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Abstract— Urban intersections represent a complex environ-
ment for autonomous vehicles with many sources of uncertainty.
The vehicle must plan in a stochastic environment with poten-
tially rapid changes in driver behavior. Providing an efficient
strategy to navigate through urban intersections is a difficult
task. This paper frames the problem of navigating unsignalized
intersections as a partially observable Markov decision process
(POMDP) and solves it using a Monte Carlo sampling method.
Empirical results in simulation show that the resulting policy
outperforms a threshold-based heuristic strategy on several
relevant metrics that measure both safety and efficiency.

I. INTRODUCTION

Intersections account for 40% of driving accidents and

represent a major challenge for automated driving [1]. Han-

dling intersections involves planning under uncertainty with

respect to driver behavior. One must be able to infer the goals

of the other agents and anticipate rapid maneuver changes.

Another difficulty is ensuring the satisfaction of multiple

conflicting objectives including the risk of accident, the time

to cross the intersection, the comfort of the passengers,

and the disturbance caused to other drivers. The relative

importance of the objectives varies by driver. The variety of

users present in urban environments as well as complicated

traffic rules also make intersections difficult to handle.

Several approaches have been employed to address inter-

section crossing. One approach involves hand-engineering

hierarchical state machines that attempt providing explicit

strategies for all possible situations. These state machines are

useful for solving simple driving problems, but rely heavily

on the designer to anticipate how to best handle different

situations in advance. Hierarchical state machines were used

in the DARPA urban challenge [2] and almost lead to an

accident at an intersection [3].

Learning-based methods can help reduce the burden on

the designer for developing robust decision strategies. One

type of learning approach known as behavioral cloning

involves learning a policy from a human driver [4], [5].

Some behavioral cloning approaches attempt to directly map

sensor readings (e.g., raw pixels from a camera [4]) to driving

commands. These approaches rely on a large amount of data

and are unlikely to perform better than the human driver used

for training.

Another category for developing intersection crossing

strategies involves planning with respect to a mathematical
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Other drivers

Fig. 1: The objective of the autonomous vehicle is to decide on the
acceleration to apply along a given path. Two different scenarios
are considered: right-turn and left-turn.

model of the problem. A partially observable Markov deci-

sion process (POMDP) is a standard model for sequential

problems with stochastic state transitions and sensor uncer-

tainty [6]–[8]. One of the challenges in this approach is in

representing and modeling the problem in a way that allows

the planning algorithm to be tractable [9]. Offline planners

compute an approximately optimal strategy over the entire

state space, prior to execution. Online planners, on the other

hand, compute the best action to take at the current time step.

A popular online algorithm is partially observable Monte

Carlo Planning (POMCP), which relies on sampling from a

generative model [10]. For the intersection problem in this

paper, we augment POMCP with progressive widening [11]

to accommodate the continuous state space.

The objective of this work is to develop an online

decision making algorithm to cross an urban intersection

autonomously. By modeling the problem as a POMDP, the

autonomous system can dynamically change its decision to

adapt to the behavior of other agents. As shown in Fig. 1, ve-

hicles are at an unsignalized T-junction with traffic flowing in

both directions. The autonomous vehicle is initially stopped

at the intersection and tries to turn left or right. The nominal

path is assumed to be generated by a high-level task planner

and the proposed planner computes the acceleration profile

along this path. Although we consider noisy position and

velocity measurements, we do not consider sensor limitations

such as occlusions. Finally, the behavior of the vehicles are

represented by internal states that are not directly observable,

but rather they are estimated using an interacting multiple

model (IMM) filter [12].

II. PROPOSED APPROACH

A. POMDP Background

A partially observable Markov decision process (POMDP)

is a mathematical framework for sequential decision making
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Fig. 2: Structure of the problem represented as a Bayesian network,
the three components of the state variable are assumed independent.

under uncertainty. It is formally characterized by a tuple

(S ,A ,O,T,O,R,γ), where S is the state space, A the

action space, O is the observation space, T is a transition

model, O is an observation model, R a reward model, and γ
is a discount factor [13].

Uncertainty is represented by the transition model and the

observation model. An important source of uncertainty in

the context of autonomous driving is the behavior of the

other drivers [8], [9]. From a state s∈S of the environment,

the agent takes an action a ∈ A to maximize the expected

accumulation of reward r(s,a) over time. The state s will

then transition to s′ with probability T (s′,s,a) = Pr(s′ | s,a)
under the Markov assumption that the state s′ only depends

on the previous state.

The agent has uncertain knowledge about the state of the

environment and maintains a belief state b ∈B. The belief

state is a probability distribution over all possible states, b :

S �→ [0,1], and b(s) represents the probability of being in

state s. Belief state planning involves finding a policy that

maps belief states to actions in a way that maximizes the

expected discounted accumulation of reward over time.

B. Intersection Navigation Problem

The structure of the problem can be represented by the

Bayesian network in Fig. 2. The round nodes represent state

variables that change over time. The diamond-shaped node

corresponds to the reward received and the square node

represents the action taken at a given time step.

1) State Space: The state in the POMDP includes both the

physical state of the environment and the behavior of other

drivers. The intersection geometry is assumed to be known

to the planner. Three sets of variables are used to define the

state space:

• Pt
e = (xt

e,y
t
e,θ t

e,v
t
e,a

t
e) describes the physical state of the

ego car at time t.

• Pt
i = (xt

i ,y
t
i,θ t

i ,v
t
i,a

t
i), i = 1, . . . ,n describes the physical

state of the n other cars in the intersection at time t.
• Bt

i describes the internal state of the other drivers, char-

acterizing their behavior at time t. In the experiments

used in this paper, the internal state may correspond to

one of two different models.

Here, x and y represent the position in a Cartesian frame, θ
represents the vehicle orientation, v is the speed, and a is the

magnitude of the acceleration. Variables with subscript e are

associated with the ego car, and variables with subscript i
correspond to the ith vehicle. The relationships between the

variables are illustrated by Fig. 2. To simplify the structure

of the problem we assume independence between the ego

car physical state and the other vehicles’ physical states.
2) Action space: The objective of the planner is to

compute the acceleration profile along the desired path

(left-turn or right-turn as illustrated in Fig. 1). Strategic

maneuvers such as hard braking, moderate braking, main-

taining constant speed and accelerating can be represented

by a finite set of acceleration and deceleration action:

{−4ms−2,−2ms−2,0ms−2,2ms−2}.
3) Process Model: The input to the problem is the ego

path; either a left or right turn. The motion of the ego car

along this path is only controlled by an acceleration input.

Given the shape of the trajectory, it is more convenient to use

polar coordinates. The kinematic equations used to update

the ego car state are as follows:⎧⎪⎨
⎪⎩

xt+1
e = xt

e + vt
e sin(θ t

e)δ t +at
e sin(θ t

e)
δ t2

2

yt+1
e = yt

e + vt
e cos(θ t

e)δ t +at
e cos(θ t

e)
δ t2

2

vt+1 = vt
e +at

eδ t
(1)

The orientation θ is updated according to the desired trajec-

tory. In the equations, δ t is the time step between decisions.
Two different kinematic models were used to model the

behavior of the other drivers: constant velocity (CV) and

constant acceleration (CA) [12]. These models can describe

various behavior including braking (CA model with negative

acceleration) or maintaining speed (CV model). The state

transition function follows linear Gaussian dynamics:

Pr(Pt+1
i | Pt

i ) = N (Pt+1
i | TPt

i ,Q) (2)

where T is the state transition matrix and Q the process

noise. These matrices are different for each kinematic model

and follow the equations of Bar-Shalom, Li, and Kirubarajan

[12]. Process noise matrices are characterized by a spectral

density σ{CV,CA}. The Gaussian dynamics provide a suitable

representation of the world as it is describing continuous

variables with a minimal amount of information (mean and

covariance) so that the problem remains computationally

feasible.
The internal state Bt

i can have one of two values corre-

sponding to the two possible kinematic models. Given the

value of Bt
i , the variable Pt

i is updated using Eq. (1). At

each time step, we assume that the behavior can change

according to a switching probability matrix p where pi j is

the probability from switching to model j from model i. No

prior knowledge of the path of the other drivers is assumed.
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4) Observation Model: The observation space describes

what we can measure in the environment. The vehicle is

assumed to have a perfect knowledge of its physical state.

We assumed that position and velocity of other drivers

are partially observable while their acceleration and their

behavior are internal states that cannot be measured. Finally,

the orientation of the other cars is assumed to be known. The

observation space is defined as follows:

Ot
i = (zt

xi
,zt

yi
,θ t

i ,z
t
vi
), i = 1, . . . ,n (3)

where the components are the measured position, the orien-

tation, and the velocity of the ith vehicle at time t.
To have a simple representation of the observation distri-

bution, we model the sensor measurements using a Gaussian

distribution:

Pr(Ot
i | Pt

i ) = N (Ot
i |HPt

i ,R) (4)

where H is the observation model matrix and R is the obser-

vation noise matrix. We assume that the measurements are

independent (R diagonal) and characterized by the standard

deviations σp for the position measurement and σv for the

velocity measurement.

5) State Estimation: Since the state is factored into three

independent variables, the belief is defined in a similar way:

• The ego car physical state, assumed perfectly known.

• A distribution over the vehicle physical state. From

the measurements, we can maintain an estimate of the

other vehicles’ state. We assume that the physical states

follow a Gaussian distribution N (P̂t
i , Σ̂t

i), where P̂t
i and

Σ̂t
i are the estimated mean and covariance of the physical

state of vehicle i at time t.
• A distribution over the two possible kinematic models

{μ t
1i,μ

t
2i} representing the probability of car i following

the CV model and the probability of car i following the

CA model, respectively.

To infer which of the following models the cars are

following, we used an Interacting Multiple Model (IMM).

IMMs have been used in tracking applications and pedestrian

intention prediction [14], [15], as well as for lane changing

detection in autonomous driving [16]. The IMM mixes two

Kalman filters for both kinematic models CV and CA and

update both the state estimation and the model probability

distribution at each time step given an observation.

The IMM algorithm consists of three steps: mixing, fil-

tering and combining. The first step computes an estimate

of the state with respect to the two transition models and

from these estimates computes two mixed inputs (a linear

combination of both). The two mixed inputs are then filtered

using a classic Kalman filter [12].

In the POMDP context, we used the IMM as the belief

updater. It takes as input a belief state and an observation and

returns the updated belief state. It acts only on the partially

observable part of the belief space, i.e. not on the ego car

state.

One of the subtleties of the problem is that we cannot

directly measure the intentions of other drivers. Since we

assume that the drivers are following one among two possible

Gaussian dynamics, the IMM is particularly well suited to

estimate the states.

6) Reward Model: The agent is rewarded for reaching a

final position in the intersection and receives a small penalty

for each action and a large penalty for collision.

III. ONLINE BELIEF STATE PLANNING

Methods for computing optimal policies for a POMDP

can be divided into two categories: offline and online [13].

Offline methods compute the policy over the entire state

space prior to execution in the environment. Hence, they

typically do not scale to high dimensional problems. In

our problem formulation, we have five continuous variables

for each vehicle in the intersection. Computing the policy

over the entire belief state space is intractable. Moreover, it

is likely that many states will never be encountered when

interacting in the environment.

Online methods plan from the current belief state up

to a certain horizon. As a consequence, online planning

algorithms consider only the states reachable from the cur-

rent belief and at each time step the solver computes the

(approximately) optimal action. The best action is typically

recomputed after each interaction with the environment.

A. POMCP

Since the state space is continuous, we use a sampling-

based method known as Partially Observable Monte Carlo

Planning (POMCP). POMCP is an extension of the Upper

Confidence Tree (UCT) algorithm with partially observable

state variables. The algorithm takes as input a belief state.

From this belief state, it will build a tree where each node

represents a history h, which is a sequence of actions and ob-

servations. Each node is sampled using the model described

in Section II-B. The construction of the tree involves iterating

through the following three steps many times:

• Expansion: If the node is not in the tree, we explore

the outcome of all the possible actions and initialize

N(h,a) and Q(h,a), which are the number of times we

visited the node h taking action a and the associated

value function.

• Rollout: We simulate up to a desired depth according

to a rollout policy.

• Search: If the sampled state is already in the tree, we

choose the action that maximizes Q(h,a) + c
√

N(h)
N(h,a) ,

where N(h) is the number of times the history was

visited and N(h,a) is the number of times the action

and history was visited. The parameter c controls the

balance between exploration and exploitation.

After each iteration, the information is then propagated up

to the root node. The POMCP algorithm converges to the

optimal policy as the number of tree queries increases.

B. Planning in Continuous State Space

One of the drawbacks of POMCP is that it cannot handle

continuous state spaces. When sampling a continuous vari-

able from the initial belief, the probability of visiting the

827



same state twice is infinitesimally small, resulting in a very

wide tree with a depth of one. One way to address this issue

is to use progressive widening [11].

Progressive Widening (PW) involves defining when to

explore new states in the tree. It is controlled by two

parameters α and k. The selection criteria is as follows:

• Compute k′ = kN(h,a)α .

• If k′ is greater than the number of children of the

node (h,a), then we sample a new state. Otherwise, we

choose a state that has already been visited.

The branching factor of the search tree can be affected by

tuning k and α . When the noise in the generative model is

large, one typically wants a large branching factor (which

can be achieved by increasing α , for example).

IV. EXPERIMENTAL SETUP

A. Simulation and Parameters

We used the SUMO simulator [17] for our experiments,

which relies on an Intelligent Driver Model (IDM) [18]. As

a consequence, our generative model (relying on Gaussian

dynamics) is different than the model used in the test

environment. The motivation for this mismatch is to assess

how the POMCP algorithm can handle model discrepancies

that would exist in real-world applications.

The SUMO simulator takes into account the interaction

between drivers, and it outputs the position, velocity, and

orientation of the vehicles. To simulate the perception of the

autonomous car, we added white noise to the position and

velocity measurements. The simulation parameters are given

in Table I. The traffic density is expressed as the probability

of a vehicle going through the intersection every second.

The noise parameters correspond to the standard deviations

σp and σv in Section II-B.4.

TABLE I: Parameters of the simulation environment

Parameter Value

Traffic density 0.2
Position sensor noise 0.1 m

Velocity sensor noise 0.1 ms−1

Maximum Speed 13.88 ms−1

The sequential decision making process proceeds as fol-

lows. We start with a prior belief bt . From this belief, we

compute an optimal action using the POMCP algorithm and

then run a simulation step in SUMO where the environment

evolves (including the ego car with respect to the action

taken). After this step, the agent receives a reward and

observes the environment, and updates its belief to bt+1 using

the IMM algorithm. The decision and measurement are made

every 0.25 s. In order to compute the action at each step, we

used the POMCP algorithm with progressive widening with

the parameters in Table II.

B. Performance Metrics

To evaluate performance, we used the following metrics:

• Average number of collisions

• Average time to cross the intersection

TABLE II: POMCP solver parameters used in the experiment

Parameter Value

Depth 15
Exploration constant 20.0
Tree queries 2000
Rollout policy TTC Policy
PW α 0.2
PW k 4.0

• Success rate at which the car crosses the intersection

without crashing or a timeout.

• Average time when the traffic is braking

• Average time when a car is stopped.

The first three metrics account for safety and efficiency. The

braking time and the waiting time captures the impact of the

ego car on the current traffic.

C. Baseline Policy

We defined a simple heuristic policy to serve as a baseline

that uses a time to collision (TTC) threshold to decide

when to cross. The TTC is defined as follows. Consider an

imaginary line starting from the ego car aligned with the y
axis. The TTC with another vehicle i in the intersection will

be the time it takes for the vehicle to reach that line. For

vehicle i, it is estimated by dividing di by Vi, where di is the

distance indicated in Fig. 3 and Vi is the speed of vehicle i
relative to the ego car. If the TTC exceeds a threshold for

two consecutive time steps of 0.1 s, the vehicle starts the

crossing phase. The crossing phase follows the IDM.

−→v = 0

di

−→vi

Ego Car

Vehicle i

Other drivers
y

x

Fig. 3: Representation of the first phase of the TTC policy, the ego
car measures Vi and di to compute the TTC and then decides to
cross or not according to the threshold.

V. RESULTS

We analyzed the influence of the TTC threshold on dif-

ferent metrics and chose the threshold that results in zero

collisions over a thousand simulations. Figure 4 shows how

four metrics vary with respect to the choice of the TTC

threshold. Due to measurement noise, we can see that even

for high thresholds there are still small fluctuations in the

collision rate. The chosen threshold for comparison with the

POMCP policy is 4.5 s in order to guarantee success for both

the right and the left turns under the experimental traffic

condition in Table I, without being overly conservative.

The reward function in the POMDP formulation can be

used to tune the behavior of the agent in favor one objective

828



0 2 4

0

10

20

TTC threshold (s)

C
o
ll

is
io

n
ra

te
(%

)

0 2 4

8

10

12

TTC threshold (s)

A
v
er

ag
e

ti
m

e
to

cr
o
ss

(s
)

0 2 4

0.2

0.4

0.6

0.8

TTC threshold (s)

A
v
er

ag
e

b
ra

k
in

g
ti

m
e

(s
)

0 2 4

1

2

3

4

·10−3

TTC threshold (s)

A
v
er

ag
e

w
ai

ti
n
g

ti
m

e
(s

)

Fig. 4: Four metrics with different TTC thresholds for right-turns
with a traffic density of 0.2.

over another. By varying the reward parameters, such as

the cost for each action, we can reach a point where the

expected reward will decrease very fast with time. As a

consequence, increasing this cost will favor a minimization

of the time to cross at the expense of collision risk. By tuning

the reward function, we can balance these two conflicting

objectives. Figure 5 illustrates the trade-off between these

two objectives for the right-turn scenario. The POMCP

policy clearly dominates the threshold policy with respect

to the collision rate and the time to cross.

10 15 20
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)

TTC policy
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Fig. 5: Trade-off between collision rate and time to cross as key
parameters are varied for the policies (action cost for POMCP
policy and threshold for TTC policy) in the right-turn scenario with
a traffic density of 0.2.

We selected a conservative set of POMCP policy param-

eters (Table III) to compare against the TTC policy with

a threshold of 4.5 s. The penalties chosen for each action

differ in order to favor forward motion. The numerical values

were chosen to separate each outcome by several orders of

magnitude. We also compared against a random policy for

both scenarios in Table IV and Table V for fixed traffic
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Fig. 6: Metrics for varying traffic density for both the TTC and the
POMCP policies in the right-turn scenario.

conditions (Table I). The metrics are averaged over one

thousand simulations.

For the right-turn scenario, both the POMCP and TTC

policies achieve 100% success rate (Table IV). However, the

POMCP policy outperforms the TTC policy in average time

to cross the intersection. The waiting time is higher for the

POMCP policy, but it still does not exceed 10 ms on average.

Table V shows that for the left-turn scenario the TTC pol-

icy achieved zero collisions and 100% success rate, whereas

the POMCP policy still has some collisions (0.2 %) and time-

outs, leading to a success rate of (99.0 %). The braking time

and waiting time are also higher.

In order to assess the scalability of the two policies, we

analyzed the evolution of the metrics with an increasing

traffic density for the right-turn scenario. Both policies

achieved a collision rate of 0%, but they were subject to

time-outs, which are reflected by a decrease in the success

rate as the traffic density increases. Figure 6 shows that until

a density of 0.7, the POMCP policy has a success rate at least

as high as the TTC policy. For every tested traffic density,

the POMCP policy takes on average less time to cross the

intersection with a maximum difference of 6.12 s for a traffic

density of 0.5. However, the braking time and the waiting

time are higher than the TTC policy.

TABLE III: Reward function parameters

Parameter Value

Collision penalty −2000.0
Acceleration penalty −4.98
Maintaining speed penalty −4.99
Moderate braking penalty −5.0
Strong braking penalty −5.02
Crossing reward 100.0

The results show that both the POMCP policy and the TTC

policy are safe for the right-turn scenario, even under some

measurement noise. Moreover, the POMCP policy reaches
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TABLE IV: Performance of the policies for the right-turn scenario

Policy Time Braking Waiting Collision Success
to cross (s) time (s) time (s) rate (%) rate (%)

POMCP 10.6465 0.3733 0.0308 0.0 100.0
TTC 10.7270 0.1170 0.0014 0.0 100.0
Random 55.5948 37.9805 20.4013 9.80 0.40

TABLE V: Performance of the policies for the left-turn scenario

Policy Time Braking Waiting Collision Success
to cross (s) time (s) time (s) rate (%) rate (%)

POMCP 10.3735 0.3763 0.1293 0.2 99.0
TTC 10.7704 0.1912 0.0010 0.0 100.0
Random 34.1028 17.0503 10.2940 75.70 0.10

the goal faster than the TTC policy but will cause the other

users to brake and wait more often. Figure 6 shows that the

POMCP policy manages to cross the intersection more often

and faster than the TTC policy up to a certain traffic density

at the expense of somewhat greater disruption to the traffic.

The choice of the reward function penalizing the actions

makes the ego car more eager to enter the intersection and

is not penalizing for making the other drivers brake or wait.

The problem formulation can explain the higher braking time

and waiting time for the POMCP policy.

For left turns, similar conclusions can be drawn on the

time to cross, the braking time, and the waiting time.

However, the POMCP policy still has some collisions. One

explanation is the difference between the generative model

and the simulator model. In order to assess the discrepancies

between the two, we measured the error in the position

prediction as a function of the planning horizon. We found

an average error of 2.15 m when predicting the motion of

the other cars ten steps ahead (2.5 s). This difference in the

predicted position prevents the algorithm from predicting

some rapid maneuver changes. A more sophisticated gen-

erative model, combined with a good internal state estimator

could improve performance, and we believe zero collision

rate could be achieved for left turns.

VI. CONCLUSIONS

We demonstrated an online belief state planning approach

based on a POMDP formulation to address a decision

problem at an unsignalized intersection. The proposed ap-

proach performs better than a heuristic policy, even with a

fairly simple transition model. It is robust enough to handle

discrepancies between the assumed model and the simulator

model. The resulting policy outperforms the baseline in

most of the considered metrics. We showed that we can

balance the different objectives of the problem by tuning the

reward function of the POMDP. Further work will involve

improving the state estimator by using a more accurate

generative model than the linear Gaussian model used in

this paper. We would also like to complement our current

approach with an offline planner and increase the complexity

of the scenarios and move toward more realistic models. An

immediate consideration would involve pedestrians, as well

as sensor occlusions.
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