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Abstract— Navigating urban environments represents a com-
plex task for automated vehicles. They must reach their
goal safely and efficiently while considering a multitude of
traffic participants. We propose a modular decision making
algorithm to autonomously navigate intersections, addressing
challenges of existing rule-based and reinforcement learning
(RL) approaches. We first present a safe RL algorithm relying
on a model-checker to ensure safety guarantees. To make the
decision strategy robust to perception errors and occlusions,
we introduce a belief update technique using a learning based
approach. Finally, we use a scene decomposition approach
to scale our algorithm to environments with multiple traffic
participants. We empirically demonstrate that our algorithm
outperforms rule-based methods and reinforcement learning
techniques on a complex intersection scenario.

I. INTRODUCTION

Automated driving has the potential to significantly improve
safety. Although major progress in enabling this technology
has been made in recent years, autonomously navigating urban
environments efficiently and reliably remains challenging. At
urban intersections, vehicles must navigate among both cars
and pedestrians, using on board perception systems that give
noisy estimates of the location and velocity of others on the
road and are sensitive to occlusions (Fig. 1). Autonomously
navigating urban intersections requires algorithms that reason
about interactions between traffic participants with limited
information.

Engineering a rule-based strategy to navigate such an
environment would require anticipating the vast space of
possible situations. A common heuristic strategy is to use
a threshold on the time to collision [1]. Such an approach
performs well in simple scenarios but does not take into
account sensor uncertainty and is unlikely to scale to complex
environments. Alternatively, previous work suggests modeling
the problem as a partially observable Markov decision process
(POMDP) [2]–[4]. POMDPs provide a principled framework
to model uncertainty of other drivers’ intent through latent
variables, as well as integrating perception and planning [3],
[4]. However, these methods are often difficult to scale in
environments with multiple road users.

Reinforcement learning (RL) has been proposed as a way
to automatically generate effective behaviors. RL has been
applied to autonomous braking strategies at crosswalks [5],
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Fig. 1. Illustration of a typical driving scene handled by our algorithm.
Pedestrians and cars might be occluded by obstacles (hatched), and exhibit
complex interactive behavior. The ego vehicle (blue) must control its
longitudinal acceleration along a given path to achieve a left turn safely and
efficiently.

lane changing policies [6], and intersection navigation [7],
[8]. Tram et al. propose a deep reinforcement learning
approach with recurrent neural networks to learn how to
navigate intersections with multiple vehicles with changing
behaviors [7]. Isele et al. address a scenario with sensor
occlusions by representing the state as an occupancy grid
and learning a policy through Q-learning [8]. Although both
approaches show promising results and efficient policies, they
often fail at providing safety guarantees.

To enforce safety in decision making algorithms, different
techniques have been proposed [9]. Conservative rule-based
strategies based on traffic rules and short term predictions can
be used to constrain the action of a reinforcement learning
agent [10], [11]. Formal methods can be used to derive
shielding mechanisms in a more systematic way [12]. These
techniques rely on a model of the environment and provide
strong safety guarantees. They often require an abstraction
of the environment that might be difficult to design.

In this work, we propose a decision making framework
to navigate urban intersections. Our algorithm integrates
concepts from the POMDP planning, reinforcement learning,
and model checking literature to address some of the
challenges of autonomously navigating urban environments
pertaining to safety, efficiency, robustness, and scalability.
We first present the combination of a model-checker and
a reinforcement learning policy to derive efficient policies
with probabilistic safety guarantees. Then, we introduce a
new belief update approach that uses an ensemble of neural
networks. The output of these networks are used as input
for the RL algorithm. Finally, a scene decomposition method
enables us to scale our approach to a large number of
agents and take advantage of local interactions between traffic
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participants. We provide an ablation study of the different
components of our decision making system to illustrate the
benefit of each on five evaluation scenarios. Simulation results
show that our algorithm outperforms RL policies and an
engineered rule-based method.

II. BACKGROUND

A. Reinforcement Learning

Sequential decision making problems can be modeled by
a Markov decision process (MDP). MDPs are mathematical
frameworks defined by the tuple (S ,A ,T,R,γ), where S is
a state space, A is an action space, T is a transition model, R
is a reward function, and γ is a discount factor. The agent takes
an action a at a given state s, and the environment evolves to a
state s′ with a probability T (s,a,s′) = Pr(s | s′,a). After every
transition, the agent receives a reward r = R(s,a) for taking
action a in state s. The action a is chosen according to a
policy π : S →A . We call the state-action utility of a policy
π the quantity Qπ(s,a) = E[∑∞

t=0 γ trt |s0 = s]. This quantity
represents the discounted accumulated reward obtained by the
agent when taking action a from state s and then following
policy π . The optimal state-action utility verifies the Bellman
equation [13]:

Q∗(s,a) = R(s,a)+ γ ∑
s′

T (s,a,s′)max
a

Q∗(s′,a) (1)

In MDPs with finite state space and action space, Eq. (1)
can be solved using value iteration. However, when the
state space is continuous and high dimensional, approxi-
mation methods must be used [14]. In recent years, deep
reinforcement learning algorithms have been shown to find
efficient policies in very large MDPs. In deep reinforcement
learning, the state-action value function is represented by a
neural network: Q(s,a;θ) where θ encodes the weights of
the network. The solution to Eq. (1), can be approximated
by the network minimizing the following loss function:

J(θ) = Es′ [(r+ γ max
a′

Q(s′,a′;θ)−Q(s,a;θ))2] (2)

Given an experience sample (s,a,r,s′), the weights are
updated as follows:

θ ← θ +α(r+ γ max
a′

Q(s′,a′;θ)−Q(s,a;θ))∇θ Q(s,a;θ)

(3)
where α is the learning rate, a hyperparameter of the
algorithm. Mnih et al. proposed several innovations to
improve network training, such as the use of a target network
and experience replay, which lead to a scalable reinforcement
learning solver known as deep Q-learning (DQN) [15].

B. State Uncertainty

MDP models assume that the agent can observe the true
state of the environment perfectly. However, in autonomous
driving scenarios, the ego vehicle receives imperfect obser-
vations of the environment. Hence, the autonomous driving
problem is inherently a partially observable Markov decision
process (POMDP). In a POMDP, the agent represents its
knowledge of the environment with a belief state b : S →
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Fig. 2. Flow diagrams of our decision making algorithm. The top figure
shows the policy acting on the canonical scenario, integrating the belief
updater, model checker, and RL agent. The bottom figure illustrates the
scene decomposition method used to generalize the previous policy.

[0,1] such that b(s) is the probability of being in state s.
At every time step, the agent receives an observation and
updates its belief. Algorithms that update a current belief
given observations are referred to as belief updaters, or filters
in the tracking literature.

Solving decision making problems in the belief space
is generally intractable. Instead, one can use the QMDP
approximation [16]:

Q(b,a) = ∑
s

QMDP(s,a)b(s) (4)

where QMDP is the solution to the problem considered as
an MDP. Such approximation assumes that the state will
be perfectly observable at the next time step. The QMDP
method over approximates the true belief-state value function.
As a consequence, an agent following such a policy will not
take information gathering actions. We argue that for the
problem of interest, information gathering does not need
to be incentivized and will occur naturally as the agent
moves towards the goal. Experiments show that the QMDP
approximation suffices to make our algorithm robust to state
uncertainty.

III. PROPOSED APPROACH

This section describes the different components of our
approach, illustrated in Fig. 2. We first explain how to model
the intersection navigation problem. We then present our safe
reinforcement learning algorithm and learned belief updater
on a canonical scenario involving only the ego vehicle, a
single other car, and a pedestrian. Finally, we demonstrate
how to use the solution to this canonical scenario to navigate
intersections with a multitude of cars and pedestrians. The
hyperparameters for each of the methods presented are
available in our code base1.

1https://github.com/sisl/AutomotiveSafeRL
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A. Modeling Intersection Scenarios

The urban intersections scenario is modeled as a Markov
decision process. A simulation environment2 is derived from
the MDP formulation by sampling the transition model. In
addition, we simulate perception error during evaluation,
making our model a POMDP.

a) State: We define the state of a traffic participant c
to be sc = (x,y,θ ,v) which is its position, heading, and its
longitudinal velocity. We used a Cartesian frame with the
origin at the center of the intersection to define the position.
Fixed obstacles are defined by their positions and their sizes:
sobs = (x,y,θ , l,w) where l is the length and w the width of
the obstacle. The global state s = (sego,sc1:nc

,sp1:np
,so1:no

) can
be described as follows:
• sego represents the physical state of the ego vehicle
• sci represents the physical state of the i-th car in the

environment with i = 1 . . .nc where nc is the number of
cars present in the environment

• spi represents the physical state of the i-th pedestrian in
the environment with i = 1 . . .np where np is the number
of pedestrians present in the environment.

• soi is the pose of the i-th obstacle present in the
environment with i = 1 . . .no where no is the number of
fixed obstacles present in the environment.

In addition, we add an extra state variable, sabsent, to model
a potential incoming traffic participant that is not present
in the scene. Contrary to previous work, this description
of the state takes into account any obstacle configuration
and any type of entity (pedestrian or car) in the problem
formulation. Other POMDP approaches consider adding a
latent variable to each of the traffic participants to describe
their behavior [3], [4]. In this paper, uncertainty about other
traffic participants’ behavior is captured by the transition
model and state uncertainty only takes into account sensor
limitations. However, the proposed framework could be
extended to model the intentions of drivers and pedestrians.

b) Action Space: The ego vehicle controls its acceler-
ation along a given path by choosing an acceleration level
among the set: {−4m/s2,−2m/s2,0m/s2,2m/s2} which
corresponds to a comfortable driving.

c) Transition: The transition model is designed to
capture interaction between traffic participants. For a state
with a single car c and a single pedestrian p, we can factorize
the transition model as follows:

Pr(s′ | s,a) = Pego(s′ego | sego,a)Pc(s′c | s)Pp(s′p | s) (5)

Pego represents the dynamics of the ego vehicle and is modeled
by a deterministic point mass dynamic. Pc and Pp represent
the model of the other car and the pedestrian respectively.
The car follows a rule-based policy described in Section IV
and the pedestrian follows a time to collision policy to decide
whether it is safe to cross the street. Hence, the actions of the
car and the pedestrian depend on their respective state as well
as the state of the ego vehicle. To describe uncertainty in the

2The implementation is available at https://github.com/sisl/
AutomotivePOMDPs.jl

behavior of other vehicles, a Gaussian noise with standard
deviation 2 m/s2 is added to the output of the rule-based
policy. Pc represents the model of the pedestrian. In addition,
new cars and pedestrians can appear in the scene with a
constant probability of appearance at each time step. They
appear at the beginning of any lane or crosswalk randomly
with a random velocity.

d) Observation: The ego vehicle receives a noisy
observation of the state according to the following sensor
model:
• The position measurement follows a Gaussian distri-

bution centered around the ground truth with standard
deviation σp growing linearly with the distance to the
target.

• The velocity measurement follows the same model with
σv growing linearly with the distance to the target.

• There is a false negative rate of 0.1 and a false positive
rate of 0.1 if no targets are visible.

• If a target is occluded, it cannot be detected. In the
simulated environment we compute occlusion by a ray
tracing technique: if the segment connecting the front of
the ego vehicle and the target intersects with the obstacle,
then the target is occluded.

The observation model is used for simulation purposes. The
safe-RL algorithm that we will present in the next section
derives a policy in a fully observable environment.

Such mathematical formulation provides a principle frame-
work to model multiple vehicles interacting, uncertain behav-
iors, and limited perception of the environment. However,
solving for the optimal strategy to navigate in such an
environment would be intractable due to an exponential
increase in the number of states with the number of agents
considered. For this reason, we will first focus on a sub-task
in a simpler scenario, using offline methods. We consider a
canonical scenario involving the ego vehicle, a single other
car, and a single other pedestrian. This scenario is sufficient
to capture complex interactions such as the other car yielding
to a crossing pedestrian. The generalization to environments
with multiple agents and obstacles is performed online and
is addressed in Section III-D.

B. Safe Reinforcement Learning

Deep reinforcement learning methods could derive efficient
policies for the proposed scenario but do not provide any
safety guarantees. For safety critical applications such as
autonomous driving, a way to benefit from the flexibility and
scalability of deep RL is to constrain the action space to
safe actions [9], [17]. In this work, we use a probabilistic
model checker to compute the probability of reaching the
goal safely for each state-action pair prior to learning a policy.
Safe actions are then identified by applying a threshold on
the probability of success at a given state-action pair, similar
to the method used by Bouton et al. [17]. The threshold is a
user defined parameter which represents the minimum desired
probability of success.

The model checker relies on the value iteration algorithm
and requires a discretization of the state space and the
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Ego vehicle Ground truth Observation Belief

Fig. 3. Example of a trajectory where the ensemble of RNNs tracks a car through an occluded area. The blue gauge represents the predicted probability of
presence of a vehicle behind an obstacle. An empty gauge corresponds to a probability of 0 and a full gauge to a probability of 1. In this example, the ego
vehicle is still at the stop line in order to demonstrate the ability of the belief updater to track through obstacles during a long time period.

full specification of the transition model [18]. To keep
the representation tractable, the state space is limited to
longitudinal positions and velocities for the three agents,
a variable indicating the car’s lane and a variable indicating
the pedestrian’s crosswalk. The pedestrian can be on any of
the three crosswalks considered and travels in both direction
(making it six values for the pedestrian lane). The car can
drive in any of the lanes present on Fig. 1. By choosing
resolutions of 2 m for the position and 2 m/s for the velocity
of each agent, the number of states is approximately 23×106.
Given this discrete representation, the probability of reaching
the goal safely, PS(s,a), can be computed offline using parallel
value iteration.

A safety threshold λ is used to constrain the agent to
take actions inside the set Asafe = {a | PS(s,a)> λ}. In cases
where the set is empty, the agent then executes the safest
possible action given by the model checker. In cases where
A (s) is not empty, the agent can choose any actions within
the set. We train an RL agent to choose the best actions
among the possible safe actions as follows:

πsafe(s) =

{
argmaxa∈Asafe(s) Q(s,a) ifAsafe(s) 6= /0
argmaxa PS(s,a) ifAsafe(s) = /0

(6)

This constrained action selection strategy transfers the safety
guarantees of the model checker to the RL agent [17].

The probabilistic model checker enables identifying safe
actions and bounding the actions of the RL agent. However,
the ego vehicle must also reach the goal as fast as possible. To
optimize for this objective, we define a simple reward function
that assigns a value of 1 to goal states. Collision states are
already avoided thanks to the constrained exploration. The
policy is trained using deep Q-learning with a constrained
action space to enforce safety. The training environment is
a continuous state space, simulated environment, following
the model described in Section III-A, with only one other
car and one pedestrian and perfect observation. The policy is
modeled by a feedforward neural network with four layers
of 32 nodes and ReLU activations. The input to the network
is a twelve dimensional vector with the positions (2D),
longitudinal velocity, and heading of the ego vehicle, the
car, and the pedestrian. Future work could investigate more
complex reward design with terms for passenger comfort or
social behavior.

The safe RL algorithm provides a policy that is trained on
the canonical scenario optimizing for time efficiency under

safety constraint imposed by the model checker. Computing
the probability of collision and training the policy assumes
an MDP model of the environment where the position and
velocity of the road users are fully observable.

C. Ensemble Belief Updater

In this section we present a belief updater capturing state
uncertainty. A belief updater is generally an algorithm that
updates the new belief given the old belief, and the current
observation. Although perception systems already use filtering
algorithms, their outputs are still noisy and may result in
false positive and false negative. In this work, the belief
updater has sole purpose to integrate perception error in the
planning algorithm. It is assumed that a perception system
is processing raw sensor data beforehand and provides a
structured representation of the environment. Our belief
updater assumes perfect data association. Each entity is
associated to an ID that is consistent through the whole
trajectory.

Classic belief updaters, such as particle filters, could
be used to track occluded object and smooth perception
errors [19]. However, most of these algorithms rely on some
model of the environment. In this paper, we experiment with
a new learning-based approach to represent belief states. The
main motivation is to capture environment specific parameters,
such as the probability of an entity appearing in an occluded
area, as well as to learn scenario specific dynamics, such as a
car yielding to a pedestrian, which cannot be easily modeled.

Our belief update algorithm consists of an ensemble of
recurrent neural networks (RNN). The hidden state of each
network is responsible for keeping track of the observation
history. The input of each network is an observation vector,
and the output is the predicted ground truth position of the
car and the pedestrian as well as a probability of presence.
The input to the RNN is a sixteen dimension vector encoding
the observed state of the ego vehicle, pedestrian, other car,
and obstacle. The prediction is a ten dimension vector: the
predicted state of the car and pedestrian, and their probability
of presence. The recurrent neural network is trained using
gradient descent on the mean squared error between ground
truth trajectories and predicted trajectories.

In order to make the prediction more robust, we used an
ensemble method [20]. Instead of training a single network,
k different networks are trained on a different portion of the
dataset. Those randomly initialized networks will converge
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to different local optima. As a result, they will each give
different predictions for a given input. We use an ensemble
of five networks and the five predictions represents the belief
of the agent. The use of an ensemble of RNNs emulates the
role of a particle filter similarly to the approach presented by
Igl et al. [21].

To train the network, we generated a synthetic dataset with
the same simulation environment used for training the RL
policy. This scenario involves one ego vehicle, one other car,
and one pedestrian, as well as one obstacle randomly placed
on the side of the road. We generated 3000 trajectories of 400
time steps of 0.1 s. The belief updater is trained to handle up
to a certain level of perception noise described in Section IV.

In Fig. 3 we can see an example of our belief updater
predicting the state of a car behind an occluded area. The
blue trace represents the predictions of the five RNNs. We
can see that they all give different predictions, enhancing
the robustness of the estimation. As the time increases, the
probability of presence of a car behind the obstacle increases
since our model assumes a constant rate of appearance at
every time step. The network is able to infer that cars can
appear at the beginning of the road because it has experienced
such cases in the training set. Finally, on the last two frames
the car is observed (green trace) and the predictions converge
to a more accurate estimation.

It is important to realize that standard particle filters
could have been used since our environment is simulated
and the model is known. However, using a learning based-
method could help capture unknown parameters such as the
probability of the appearance of a car, or pedestrian, as well
as scenario specific dynamics, such as a car braking strongly
to yield to a pedestrian. Experiments in Section IV show
that our ensemble of RNNs provides robustness to perception
errors. Further work is needed to benchmark such approach
against standard tracking algorithms and evaluate the number
of RNNs to use in the ensemble.

D. Online Scene Decomposition

Thus far, we presented our approach on a scenario involv-
ing only three traffic participants. In this section we will
demonstrate how to generalize the safe RL policy, and the
belief updater, to situations with multiple cars and pedestrians
through the use of scene decomposition. Decomposition
methods have been used in the past to approximate the
solution of large decision making problems [22], [23]. They
consist of combining the utility functions associated with
simple tasks to approximate the solution to a more complex
task. Previous work proposed an agent-wise decomposition
where each target to avoid is considered independently [22].

In our intersection scenario, the simple task consists
of navigating the intersection assuming only one car, one
pedestrian, and one obstacle can be present. The motivation
for using a canonical scenario with three agents is to capture
interactions between cars and pedestrians. In the presence
of multiple cars and pedestrians, the global belief, b =
(bego,bc1 , . . . ,bp1 , . . . ,bo1), can be decomposed into multiple

instances of the canonical scenario. That is:

b = {(bego,bc1 ,bp1 ,bo1), . . . ,(bego,bc1 ,bp1 ,bo1)} (7)

At each time step, we will have nc× np× nobs canonical
beliefs. Since nc and np are not known in practice due to
sensor occlusions, the global state variable is augmented with
an additional car and pedestrian observed as absent. This
allows the agent to always assume that there is at least one
agent that might appear from an occluded area.

Once the belief state is decomposed into canonical belief
states, we perform the following approximation:

PS(b,a) = min
i

PS(bi,a) (8)

Q(b,a) = min
i

Q(bi,a) (9)

This operation takes into account the canonical belief with
the worst probability of success and the worst utility. Entities
that are far from the ego car and present very little risk will
be associated to a higher utility and higher probability of
success and will be ruled out from the decision.

The computational cost of the scene decomposition method
grows linearly with the number of cars or pedestrians
considered. Once the belief state decomposed, a policy call
requires evaluating Q and PS nc×np×nobs times online. Since
Q and PS are computed offline, evaluating them at a given
belief point involves a pass forward through a neural network
and a table query which is relatively fast, as illustrated in
Fig. 4. In our current implementation, we used a decision step
of 0.1 s so the policy call would become slower than real time
after 7 cars and one pedestrian. In practice, the decision step
could be reasonably increased up to 0.5 s, and the different
calls to Q and PS could be parallelized. Updating the belief
using the ensemble of networks stayed below 100 ms.

The use of min to combine individual utilities could be
overly conservative in crowded environments. Increasing the
size of the canonical scenario could help taking into account
more complex interaction. This fact highlights a computa-
tional trade-off between the number of traffic participants
considered jointly or separately. Previous work has studied
algorithms to bridge the gap between approximated solutions
obtained from decomposition methods and the solution to the
problem considering every traffic participants [24].

IV. EXPERIMENTS

We evaluated our algorithm on a simulated environment
following the model described in Section III-A. To measure
the performance of our algorithm, we designed five different
scenarios and measured the number of time steps to reach
the goal as well as the number of collisions. We ran 10000
simulations and measured the average number of steps taken
to reach the goal as well as the average number of collisions
observed in simulation. The results are presented in Fig. 7.

A. Evaluation Scenarios

The first two scenarios, a and b, evaluate the benefit of
using a belief updater. Scenarios c and d evaluate the benefit
of having a three agent formulation as the canonical scenario.
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Fig. 4. Online computation time of calling the safe RL policy and the
belief updater. We fixed the number of pedestrians to one and varied the
number of cars present in the environment.

Finally, scenario e evaluates the scalability of our algorithm.
Fig. 5 shows a situation from each of those scenarios. Across
the scenarios, we varied the sensor performances, the presence
of obstacles, and the number of cars and pedestrians present
in the scene. For each of them, the ego vehicle starts with no
velocity, waiting at a T shape intersection with no stop signs.

In all scenarios but c and d, the perception error is modeled
by a Gaussian distribution around the position and velocity
measurement with false positive and false negative rates. The
standard deviations are 0.5 m and 0.5 m/s for the position
and velocity measurements. We used a false positive rate of
0.1 and a false negative rate of 0.1. The perception system
is also sensitive to physical obstacles such as buildings. We
used ray tracing to check if a traffic participant is occluded
or not. If it is occluded, then no observation is received by
the ego vehicle.

a) Perception Noise: We consider only one other car
going straight and coming from the right or the left with equal
probability. The car is initialized with a random longitudinal
position along its route and a random longitudinal velocity
between 0 m/s and 8 m/s. We can see from Fig. 7 that the
five policies take similar times to reach the goal.

b) Occlusions: This scenario is the same as described
above except that a physical obstacle is present on the side of
the road, which blocks the sensing capabilities of the vehicle.
The initial scene is generated such that the incoming car is
always occluded by the obstacle.

The next two scenarios have been designed in order to
evaluate the ability of our decision making system to capture
interactions between traffic participants. In both scenarios we
assume that the ego vehicle has perfect sensing capabilities.

c) Car and pedestrian interaction: In this scenario, we
consider one other car and one other pedestrian interacting
with each other. The strategy of the other car is to yield to the
pedestrian if it is crossing or preparing to cross. The pedestrian
is initialized on one of the three crosswalks randomly, with a
random longitudinal position and a random velocity between
0 m/s and 2 m/s. The other car is initialized with a random
route, a random longitudinal position, and a random velocity.

d) Ego and other car interaction: Only one other car,
and no pedestrian is considered. The other vehicle is coming

from the right and must perform a left turn. If the ego
vehicle starts engaging in the intersection, then the other
vehicle should yield to the ego vehicle. This scenario has
been designed to evaluate the ability of our policy to exploit
this interaction.

e) Multiple cars and pedestrians: In this scenario, we
evaluate the scalability of our approach. A flow of cars and
pedestrians is generated with a probability of appearance of
0.1 at every time step. We also added observation noise and
physical obstacles randomly initialized on the left or right
of the ego vehicle. An example scene from scenario e is
illustrated in Fig. 1.

B. Baseline Policies
We compared our algorithm’s performance against a rule-

based method as well as an RL policy.
Rule-based policy: This policy is a hand-engineered rule-

based strategy. It is the same policy followed by human cars
in our simulation environment. The policy relies on a time
to collision strategy to decide when to cross and uses an
additional set of priority rules:
• Cars going straight or turning right on the main street

have priority
• Pedestrians have priority and the car must yield to

pedestrians approaching the crosswalk and wait for them
to reach the other side of the road.

• Cars follow the intelligent driver model before or after
reaching the intersection.

When a car is stopped at an intersection, it measures the time
to collision with other vehicles. If this time to collision is
above some threshold, the car crosses. The time to collision
is measured as the time it takes for the other car to reach
the center of the intersection assuming the car would drive
with maximum acceleration. Such a design prioritizes safety
and ensures that the rule-based policy is collision free under
perfect observations. In addition, we analyzed the effect of
using the ensemble RNN updater versus directly using the
output of the perception system.

Safe rule-based: The safe rule-based policy is a combina-
tion of the model checker and the rule-based policy described
above. If the action given by the rule-based policy is within
the set of safe actions given by the model checker, then the
action is executed. Otherwise, it executes the safest action
given by the model checker.

RL policy: The reinforcement learning policy is trained
using Deep Q Learning on the canonical scenario and is
augmented using scene decomposition. The reward function
assigns −1 to collisions and 1 for reaching the goal. The
same network structure is used as for the safe-RL policy. The
exact parameters used for the training are available in our
code base.

Finally, we will refer to our approach combining the belief
updater, model checker, RL policy, and scene decomposition
as the safe-RL policy.

C. Results and Discussion
In scenario a, the rule-based policy, not relying on a belief

updater, has more collisions than the one using the updater. It
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Ego vehicle Ground truth Observation

a) b) c) d) e)

Fig. 5. Examples of scenes from our five evaluation scenarios. In scenario a, b, and e, the ego vehicle has limited sensing capabilities. The green trace in
scenario b shows an example of false positive detection.
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Other cars
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𝑣𝑒𝑔𝑜 = 31 km/h
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𝑣𝑒𝑔𝑜 = 0.0 km/h

Pedestrians

(ground truth)

Fig. 6. Example of a trajectory where the ego car executes our algorithm in
scenario e). The car first engages in the intersection since no incoming cars
present a risk. Then the vehicle waits for two pedestrians to cross the street.
Once the pedestrians are done crossing, the autonomous vehicle pursues its
course at higher speed.

receives a noisy observation of the true state which eventually
leads to bad decisions. We can see that although the RL policy
uses the belief updater, it is more aggressive and results in
more collisions than the rule-based policy. In scenario b, the
belief updater also reduces the number of collisions since
the policy is aware of the potential presence of the car in
the occluded area. Our safe-RL algorithm outperforms all the
other approaches on this scenario. Our safe-RL algorithm did
not cause any collisions for a comparable performance.

In scenario c and d, the RL policy results in the most
collisions and is the fastest to cross. Using RL in such an
environment allows to take advantage of situations where the
other car yields to the pedestrian. The other policies have
similar performances. Since the car yielding to the pedestrian
slows down, the time to collision decreases and the rule-based
policy is also able to perform efficiently.

In scenario e, the most complex, rule-based policies are
very inefficient. In contrast, RL based policies perform very
efficiently (twice as fast for RL vs rule-based). We can see that
our Safe-RL approach performs comparably as the standard
RL policy while being much safer. An example of a trajectory
resulting from executing our algorithm in this scenario is

a b c d e
0

100

200

300

400

St
ep

s

RL updater
Rule-based no updater

Rule-based updater
Safe-RL updater

Safe-Rule-based updater

a b c d e
0

2

4

·10−2

Scenario

C
ol

lis
io

ns

Fig. 7. Average number of steps to reach the goal (one step is 0.1 s), and
average number of collisions of the different policies in the five evaluation
scenarios. The error bar represents the standard error. The masked policies
presented zero collisions across the 10000 simulations.

illustrated in Fig. 6. The vehicle exhibits a safe and intelligent
behavior. It positions itself strategically in the middle of the
intersection, to leave as soon as the two pedestrian on the
left are done crossing.

The simulation results highlight several important points
that should be taken into consideration when designing a
decision making algorithm for urban intersections. First, the
belief updater plays an important role in making the algorithm
robust to perception noise and aware of occluded areas.
Secondly, using a pure reinforcement learning technique does
not enable the agent to act more safely than when using simple
rule-based methods. Moreover, we can see from the results
on scenarios a, b, c, and d, which involves only one or two
other traffic participants, that the efficiency of all the policies
are very similar. However, when the scenario becomes more
complex, with a flow of cars and pedestrians, the benefits
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of using reinforcement learning over a rule-based method
become clear. As the set of possible situations drastically
increases with the number of agents, engineering a set of
rule to represent the policy is very challenging. Our safe-
RL algorithm is able to find a safe policy that outperforms
rule-based approaches. The presence of the model checker
makes our algorithm more suitable than pure RL methods by
enforcing safety constraints.

V. CONCLUSIONS

This paper presented a decision making framework for
autonomously navigating urban intersections. We introduced
a learned belief updater that uses an ensemble of RNNs to
estimate the location of vehicles behind obstacles and is robust
to perception errors. We improved upon pure reinforcement
learning methods by using a model checker to enforce safety
guarantees. Finally, through a scene decomposition method,
we demonstrated how to efficiently scale the algorithm to
scenarios with multiple cars and pedestrians. We empirically
demonstrated that our method provides safe and efficient
decisions even in complex scenarios.

Future work includes applying our methodology to different
situations such as highway merging and crowded driving
environments. Since we demonstrated how to learn the belief
updater with a synthetic dataset, a line of future work could
be to use real data from the perception system of the ego
vehicle. Finally, estimating the intentions of drivers has been
investigated in previous works and could be useful for decision
making [3], [4].
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