2.4.8 Kullback-Leibler Divergence

To measure the difference between two probability distributions over the same
variable x, a measure, called the Kullback-Leibler divergence, or simply, the KL
divergence, has been popularly used in the data mining literature. The concept
was originated in probability theory and information theory.

The KL divergence, which is closely related to relative entropy, informa-
tion divergence, and information for discrimination, is a non-symmetric mea-
sure of the difference between two probability distributions p(x) and g¢(x).
Specifically, the Kullback-Leibler (KL) divergence of ¢(z) from p(z), denoted
Dk (p(x),q(x)), is a measure of the information lost when ¢(z) is used to ap-
proximate p(z).

Let p(x) and ¢(z) are two probability distributions of a discrete random
variable z. That is, both p(x) and ¢(z) sum up to 1, and p(z) > 0 and g(x) > 0
for any x in X. Dgr(p(x),q(z)) is defined in Equation (2.1).
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The KL divergence measures the expected number of extra bits required to
code samples from p(z) when using a code based on ¢(x), rather than using a
code based on p(x). Typically p(z) represents the “true” distribution of data,
observations, or a precisely calculated theoretical distribution. The measure
q(z) typically represents a theory, model, description, or approximation of p(x).

The continuous version of the KL divergence is

o0
Dicrlp@lae) = [ po)m 2 s (22
oo q(x)

Although the KL divergence measures the “distance” between two distri-
butions, it is not a distance measure. This is because that the KL divergence
is not a metric measure. It is not symmetric: the KL from p(z) to g(z) is
generally not the same as the KL from ¢(z) to p(x). Furthermore, it need
not satisfy triangular inequality. Nevertheless, D (P||Q) is a non-negative
measure. Dgr(P||Q) > 0 and Dk, (P]|Q) = 0 if and only if P = Q.

Notice that attention should be paid when computing the KL divergence. We
know limp_,o plogp = 0. However, when p # 0 but ¢ = 0, Dx . (p||q) is defined
as 0o. This means that if one event e is possible (i.e., p(e) > 0), and the other
predicts it is absolutely impossible (i.e., g(e) = 0), then the two distributions are
absolutely different. However, in practice, two distributions P and @) are derived
from observations and sample counting, that is, from frequency distributions. It
is unreasonable to predict in the derived probability distribution that an event is
completely impossible since we must take into account the possibility of unseen
events. A smoothing method can be used to derive the probability distribution
from an observed frequency distribution, as illustrate in the following example.

Example 2.24. Computing the KL Divergence by Smoothing. Sup-
pose there are two sample distributions P and @ as follows: P : (a : 3/5,b :



1/5,¢:1/5) and @ : (a:5/9,b:3/9,d: 1/9). To compute the KL divergence
Drr(P||Q), we introduce a small constant e, for example € = 1073, and define
a smoothed version of P and @, P’ and Q’, as follows.

The sample set observed in P, SP = {a,b, c}. Similarly, SQ = {a,b,d}. The
union set is SU = {a, b, ¢, d}. By smoothing, the missing symbols can be added
to each distribution accordingly, with the small probability e. Thus, we have
P :(a:3/5—¢/3,b:1/5—¢/3,¢:1/5—¢/3,d:¢€)and Q" : (a:5/9—¢/3,b:
3/9—¢€/3,c:e,d:1/9—¢€/3). Dir(P',Q’) can be computed easily.



