Best et al., 2011; Clark et al., 2011.	
Tipo de Topografia de Subgrade	Average Orography		
Microfísica de Nuvens	Hybrid single- and double-moment for water vapor, cloud droplets, rain, cloud ice (pristine), snow, and graupel.	Thompson & Eidhammer, 2014.	

Parameterização de Convecção	Grell-Freitas: mass flux, scale-aware, trimodal formulation (deep, congestus and shallow plumes).	Freitas et al., 2018.
Camada limite Planetária	Prognostico de TKE com fechamento de ordem 2.5.	Mellor & Yamada, 1982.
Gravity Wave Drag	N/A	
Química	Regional Lumped Atmospheric Chemical Scheme (RELACS), com 37 espécies e 128 reações químicas. Com integrador numérico de 3ª ordem de Rosenbrock. Passo de tempo 320 s com dinamicamente adaptado.	Grassier et al., 2000; Gácita, 2011; Longo et al., 2013;
Aerossóis	Monodisperso, com propriedades ópticas efetivas derivadas de climatologia dos dados da AERONET.	Longo et al., 2013; Rosário et al., 2013.
Emissões	Queimadas: 3BEM com levantamento de plumas. Urbanas: EDGAR-HTAP + Inventário para América do Sul Emissões processadas pelo PREP-CHEM-SRC	<i>Crippa et al., 2018; Freitas et al., 2011; Alonso et al., 2010; Longo et al., 2010; Freitas et al., 2010; Freitas et al., 2007; Freitas et al., 2006.</i>
Nudging	Nuding lateral (20 pontos) e no topo do modelo (acima de 15km) – Escalas temporais 1 e 2 horas, respectivamente.	

2) Descrição das Integrações Numéricas Realizadas

O período de avaliação compreende os dias 11 a 17 de janeiro de 2021, conforme Protocolo de avaliação dos modelos regionais do CPTEC - Versão 1.0 (abril/2021).

O modelo foi executado a partir do dia 04/01/2021 até o dia 16/01/2022 a partir das 00:00 UTC. O horizonte de previsão adotado foi de 7 dias de integração, com saídas a cada 3 horas.

3) Avaliações estatísticas

As avaliações estatísticas foram calculadas tomando como base o domínio espacial definido no Protocolo, que é o domínio da América do Sul. As variáveis avaliadas foram:

 Precipitação acumulada em 24h a partir das 12:00 UTC do dia anterior até às 12:00 UTC do dia corrente.

3.1 Métricas estatísticas adotadas

As métricas estatísticas adotadas foram aquelas definidas no Procolo e consistiram de um conjunto de métricas contínuas e categóricas, a saber.

Métricas categóricas: "Equitable Threat Score" (ETS) e "frequency bias" (chama-se a partir de agora por bias), além do "Probability of Detection" (POD, interpretada como a razão dos eventos que são corretamente previstos), "False Alarm Ratio" (FAR, que é a razão do número de alarmes falsos em relação ao número total de eventos previstos) ou o seu oposto, a razão de sucesso (SR, ou 1-FAR, que é a razão dos "hits" ou previsões "yes" corretas em relação ao número total de eventos previstos) e "Critical Success Index" (CSI; também conhecido como "threat score", que é a razão de previsões corretamente previstas - os "hits", em relação ao número total de previsões que foram realizadas - "hits+false alarm" e aquelas não previstas - "misses") Schaefer (1990). Estes dois últimos foram obtidos a partir da plotagem do diagrama de performance (Roebbr, 2009), que resume as medidas SR, POD, bias e CSI.

Métricas contínuas: viés (diferença entre previsão e observação) e raiz quadrada do erro quadrático médio (RMSE). Figuras da previsão e observação colocadas lado a lado também foram geradas.

4) Análise dos Resultados e Discussão

A seguir são apresentados e discutidos os resultados tomando como base o tipo de avaliação estatística.

4.1 Avaliação <mark>contínua</mark>

Figura 1: Viés médio do modelo BRAMS para os prazos de previsão: a) 24h, b) 36h, c) 60h, d) 84h, e) 108h, f) 132h, g) 156h e h) 168h.

Figura 2: Precipitação acumulada em 24h para o dia 11/01/2022. Em cada quadro, as Figuras da esquerda representam o MERGE e as figuras da direita representam as previsões do modelo BRAMS para os prazos de previsão de a) 36h, b) 60h, c) 84h, d) 108h, e) 132h e f) 156h.

Figura 3: Precipitação acumulada em 24h para o dia 12/01/2022. Em cada quadro, as Figuras da esquerda representam o MERGE e as figuras da direita representam as previsões do modelo BRAMS para os prazos de previsão de a) 36h, b) 60h, c) 84h, d) 108h, e) 132h e f) 156h.

Figura 4: Precipitação acumulada em 24h para o dia 13/01/2022. Em cada quadro, as Figuras da esquerda representam o MERGE e as figuras da direita representam as previsões do modelo BRAMS para os prazos de previsão de a) 36h, b) 60h, c) 84h, d) 108h, e) 132h e f) 156h.

Figura 5: Precipitação acumulada em 24h para o dia 14/01/2022. Em cada quadro, as Figuras da esquerda representam o MERGE e as figuras da

direita representam as previsões do modelo BRAMS para os prazos de previsão de a) 36h, b) 60h, c) 84h, d) 108h, e) 132h e f) 156h.

Figura 6: Precipitação acumulada em 24h para o dia 15/01/2022. Em cada quadro, as Figuras da esquerda representam o MERGE e as figuras da direita representam as previsões do modelo BRAMS para os prazos de previsão de a) 36h, b) 60h, c) 84h, d) 108h, e) 132h e f) 156h.

Figura 7: Precipitação acumulada em 24h para o dia 16/01/2022. Em cada quadro, as Figuras da esquerda representam o MERGE e as figuras da direita representam as previsões do modelo BRAMS para os prazos de previsão de a) 36h, b) 60h, c) 84h, d) 108h, e) 132h e f) 156h.

Figura 8: Precipitação acumulada em 24h para o dia 17/01/2022. Em cada quadro, as Figuras da esquerda representam o MERGE e as figuras da direita representam as previsões do modelo BRAMS para os prazos de previsão de a) 36h, b) 60h, c) 84h, d) 108h, e) 132h e f) 156h.

4.2 Verificação categórica

Diagrama de desempenho

ETS ajustado - removido o efeito do BIAS.

