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Abstract— Providing an efficient strategy to navigate safely
through unsignaled intersections is a difficult task that requires
determining the intent of other drivers. We explore the ef-
fectiveness of using Deep Reinforcement Learning to handle
intersection problems. Combining several recent advances in
Deep RL, were we able to learn policies that surpass the
performance of a commonly-used heuristic approach in several
metrics including task completion time and goal success rate.
Our analysis, and the solutions learned by the network point
out several short comings of current rule-based methods. The
fact that Deep RL policies resulted in collisions, although rarely,
combined with the limitations of the policy to generalize well
to out-of-sample scenarios suggest a need for further research.

I. INTRODUCTION

One of the most challenging problems for autonomous
vehicles is to handle unsignaled intersections in urban en-
vironments. In order to successfully navigate through an
intersection, it is necessary to understand vehicle dynamics,
interpret the intent of other drivers, and behave predictably
so that other drivers can appropriately respond. Learning this
behavior requires optimizing multiple conflicting objectives
including safety, efficiency, and minimizing the disruption of
traffic. Balancing these trade-offs can be challenging even for
human drivers: 20% of all accidents occur at intersections
[1]. Acquiring the ability to perform optimally at traffic
junctions can both extend the abilities of autonomous agents
and increase safety through driver assistance when a human
driver is in control.

A number of rule-based strategies have already been
applied to intersection handling, including cooperative [2]
and heuristic [3] approaches. Cooperative approaches require
vehicle-to-vehicle communication and thus not scalable to
general intersection handling. The current state of the art is
a rule-based method based on time-to-collision (TTC) [4],
[5], which is a widely used heuristic as a safety indicator in
the automotive industry [6]. Variants of the TTC approach
has been used for autonomous driving [7] and the DARPA
urban challenge, where hand engineered hierarchical state
machines were a popular approach to handle intersections
[8], [9]. TTC is currently the method we employ on our
autonomous vehicle [10].

While TTC has many benefits - it is relatively reliable,
generates behavior that is easy to interpret, and can be tuned
to reach a high level of safety - it also has limitations.
First, the TTC models assume constant velocity, which
ignores nearly all information concerning driver intent. This
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Fig. 1: Crossing a busy intersection. Red car is the autonomous vehicle
and yellow cars are oncoming traffic. The objective is to determine the
acceleration profile along the path.

is problematic: in the DARPA Urban Challenge, one reason
behind a collision between two autonomous cars was “failure
to anticipate vehicle intent” [11]. Second, in public roads the
often unpredictable behavior of human drivers complicates
the use of rule-based algorithms. Third, in many cases an
agent using TTC may be overly cautious, creating unnec-
essary delays. These reasons motivate our investigation of
machine-learning based approaches for intersection handling
in autonomous vehicles.

A number of machine learning based approaches have
been used for the intersection handling, such as imitation
learning, online planning and offline learning. In imitation
learning, the policy is learned from a human drivers [12],
however this policy does not offer a solution if the agent
finds itself in a state that is not part of the training data.
Online planners compute the best action to take by simu-
lating the future states from the current time step. Online
planners based on partially observable Monte Carlo Planning
(POMCP) have been shown to handle intersections [13],
but rely on the existence of an accurate generative model.
Offline learning tackles the intersection problem, often by
using Markov Decision Processes (MDP) in the back-end
[14], [15].

In this paper, we use an offline learning method based
on Deep Reinforcement Learning (Deep RL), which to our
knowledge hasn’t previously been studied for the intersection
problem. Given the recent success of Deep Learning on a
variety of control problems, [16], [17], [18] we are interested
in evaluating the effectiveness of Deep RL in the domain of
intersection handling. As seen in Figure 6, the autonomous
vehicle is at an unsignaled intersection where the traffic is
flowing in both directions. The autonomous vehicle starts
from an initially stopped position. The path is assumed to be
given by a higher level process, and the proposed approach
is tasked to determine the acceleration profile along the path.
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The contributions of this paper are three-fold. The first
contribution is the novel way we combine several recent
deep learning techniques in order to boost learning speed
and improve performance. We use dynamic frame skipping
[19] to expedite the system learning repeated actions, and
prioritized reply [20] to ensure the network balances learning
both positive and negative cases. Additionally, we take
advantage of the off-policy nature imposed by experience
replay learning to calculate and train on the full n-step return
[21] which we found greatly reduces the learning time of
DQNs.

The second contribution is our analysis of how well
the DQN performs as compared to TTC in five different
intersection simulation scenarios, considering safety metrics
such as collision rate, and efficiency metrics such as success
rate, total time to complete the intersection, and disruption
of traffic. We further offer insight on the types of scenarios
where DQN could be preferable over TTC. This analysis
is of interest beyond the specific choice of DQNs as a base
learner as it identifies scenarios where TTC can be improved
and suggests methods that could improve it.

The third contribution is the analysis on how well the
trained DQN policies transfer to different scenarios. To
ensure safety and reliability, any learning system must gen-
eralize well to out-of-sample data. To fully appreciate the
strengths and failings of our learned networks we run each
network on intersection scenarios it did not train on. This
analysis allows us to identify when we can and cannot expect
a network to succeed in novel situations.

The rest of the paper is organized as follows: In Chapter
II we describe the DQN formulation. In Chapter III, we
describe the experimental setup and simulation environment.
In Chapter IV we discuss the TTC and DQN results, and
investigate how DQN policies transfer to different scenarios.
In Chapter V, we draw our conclusions pertaining this work.

II. APPROACH

We view intersection handling as a reinforcement learning
problem, and use a Deep Q Network (DQN) to learn the state
action value Q-function.

A. Reinforcement Learning

In the reinforcement learning framework, at time t an agent
in state st takes an action at according to the policy π . The
agent transitions to the state st+1, and receives a reward rt .
The sequence of states, actions, and rewards is given as a
trajectory τ = {(s1,a1,r1), . . . ,(st ,at ,rt)} over a horizon T .

A reinforcement learning task is typically formulated as
a Markov Decision Process (MDP) 〈S,A,P,R,γ〉, where S

is the set of states, and A is the set of actions that the
agent may execute. MDPs follow the Markov assumption
that the probability of transitioning to a new state given the
current state and action is independent of all previous states
and actions p(st+1|st ,at , . . . ,s0,a0) = p(st+1|st ,at). The state
transition probability P : S×S→ [0,1] describes the systems
dynamics, the reward function R : S×A×S→ R gives the
real valued reward for a given time step, and γ ∈ (0,1] is a

discount factor that adds preference for earlier rewards and
provides stability in the case of infinite time horizons.

The goal of reinforcement learning is to maximize the
expected return R = ∑

T
t=0 γ trt over a sequence of actions.

The expected return for a specific state can similarly be
represented Rt = ∑

T
k=0 γ trt+k. We use Q-learning to perform

this optimization.

B. Q-learning

In Q-learning [22], the action value function Qπ(s,a) is
the expected return E[Rt |st = s,a] for a state-action pair
following a policy π . Given an optimal value function
Q∗(s,a) the optimal policy can be inferred by selecting the
action with maximum value maxa Q∗(s,a) at every time step.

In Deep Q-learning [16], the optimal value function is
approximated with a neural network Q∗(s,a) ≈ Q(s,a;θ)
with parameters θ . The action value function is learned by
iteratively minimizing the error between the expected return
and the state-action value predicted by the network.

L(θ) =

(
E[Rt |st = s,a]−Q(s,a;θ)

)2

(1)

Since in practice the true return is not known, it is often
approximated by the one step return

E[Rt |st = s,a]≈ rt + γ max
at+1

Q(st+1,at+1;θ) (2)

Using the one step return can make learning slow since many
updates are required to propagate the reward to the appropri-
ate preceding states and actions. One way to make learning
more efficient is to use n-step return[21] E[Rt |st = s,a] ≈
rt + γrt+1 + · · ·+ γn−1rt+n−1 + γn maxat+n Q(st+n,at+n;θ).

During learning, an ε-greedy policy is followed by se-
lecting a random action with probability ε to promote
exploration and otherwise greedily selecting the best action
maxaQ(s,a;θ) according to the current network. In order to
improve the effectiveness of the random exploration we make
use of dynamic frame skipping.

C. Dynamic Frame Skipping

Frequently the same repeated actions is required over
several time steps. It was recently shown that allowing an
agent to select actions over extended time periods improves
the learning time of an agent [19]. For example, rather than
having to explore through trial and error and build up over a
series of learning steps that eight time steps is the appropriate
amount of time an agent should wait for a car to pass, the
agent need only discover that a ”wait eight steps” action
is appropriate. Dynamic frame skipping can viewed as a
simplified version of options [23] which is recently starting
to be explored by the Deep RL community. [24], [25], [26].

D. Prioritized Experience Replay

In order to break correlations between sequential steps
of the agent, experience replay is used [27]. An experience
replay buffer stores previous trajectories which can be sam-
pled during learning. A benefit of using experience replay
is that important sequences which happen less frequently



(a) Right (b) Left (c) Left2 (d) Forward (e) Challenge
Fig. 2: Visualizations of different intersection scenarios.

can be preferentially sampled [20]. We use the simplified
approach proposed by Jaderberg et al. [24] which avoids the
computation of a rank list and instead samples to balancing
reward across trajectories.

E. State-Action Representations

Autonomous vehicles use a suite of sensors, and allow
for planning at multiple levels of abstraction. This allows
for a wide variety of state and action representations. An
exploratory search of representations showed the selection
of the representation had a significant impact on the agent’s
ability to learn. In this paper we present the two representa-
tions we found to work well.
Sequential Actions In sequential action representation the
desired path is provided to the agent and the agent determines
to accelerate, decelerate, or maintain constant velocity at
every point in time along the desired path.

A birds eye view of space is discretized into a grid in
Cartesian coordinates relative to the car’s reference frame.
This is a representation that could easily be constructed from
a car’s LiDAR scans. Every car in the space is represented by
it’s heading angle, velocity, and calculated time to collision.
The heading angle, velocity, and calculated time to collision
are all represented as real values.
Time-to-Go In the Time-to-Go representation the desired
path is provided to the agent and the agent determines the
timing of departure through a sequences of actions to wait
or go. Every wait action is followed by another wait or
go decision, meaning every trajectory is a series of wait
decisions terminating in a go decision, and the agent is not
allowed to wait after the go action has been selected.

A birds eye view of space is discretized into a grid in
Cartesian coordinates. Every car in the space is represented
by it’s heading angle, velocity, and bias term.

The sequential scenario allows for more complex behav-
iors: the agent could potential slow down half way through
the intersection and wait for on coming traffic to pass. The
Time-to-Go representation more closely compares to TTC,
placing importance on the time of departure. By analyzing
the sequential action representation we are able to observe if
their is a benefit to allowing more complex behaviors. The
Time-to-Go representation focuses on the departure time,
allowing us to specifically probe how changes in departure
time can affect performance.

III. EXPERIMENTS

We train two different DQNs (Sequential Actions and
Time-to-Go) on a variety of intersection scenarios and com-

pare the performance against the heuristic Time-to-Collision
(TTC) algorithm.

A. Time-To-Collision (TTC) Policy

The TTC policy serves as a baseline in our analysis. It
uses a single threshold to decide when to cross. Below is
an explanation of the algorithm. Consider an imaginary line
emanating from the front of the ego vehicle, aligned with
the longitudinal axis. We calculate the TTC with another
vehicle as the time it takes for the vehicle to reach this
imaginary line, assuming it will travel with constant speed.
Among all the vehicles in the scene, we consider the one
with the minimum TTC value. If this value exceeds the TTC
threshold, then the ego vehicle starts the crossing phase and
follows the Intelligent Driver Model (IDM) [28] until the
goal is reached. If it doesn’t exceed the threshold, the ego
car continues to wait.

B. Experimental setup

Experiments were run using the Sumo simulator [29],
which is an open source traffic simulation package. This
package allows users to model road networks, road signs,
traffic lights, a variety of vehicles (including public trans-
portation), pedestrians to simulate traffic conditions in dif-
ferent types of scenarios. Importantly for the purpose of
testing and evaluation of autonomous vehicle systems, Sumo
provides tools that facilitate online interaction and vehicle
control. For any traffic scenario, users can have control over
a vehicle’s position, velocity, acceleration, steering direction
and can simulate motion using basic kinematics models.
Traffic scenarios like multi-lane intersections can be setup
by defining the road network (lanes and intersections) along
with specifications that control traffic conditions. To simulate
traffic, users have control over the types of vehicles, road
paths, vehicle density, departure times and so on. Traffic cars
follow IDM to control their motion. In Sumo, randomness is
simulated by varying the speed distribution of the vehicles
and by using parameters that control driver imperfection
(based on the Krauss stochastic driving model [30]). The
simulator runs based on a predefined time interval which
controls the length of every step.

We ran experiments using five different intersection sce-
narios: Right, Left, Left2, Forward and a Challenge. Each of
these scenarios is depicted in Figure 2. The Right scenario
involves making a right turn, the Forward scenario involves
crossing the intersection, the Left scenario involves making a
left turn, the Left2 scenario involves making a left turn across



two lanes, and the Challenge scenario involves crossing a six
lane intersection with increased traffic density.

Each lane has a 45 miles per hour (20 m/s) max speed.
The car begins from a stopped position. Each time step is
equal to 0.2 seconds. The max number of step per trial is
capped 100 steps which is equivalent to 20 seconds. The
traffic density is set by the probability that a vehicle will be
emitted randomly per second. We use 0.2 for all scenarios
except the challenge scenario where it is set to 0.7.

We evaluate each method according to four metrics and
run 10,000 trials of each scenario in order to collect our
statistics. The metrics are as follows:
• Percentage of successes: the percentage of the runs the

car successfully reached the goal. This metric takes into
both collisions and time-outs.

• Percentage of collisions: a measure of the safety of the
method.

• Average time: how long it takes a successful trial to
run to completion.

• Average braking time: the amount of time other cars in
the simulator are braking, this can be seen as a measure
of how disruptive the autonomous car is to traffic.

For TTC and the Time-to-Go DQN, after the algorithm
has decided the path is clear it follows the Intelligent Driver
Model. All state representations ignores occlusion, assuming
all cars are always visible.

For the sequential action DQN, space is represented as
a 5× 11 grid discretizing 0 to 20 meters in front of the
car and ±90 meters to the left and right of the car. Each
spatial pixel, if occupied, contains the normalized real valued
heading angles, velocity, and calculated time to collision. The
5×11×3 representation results in a 165 dimensional space.
Exploratory studies found that this spatial representation
outperformed higher dimensional representations with finer
granularity. It was also found that real representations of the
heading angle, velocity, and time to collision outperformed
discretized versions. We hypothesize that this is because the
real values allow for greater generalization.

For the Time-to-Go DQN, space is represented as a 18×
26 grid in global coordinates. Unlike the sequential action
DQN, this representation does not use the calculated time to
collision for each car.

The sequential action network is a fully connected net-
works with leaky ReLU [31] activation functions. The net-
work consists of 3 hidden layers each of 100 nodes each
and a final linear layer with 12 outputs. The 12 outputs
correspond to three actions (accelerate, decelerate, maintain
velocity) at four time scales (1, 2, 4, and 8 time steps).

The Time-to-Go DQN network uses a convolutional neural
network with two convolution layers, and one fully connected
layer. The first convolutional layer has 32 6×6 filters with
stride two, the second convolution layer has 64 3×3 filters
with stride 2. The fully connected layer has 100 nodes. All
layers use leaky ReLU activation functions. The final linear
output layer has five outputs: a single go action, and a wait
action at four time scales (1, 2, 4, and 8 time steps). Both
networks are optimized using the RMSProp algorithm [32].

Our experience replay buffers store 100,000 time steps.
We have two buffers, one for collisions and one for both
successes and timeouts. At each learning iteration we sam-
ples 25 steps from each buffer for a total batch size of 50.

Since the experience replay buffer imposes off-policy
learning, we are able to calculate the return for each state-
action pair in the trajectory prior to adding each step into
the replay buffer. This allows us to train directly on the n-
step return and forgo the added complexity of using target
networks [33].

Each sequential action scenario was trained on one million
simulations. Each Time-to-go scenario was trained on 250
thousand simulations. This difference was in order to roughly
balance the runtime of the experiments.

The epsilon governing random exploration was decayed
from 1.0 to 0.05 linearly over half the number of iterations.

For the reward we used +1 for successfully navigating the
intersection, −10 for a collision, and −0.01 step cost.

TABLE I: Comparison of Different Algorithms
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Right % Success 66.06 99.61 99.5 99.96
% Collisions 9.96 0.0 0.47 0.04
Avg. Time 13.2 6.46s 5.47s 4.63s
Avg. Brake 6.0 0.31s 0.88s 0.45s

Left % Success 45.9 99.7 99.99 99.99
% Collisions 35.9 0.0 0.00 0.01
Avg. Time 13.82s 6.97s 5.26s 5.24s
Avg. Brake 4.51s 0.52s 0.38s 0.46s

Left2 % Success 45.45 99.42 99.79 99.99
% Collisions 26.15 0.0 0.11 0.01
Avg. Time 14.48s 7.59s 7.13s 5.40s
Avg. Brake 1.47s 0.21s 0.22s 0.20s

Forward % Success 66.20 99.91 99.76 99.78
% Collisions 17.9 0.0 0.14 0.01
Avg. Time 12.88s 6.19s 4.40s 4.63s
Avg. Brake 4.65s 0.57s 0.61s 0.48s

Challenge % Success 29.99 39.2 82.97 98.46
% Collisions 41.45 0.0 1.37 0.84
Avg. Time 15.7s 12.55s 9.94s 7.94s
Avg. Brake 9.47s 1.65s 1.94s 1.98s

IV. RESULTS

Table I shows the results from our experiments. To yield
the best results for TTC, TTC threshold for each scenario is
chosen as the lowest that achieve zero collisions.

TTC method didn’t have a collision in any of the scenarios,
given that a large enough threshold is chosen. All other
methods had non-zero collision rates for all scenarios, except
DQN-Sequential for the Left scenario, which also had zero
collisions. Among DQN methods, DQN Time-to-Go had
substantially lower collision rate than DQN-sequential. For
scenarios except Challenge, DQN Time-to-Go had only 7
collisions in a total of 40,000 simulations. We think it is



Fig. 3: Comparison of results for all methods and scenarios.

possible that the collision rate would converge to zero for
these scenarios if the network is trained for long enough.

We see that both DQN methods are substantially more ef-
ficient reaching the goal than TTC. DQN Time-to-Go has the
best task completion time in all scenarios, except Forward,
where DQN-Sequential is faster. On average, DQN Time-to-
Go was %28 faster in reaching to goal than TTC, whereas
DQN Sequential was %19 faster than TTC. Therefore, the
DQN methods have potential to reduce traffic jams due to
their efficiency navigating intersection.

Braking time, a measure of how disruptive the car is to
other traffic, is comparable for all methods. Because of this,
we didn’t find conclusive evidence of DQN methods being
more aggressive than TTC, despite DQN methods posting
non-zero collision rates.

DQN Time-to-Go has the highest success rates in all
experiments, except one, where its success rate is only
marginally lower than TTC. Both DQN methods and TTC
were able to produce sound policies, evidenced by the ego car
reaching the goal at least %99.5 of the time for all scenarios
except Challenge. Success rates are shown in Figure 3.

An interesting result was that TTC did not reach the goal
the majority of the time in the Challenge scenario, reaching
the goal only %39.2 of the time, and posting a success
rate only slightly more than Random (%29.9). For the same
scenario, DQN Time-to-Go reached the goal %98.46 of the
time, significantly outperforming other methods. We offer
more insight on these results in Section IV-B.

While the DQNs are substantially more efficient, they
are seldom able to minimize the number of collisions as
successfully as TTC. This is due to the fact that TTC has a
tunable parameter that adjusts the safety margin and we tune
TTC to the lowest threshold that gives zero collisions.

Comparing the DQN’s performance against the TTC curve
as we trade off speed vs. safety (Figure 4), we see that
in every instance the DQN’s performance dominates the
performance of TTC. This suggests that it is possible to
design an algorithm that has zero collision rate, but with
better performance metrics than TTC.

Fig. 4: Trade-off between the time to cross and collision rate as the TTC
threshold is varied. Note that performance of the DQN dominates in every
case. The challenge scenario is excluded for scale reasons, but the results
are similar.

A. Generalization and Transfer

While the DQN does outperform TTC, being able to
achieve a zero percent collision rate is very important.

We believe that the few collisions that occur are a symp-
tom of the system’s difficulty generalizing. Rather than
spending increased effort shaping the reward to drive down
the number of collisions, we feel it is more in the service
of building a robust system to understand how the system
generalizes. In order to do this, we run the network trained
from one scenario on every other scenario.

We suspect that training on multiple scenarios will im-
prove the performance of each individual task. This is one
of the core principles of multi-task learning [34], it has
recently been demonstrated specifically on robots learning
CNN representations from physical actions [35], and it is
the intended direction of our future research. But with this
initial study the focus was to get an understanding of how
well a deep net system can generalize to out-of-sample data.

Figure 5 shows the transfer performance for both the
sequential and Time-to-Go DQNs. We see that the networks
trained on the Left scenario tend to transfer well to the
other single lane scenarios Right and Forward. The net-
works trained on the Challenge scenario transfer well to
the other multi-lane setting Left2. Generally speaking, the
more challenging scenarios (based on the performance of
the Random baseline) transfer well to easier domains, but
changing the number of lanes creates interference. The Time-
to-Go network trained on the Left2 scenario appears to be an
example of over fitting, where the system refuses to move in
any of the single lane scenarios. Notably, no method transfers
well to all tasks.

B. Qualitative Analysis

Comparing trials of the learned DQN networks and TTC,
the DQN strategies take into account predictive behavior of
the traffic. The DQNs can accurately predict that traffic in
distant lanes will have passed by the time the ego car arrives



(a) Transfer Sequential DQN (b) Transfer Time-to-Go DQN
Fig. 5: Transfer Performance. Networks trained in one scenario are run in different scenarios with to evaluate the generalization of each method.

TABLE II: Transfer Performance for DQN Sequential

Scenario Metric Training Method
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Right % Success 99.5 99.7 97.8 99.2 99.6
% Collision 0.47 0.21 1.68 0.78 0.16
Avg. Time 5.47s 5.56s 5.12 4.59s 5.78s
Avg. Brake 0.88s 0.72s 0.52 0.56s 0.39s

Left % Success 77.9 99.9 93.5 8.19 92.6
% Collision 16.0 0.0 6.30 51.4 7.33
Avg. Time 10.6s 5.26s 7.31s 10.0s 5.28s
Avg. Brake 3.83s 0.38s 1.38s 5.13s 0.53

Left2 % Success 77.3 92.6 99.7 22.2 99.7
% Collision 12.1 7.31 0.11 16.7 0.27
Avg. Time 11.3s 5.41s 7.13s 12.2s 5.61s
Avg. Brake 0.66s 0.29s 0.22s 3.15s 0.14s

Forward % Success 92.1 98.8 92.8 99.7 92.9
% Collision 7.86 0.63 6.32 0.14 6.81
Avg. Time 5.17s 5.29s 6.25s 4.40s 4.84s
Avg. Brake 0.98s 0.94s 1.50s 0.61s 0.68s

Challenge % Success 73.5 54.0 68.6 68.3 82.9
% Collision 25.8 30.7 27.5 20.9 1.37
Avg. Time 10.1s 13.0s 9.85s 8.65s 9.94s
Avg. Brake 5.26s 6.62s 4.38s 3.81s 1.94s

at the lane. Also the DQN driver is able to anticipate whether
on coming traffic will have sufficient time to brake or not.
The few collisions seem to relate to discretization effects,
where the car nearly misses the on coming traffic.

In contrast, TTC does not leave until all cars have cleared
its path. In addition, TTC leaves a sufficient safety margin
for on coming cars in distant lanes, since the same safety
margin is used the gap gets exaggerated in close lanes. As
a result TTC often waits until the road is completely clear,
missing many opportunities to cross.

We see that selecting the departure time offers sufficient
opportunity to improve over TTC without the need to in-
corporate the added complexity of allowing for dynamic
acceleration and deceleration behavior. This holds even for
the Challenge scenario. The Time-to-Go DQN often chooses
departures when other cars are either in or approaching the
intersection, correctly predicting that they will be clear by
the time the car reaches that position.

TABLE III: Transfer Performance for DQN Time-to-Go

Scenario Metric Training Method
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Right % Success 99.9 99.9 0.05 99.7 83.3
% Collision 0.04 0.04 0.0 0.22 16.2
Avg. Time 4.63s 4.87s 6.68s 4.62s 6.15s
Avg. Brake 0.45s 0.34s 1.08s 0.48s 0.23s

Left % Success 94.0 99.9 0.06 99.6 91.0
% Collision 5.89 0.01 0.0 0.37 8.82
Avg. Time 6.07s 5.24s 13.1s 5.14s 6.46s
Avg. Brake 0.51s 0.47s 1.4s 0.52s 0.37s

Left2 % Success 96.3 78.3 99.9 97.7 99.1
% Collision 3.70 2.98 0.01 1.78 0.87
Avg. Time 6.33s 10.1s 5.40s 6.99s 5.65s
Avg. Brake 0.29s 0.40s 0.20s 0.29s 0.18s

Forward % Success 94.3 99.9 0.06 99.7 91.8
% Collision 5.54 0.02 0.0 0.01 8.0
Avg. Time 5.46s 4.67s 11.0s 4.63s 5.88s
Avg. Brake 0.29s 0.46s 0.46s 0.48s 0.39s

Challenge % Success 72.8 47.8 84.3 70.7 98.4
% Collision 21.3 13.0 14.3 16.8 0.84
Avg. Time 9.37s 11.4s 8.49s 10.2s 7.94s
Avg. Brake 2.23s 2.16s 0.46s 2.22s 1.98s

V. CONCLUSIONS

Unsignaled intersection handling remains a hard task for
autonomous vehicles, mainly because of unpredictable agent
behavior. Rule-based intersection handling methods offer
reliable and easy-to-interpret solutions, however result in
sub-optimal behavior and task performance.

We showed a first system that uses Deep Q-Networks for
the specific problem of intersection handling. By making use
of the latest Deep RL techniques, we were able to build
networks that, in some metrics, outperform a commonly used
rule-based algorithm based on the Time-to-Collision (TTC)
heuristic. While TTC achieved zero collision rate for all
cases, DQN performed better on task efficiency and success
rate. Although rarely, DQN methods caused collisions and
thus is unsuitable for real-world implementation in its current
form. Therefore, more investigation on DQN’s is necessary
to reduce the collision rate to zero.

We saw that determining the time to go is the most im-



Fig. 6: DQN Time-to-Go predicts the opening and begins accelerating in
anticipation of the clear path. TTC would have waited until all cars were
clear, missing the opportunity.

portant part of the task, even in more complex environments
when the ability to change speeds through the intersection
might be beneficial. This can greatly reduce the complexity
of the decision task. We also identified specific instances
when TTC has difficulty.

While the networks demonstrate some ability to generalize
to novel domains and out-of-sample data, more research is
required to increase the robustness. Training one network
for one scenario took almost a day on a modern multi-GPU
computer, which made it impractical for network parameter
tuning. As future work, we will investigate how the policy
learned from one type of intersection scenario could be used
as an initial policy for another scenario, building up a system
that performs well in wide variety of domains.
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