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Policy gradient methods are a type of reinforcement learning techniques that rely upon optimizing
parametrized policies with respect to the expected return (long-term cumulative reward) by gradient descent.
They do not suffer from many of the problems that have been marring traditional reinforcement learning
approaches such as the lack of guarantees of a value function, the intractability problem resulting from uncertain
state information and the complexity arising from continuous states & actions.
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Introduction

Reinforcement learning is probably the most general framework in which reward-related learning problems of
animals, humans or machine can be phrased. However, most of the methods proposed in the reinforcement
learning community are not yet applicable to many problems such as robotics, motor control, etc. This
inapplicability may result from problems with uncertain state information. Thus, those systems need to be
modeled as partially observable Markov decision problems which often results in excessive computational
demands. Most traditional reinforcement learning methods have no convergence guarantees and there exist even
divergence examples. Continuous states and actions in high dimensional spaces cannot be treated by most off-
the-shelf reinforcement learning approaches.

Policy gradient methods differ significantly as they do not suffer from these problems in the same way. For
example, uncertainty in the state might degrade the performance of the policy (if no additional state estimator is
being used) but the optimization techniques for the policy do not need to be changed. Continuous states and
actions can be dealt with in exactly the same way as discrete ones while, in addition, the learning performance is
often increased. Convergence at least to a local optimum is guaranteed.

The advantages of policy gradient methods for real world applications are numerous. Among the most important
ones are that the policy representations can be chosen so that it is meaningful for the task and can incorporate
domain knowledge, that often fewer parameters are needed in the learning process than in value-function based
approaches and that there is a variety of different algorithms for policy gradient estimation in the literature
which have a rather strong theoretical underpinning. Additionally, policy gradient methods can be used either
model-free or model-based as they are a generic formulation.

Of course, policy gradients are not the salvation to all problems but also have significant problems. They are by
definition on-policy (note that tricks like importance sampling can slightly alleviate this problem) and need to
forget data very fast in order to avoid the introduction of a bias to the gradient estimator. Hence, the use of
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sampled data is not very efficient. In tabular representations, value function methods are guaranteed to converge
to a global maximum while policy gradients only converge to a local maximum and there may be many maxima in
discrete problems. Policy gradient methods are often quite demanding to apply, mainly because one has to have
considerable knowledge about the system one wants to control to make reasonable policy definitions. Finally,
policy gradient methods always have an open parameter, the learning rate, which may decide over the order of
magnitude of the speed of convergence, these have led to new approaches inspired by expectation-maximization
(see, e.g., Vlassis et al., 2009; Kober & Peters, 2008).

Nevertheless, due to their advantages stated above, policy gradient methods have become particularly interesting
for robotics applications as these have both continuous actions and states. For example, there has been a series of
successful applications in robot locomotion, where good policy parametrizations such as CPGs are known.
Benbrahim & Franklin (1997) already explored 2D dynamic biped walking, Tedrake et al. (2004) extended these
results to 3D passive dynamics-based walkers and Endo (2005) showed that a full-body gait with sensory
feedback can be learned with policy gradients. Kohl & Stone (2004) were able to apply policy gradients to
optimize quadruped gaits. There have also been various applications in skill learning starting with the peg-in-a-
hole tasks learned by Gullapalli et al. (1994) and ranging to Peters & Schaals' optimizations of discrete
movements primitives such as T-Ball swings.

Note that in most applications, there exist many local maxima; for example, if we were told build a high jumping
robot, there is a multitude of styles. Current policy gradient methods would be helpful for improving a jumping
style of a teacher, let's say the classical straddle jump. However, discovering a Fosbery flop when starting with a
basic straddle jump policy is probably not possible with policy gradient methods.

Assumptions and Notation

We assume that we can model the control system in a discrete-time manner and we will denote the current time
step by  In order to take possible stochasticity of the plant into account, we denote it using a probability
distribution  as model where  denotes the current action, and  
denote the current and next state, respectively. We furthermore assume that actions are generated by a policy 

 which is modeled as a probability distribution in order to incorporate exploratory actions; for
some special problems, the optimal solution to a control problem is actually a stochastic controller (Sutton,
McAllester, Singh, and Mansour, 2000). The policy is assumed to be parameterized by  policy parameters 

The sequence of states and actions forms a trajectory denoted by  where  denotes the
horizon which can be infinite. In this article, we will use the words trajectory, history, trial, or roll-out
interchangeably. At each instant of time, the learning system receives a reward denoted by 

The general goal of policy optimization in reinforcement learning is to optimize the policy parameters  so
that the expected return

is optimized where  denote time-step dependent weighting factors, often set to  for discounted
reinforcement learning (where  is in ) or  for the average reward case.

For real-world applications, we require that any change to the policy parameterization has to be smooth as
drastic changes can be hazardous for the actor as well as useful initializations of the policy based on domain
knowledge would otherwise vanish after a single update step. For these reasons, policy gradient methods which
follow the steepest descent on the expected return are the method of choice. These methods update the policy
parameterization according to the gradient update rule

where  denotes a learning rate and  the current update number.
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The time step  and update number  are two different variables. In actor-critic-based policy gradient methods,
the frequency of updates of  can be nearly as high as of  However, in most episodic methods, the policy update

 will be significantly less frequent. Here, cut-off allows updates before the end of the episode (for  it is
obvious that there comes a point where any future reward becomes irrelevant; a generically good cut-off point). If
the gradient estimate is unbiased and learning rates fulfill  and  the learning
process is guaranteed to converge at least to a local minimum.

The main problem in policy gradient methods is to obtain a good estimator of the policy gradient  In
robotics and control, people have traditionally used deterministic model-based methods for obtaining the
gradient (Jacobson & Mayne, 1970; Dyer & McReynolds, 1970; Hasdorff, 1976). However, in order to become
autonomous we cannot expect to be able to model every detail of the system. Therefore, we need to estimate the
policy gradient simply from data generated during the execution of a task, i.e., without the need for a model. In
this section, we will study different approaches and discuss their properties.

Approaches to Policy Gradient Estimation

The literature on policy gradient methods has yielded a variety of estimation methods over the last years. The
most prominent approaches, which have been applied to robotics are finite-difference and likelihood ratio
methods, better known as REINFORCE in reinforcement learning.

Finite-difference Methods
Finite-difference methods are among the oldest policy gradient approaches; they originated from the stochastic
simulation community and are quite straightforward to understand. The policy parameterization is varied  times
by small increments  and for each policy parameter variation  roll-outs (or trajectories)

are performed which generate estimates  of the expected return. There are different
ways of choosing the reference value  e.g. forward-difference estimators with  and central-
difference estimators with  The policy gradient estimate  can be estimated by
regression yielding

where  and  denote the  samples. This approach can be highly
efficient in simulation optimization of deterministic systems (Spall, 2003) or when a common history of random
numbers (Glynn, 1987) is being used (the latter is known as PEGASUS in reinforcement learning (Ng & Jordan,
2000)), and the error of the gradient estimate can get close to  (Glynn, 1987). However, the uncertainty
of real systems will result in stochasticity and an artificial common history of random numbers can no longer be
applied. Hence, when used on a real system, the performance degrades in a gradient estimate error ranging
between  to  depending on the chosen reference value (Glynn, 1987). An implementation of this
algorithm is shown below.

input: policy parameterization 
for  to   do  
    generate policy variation  

    estimate  from roll-out 

    estimate  e.g.,  from roll-out 

    compute 
end for  

return gradient estimate 
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Note that an alternative implementation would keep increasing  until the gradient estimate converges. The
choice of  can be essential; empirically it can be observed that taking  as twice the number of parameters yields
very accurate gradient estimates.

Due to the simplicity of this approach, such methods have been successfully applied to numerous applications.
However, the straightforward application is not without peril as the generation of the  requires proper
knowledge of the system, as badly chosen  can destabilize the policy so that the system becomes instable and
the gradient estimation process is prone to fail. If the parameters differ highly in scale, significant difficulties
could be the consequences.

Advantages of this approach: Finite-difference methods require very little skill and can usually be
implemented out of the box. They work both with stochastic and deterministic policies without any change. It is
highly efficient in simulation with a set of common histories of random numbers and on totally deterministic
systems.

Disadvantages of this approach: The perturbation of the parameters is a very difficult problem often with
disastrous impact on the learning process when the system goes unstable. In the presence of noise on a real
system, the gradient estimate error decreases much slower than for the following methods. Performance depends
highly on the chosen policy parametrization.

Sehnke et al. (2010) show several interesting newer methods developed in this domain.

Likelihood Ratio Methods and REINFORCE
Likelihood ratio methods are driven by a different important insight. Assume that trajectories  are generated
from a system by roll-outs, i.e.,  with return  which leads to 

 In this case, the policy gradient can be estimated using the likelihood ratio (see
e.g. Glynn, 1987; Aleksandrov, Sysoyev, and Shemeneva, 1968) better known as REINFORCE (Williams, 1992)
trick, i.e., by using

from standard differential calculus ( ), we obtain

As the expectation  can be replaced by sample averages, denoted by  only the derivative  is
needed for the estimator. Importantly, this derivative can be computed without knowledge of the generating
distribution  as

implies that

as only the policy depends on 

Thus, the derivatives of  do not have to be computed and no model needs to be maintained.
However, if we had a deterministic policy  instead of a stochastic policy  computing such a
derivative would require the derivative  to compute 

 and, hence, it would require a system model.

In order to reduce the variance of the gradient estimator, a constant baseline can be subtracted from the gradient,
i.e.,

where the baseline  can be chosen arbitrarily (Williams, 1992). It is straightforward to show that this
baseline does not introduce bias in the gradient as differentiating  implies that
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and, hence, the constant baseline will vanish for infinite data while reducing the variance of the gradient
estimator for finite data. See Peters & Schaal, 2008 for an overview of how to choose the baseline optimally.
Therefore, the general path likelihood ratio estimator or episodic REINFORCE gradient estimator is given by

where  denotes the average over trajectories. This type of method is guaranteed to converge to the true
gradient at the fastest theoretically possible error decrease of  where  denotes the number of roll-outs
(Glynn, 1987) even if the data is generated from a highly stochastic system. An implementation of this algorithm
will be shown below together with the estimator for the optimal baseline.

input: policy parameterization 
repeat 
    perform a trial and obtain  
    for each  gradient element  
         estimate optimal baseline 

               

         estimate the gradient element 

               

    end for  
until  gradient estimate  converged 
return gradient estimate 

Advantages of this approach: Besides the theoretically faster convergence rate, likelihood ratio gradient
methods have a variety of advantages in comparison to finite difference methods when applied to robotics. As the
generation of policy parameter variations is no longer needed, the complicated control of these variables can no
longer endanger the gradient estimation process. Furthermore, in practice, already a single roll-out can suffice
for an unbiased gradient estimate viable for a good policy update step, thus reducing the amount of roll-outs
needed. Finally, this approach has yielded the most real-world robotics results (Peters & Schaal, 2008) and the
likelihood ratio gradient is guaranteed to achieve the fastest convergence of the error for a stochastic system.

Disadvantages of this approach: When used with a deterministic policy, likelihood ratio gradients have to
maintain a system model. Such a model can be very hard to obtain for continuous states and actions, hence, the
simpler finite difference gradients are often superior in this scenario. Similarly, finite difference gradients can
still be more useful than likelihood ratio gradients if the system is deterministic and very repetitive. Also, the
practical implementation of a likelihood ratio gradient method is much more demanding than the one of a finite
difference method.

Natural Policy Gradients
One of the main reasons for using policy gradient methods is that we intend to do just a small change  to the
policy  while improving the policy. However, the meaning of small is ambiguous. When using the Euclidian
metric of  then the gradient is different for every parameterization  of the policy  even if these
parameterization are related to each other by a linear transformation (Kakade, 2002). This problem poses the
question of how we can measure the closeness between the current policy and the updated policy based upon the
distribution of the paths generated by each of these. In statistics, a variety of distance measures for the closeness
of two distributions (e.g.,  and ) have been suggested, e.g., the Kullback-Leibler divergence 

 the Hellinger distance  and others (Su & Gibbs, 2002). Many of these distances (e.g., the
previously mentioned ones) can be approximated by its second order Taylor expansion, i.e., by
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Figure 1: When plotting the expected return landscape for a simple problem such as an
1d linear quadratic regulation, the differences between regular (‘vanilla’) and natural
policy gradients becomes apparent.

where

is known as the Fisher-information matrix. Let us now assume that we restrict the change of our policy to
 where  needs to be a very small number (i.e., close to zero).

In that case, the natural gradient is defined by Amari (1998) as the update  that is most similar to the true
gradient  while the change in our path distribution is limited to  Hence, it is given by the program

The solution to this program is given by

where  denotes the regular likelihood ratio policy gradient from the previous section. The update step is
unique up to a scaling factor, which is often subsumed into the learning rate. It can be interpreted as follows:
determine the maximal improvement  of the policy for a constant fixed change of the policy 

As illustrated in Figure 1, the natural gradient update in Figure 1 (b) corresponds to a slightly rotated regular
policy gradient update in Figure 1 (a). It can be guaranteed that it is always turned by less than 90 degrees
(Amari, 1998), hence all convergence properties of the regular policy gradient transfer.

This type of approach has
its origin in supervised
learning (Amari, 1998). It
was first suggested in the
context of reinforcement
learning by Kakade
(2002) and has been
explored in greater depth
in (Bagnell & Schneider,
2003; Peters,
Vijayakumar & Schaal,
2003, 2005; Peters &
Schaal, 2008). The
strongest theoretical
advantage of this
approach is that its
performance no longer depends on the parameterization of the policy and is therefore safe to be used for
arbitrary policies. Hence, the regular policy gradient is sometimes referred to as a flavored or vanilla gradient, as
it keeps the `vanilla flavor' of the policy. However, a well-chosen policy parametrization can sometimes results in
better convergence of the policy gradient than the natural policy gradient. Nevertheless, in practice, a learning
process based on natural policy gradients often converges significantly faster for most practical cases. Figure 1
gives an impression of the differences in the learning process: while the regular policy gradient often points to
plateaus with little exploration, the natural gradient points to the optimal solution.

One of the fastest general algorithms for estimating natural policy gradients which does not need complex
parameterized baselines is the episodic natural actor critic. This algorithm, originally derived in (Peters,
Vijayakumar & Schaal, 2003), can be considered the `natural' version of REINFORCE with a baseline optimal for
this gradient estimator. However, for steepest descent with respect to a metric, the baseline also needs to
minimize the variance with respect to the same metric. In this case, we can minimize the whole covariance matrix

of the natural gradient estimate  given by
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with

being the REINFORCE gradient with baseline  The re-weighting with the Fisher information ensures that the
best identifiable gradient components get the highest weight. As outlined in (Peters & Schaal, 2008), it can be
shown that the minimum-variance unbiased natural gradient estimator can be determined as shown below.

input: policy parameterization 
repeat 
    perform  trials and obtain  for each trial 
    Obtain the sufficient statistics 
         Policy derivatives  

         Fisher matrix  

         Vanilla gradient  

         Eligibility  

         Average reward  

    Obtain natural gradient by computing 
         Baseline  

              with  

         Natural gradient 
until  gradient estimate  converged 
return gradient estimate 

For the derivation, see (Peters & Schaal, 2008).

Advantages of this approach: Natural policy gradients differ in a deciding aspect from both finite difference
gradients and regular likelihood ratio gradients, i.e., they are independent from the choice of policy
parametrization if the choices have the same representational power. As a result, they can be an order of
magnitude faster than the regular gradient. They also profit from most other advantages of the regular policy
gradients.

Disadvantages of this approach: In comparison to the regular policy gradient, there are three disadvantages:
first, the matrix inversion in the gradient estimators may be numerically brittle and may scale worse (note that
there are tricks to alleviate this problem). Second, if we can find a special policy parametrization that trivializes a
problem, the natural policy gradient may not make use of it. Third, the natural policy gradient estimators are
often much harder to implement.

Conclusion

We have presented an quick overview on policy gradient methods. While many details needed to be omitted and
may be found in (Peters & Schaal, 2008), this entry roughly represents the state of the art in policy gradient
methods. All three major ways of estimating first order gradients, i.e., finite-difference gradients, vanilla policy
gradients and natural policy gradients are discussed in this article and practical algorithms are given.
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