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1 Applications of model checking
Before we check whether assumptions are met for specific linear models fit to a data set we will now look at
illustrative examples where clearly at least one of assumptions of the linear model that we studied last week
has not been met.

1.1 Examples of departures from assumptions
Here we will display some residual plots from simulated data to highlight departures from the assumptions of
(a) a linear regression model being appropriate and (b) constant variance. The residual scale focuses attention
on possible departures from the model.
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Residuals vs. Fitted plot

The left hand plot shows the raw data with the typical seasonal “up and down” relationship, coupled with
a linear trend. The blue line gives the linear regression fit to the data, which clearly is not adequate. In
comparison if we used a non-parametric fit, we will get the red line as the fitted relationship. Now if we look
at the residual plot (after fitting the linear regression) on the right we can clearly see that the residual plot
retains some pattern (given by the orange line), which is a clear indication that the model linear model was
not appropriate for this data set.

1.1.1 Non-constant variance

Now let us look at an example where we might experience non-constant variance.
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1.1.1.1 Lighter tails

In the next example, we see a QQ plot where the residuals deviate from the diagonal line in both the upper
and lower tail. This plot indicated that the tails are ‘lighter’ (have smaller values) than what we would expect
under the standard modelling assumptions. This is indicated by the points forming a “flatter” line than than
the diagonal.

1.1.1.2 Heavier tails

In this final example, we see a QQ plot where the residuals deviate from the diagonal line in both the upper
and lower tail. Unlike the previous plot, in this case we see that the tails are observed to be ‘heavier’ (have
larger values) than what we would expect under the standard modeling assumptions. This is indicated by the
points forming a “steeper” line than the diagonal.
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Now we will apply the model checking plots to analyze model fit to a real data.
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1.1.2 Example: Tree volume

The data set refers to the volume (cubic feet), diameter (inches) (at 54 inches above the ground) and height
(feet) for a sample of 31 black cherry trees in the Allegheny National Forest Pennsylvania. The data were
collected in order to find an estimate for the volume of a tree (and therefore for the timber yield), given its
height and diameter. A starting point for estimating volume using these data is the geometric formula for a
cylinder:

volume = π ∗
(

diameter
2

)2
∗ height

1.1.3 Exploratory Plots

We can start by exploring the relationship between the two predictors and the response in two separate plots.
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1.1.4 Suggested Model

Apart from the suggestion of a slight curvature in the plot of volume versus diameter, the scatterplots indicate
that a multiple linear regression model with volume as a response and diameter and height as explanatory
variables may be appropriate. Linear model:

volumei = β0 + β ∗ diameteri + γ ∗ heighti + εi

This model is shown below (along with the residual plots produced after fitting the model).
trees.lm=lm(Volume~Girth+Height,data=trees)
par(mfrow=c(1,2))
plot(trees.lm,2,,pch=16,cex=0.3)
plot(fitted(trees.lm),rstandard(trees.lm),

xlab="Fitted Values",ylab="Standardized residuals",pch=16,cex=0.3)
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Figure 1: Log transformation of volume and diameter (left) and volume and height (right) of trees
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While the initial scatterplots looked reasonable, the residuals versus fitted values plot highlights some evidence
of curvature. This effect is not very marked, but there is a suggestion that the residuals tend to be positive,
negative and then positive again, as we move from left to right in this plot.

This curvature (and the underlying geometric model) suggest that using a log transformation is appropriate
for these data. (The log transform will produce, an additive, linear model from a multiplicative one.)

Linear model with a natural log transformation:

log(volumei) = β0 + β1log(diameteri) + γlog(heighti) + ε.

Exploratory plots: We now take a log transformation of all the variables and again plot the response
against the two predictors.
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Figure 2: Normal Q-Q plot (left) and standardised residuals versus fitted values plot(right) of log transform
model of trees data

1.2 Residual plots from linear model with log transformation:
When we move to the log scale, evidence of curvature in the residual plot disappears. However, the strongest
argument for the use of the log transformation in this example is the underlying geometric model outlined
earlier. The principal issue with these data is how volume should be predicted from diameter and height.

R output for Trees Data
tree.lm<- lm(formula = log(Volume) ~ log(Height) + log(Girth),data=trees)
summary(tree.lm)

Call:
lm(formula = log(Volume) ~ log(Height) + log(Girth), data = trees)

Residuals:
Min 1Q Median 3Q Max

-0.168561 -0.048488 0.002431 0.063637 0.129223

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -6.63162 0.79979 -8.292 5.06e-09 ***
log(Height) 1.11712 0.20444 5.464 7.81e-06 ***
log(Girth) 1.98265 0.07501 26.432 < 2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.08139 on 28 degrees of freedom
Multiple R-squared: 0.9777, Adjusted R-squared: 0.9761
F-statistic: 613.2 on 2 and 28 DF, p-value: < 2.2e-16
anova(tree.lm)

Analysis of Variance Table
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Response: log(Volume)
Df Sum Sq Mean Sq F value Pr(>F)

log(Height) 1 3.4957 3.4957 527.76 < 2.2e-16 ***
log(Girth) 1 4.6275 4.6275 698.63 < 2.2e-16 ***
Residuals 28 0.1855 0.0066
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

A useful summary is provided by R2 and R2(adj). For the model which incorporates both explanatory
variables logged, R2(adj) = 97.6%. Therefore, 97.6% of the variability in log volume can be explained by its
dependence on log diameter and log height. For every one unit increase in log diameter, log volume increases
by 1.98 on average, assuming that height remains the same. Similarly for every one unit increase in log height,
log volume increases by 1.12 on average, assuming that the diameter remains the same.

1.3 Transformations and influential observations
We have already seen with the Trees data how a well chosen transformation can be very effective in harmonising
the assumptions of a linear model. The most effective way of doing this is to consider the science of the
process which has generated the data, to see if a natural transformation emerges.

When scientific guidance is not available, we can simply seek a transformation which makes the assumptions
of the model more appropriate. The choice of transformation is one which involves experience and judgement.

1.3.1 Example: Mass and speed of quadrupedal rodents

Consider the Rodent data, where a plot on the original scale shows a rather odd pattern, with most of the
data bunched up at the left hand side. Mass is presumably approximately proportional to volume. Speed
is a linear measurement (roughly related to the length of the animal’s stride) and so we might expect a
geometrical transformation of some kind to apply again. The log transformation will produce an additive,
linear model from a multiplicative one. The plots show that transforming both mass and speed in this way is
very effective.

In an investigation of the relationship between mass and speed in animals, Garland (1983) collected information
from published articles on these two variables for a large number of different species. These measurements are
given below for a variety of four-footed rodents. (The common names of the species are taken from Corbet &
Hill (1986)) Notice that the measurements are not all recorded to the same level of accuracy since the results
have been collated from the work of a number of different scientists.

Table 1: North American rodent data

Mass (kg) Speed (ms−1)
North American Porcupine 9 3.2
Woodchuck 4 16
Long-clawed ground squirrel 0.6 36
Long-tailed souslik 0.6 20
Eastern grey squirrel 0.55 27
European souslik 0.5 18
European red squirrel and Persian squirrel 0.4 20
Belding’s ground squirrel 0.3 13
Rat 0.25 9.7
American red squirrel 0.22 15
Golden Hamster 0.11 9
Eastern American chipmunk 0.1 17
Chisel-toothed kangaroo rat 0.05600 21
Meadow vole 0.05000 11
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Mass (kg) Speed (ms−1)
Least chipmunk 0.04500 16
Merriman’s kangaroo rat 0.03500 32
Fawn hopping mouse 0.03500 14
Pine mouse 0.030000 6.8
Deer mouse 0.030000 9.1
White footed mouse 0.02500 11
Woodland jumping mouse 0.02500 8.6
North American meadow jumping mouse 0.01800 8.9
House mouse 0.01600 13

library(rpanel)
data(rodent)
a<-qplot(Mass,Speed, data=rodent)
b<-qplot(log(Mass),log(Speed),data=rodent)
grid.arrange(a,b,ncol=2)
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coef.lm1<-as.numeric(coef(lm(log(Speed)~log(Mass),data=rodent)))
coef.lm2<-coef(lm(log(Speed)~log(Mass),data=rodent[-1,]))
a<-qplot(log(rodent$Mass),log(rodent$Speed)) +

geom_text( aes(x=-0.3, y=1.1, label="North American Porcupine",
color="red"),

show.legend = FALSE) +
geom_point( aes(x=log(rodent[1,1]), y=log(rodent[1,2]),color="red"),

shape=21,size=5,show.legend = FALSE,alpha=1)+
scale_shape(solid = FALSE) +

stat_smooth(method = "lm", se = FALSE) +
geom_abline(intercept=coef.lm2[1], slope=coef.lm2[2], color = "red")

### Need to replace this by lines excluding each point
b<-qplot(log(Mass),log(Speed),data=rodent)
grid.arrange(a,b,ncol=2)

Sometimes individual observations can exert a great deal of influence on our fitted model. One routine way
of checking for this is to fit the model n times, missing out one of the n observation each time (i.e. 1st model
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Figure 3: Linear model fit excluding individual points

includes all observations but without the 1st one, etc). A plot of all the lines for the Rodent data shows
that the porcupine has a great deal of influence. When this point is omitted, the fitted line changes from
horizontal (blue line) to one with a strong positive slope (red line). We can see that the porcupine exerts a
great deal of influence on the model.

There is a good reason why porcupines do not follow relationship between mass and speed that we see in the
other rodents. For most rodents, their speed is their defense against predators; whereas the porcupine is
protected by its sharp spikes, so it doesn’t need to move as quickly as other rodents.

Ideally we should fit multiple regression lines excluding each data point in turn. However, this isn’t particularly
feasible for very large numbers of data points. In R one can use Cook’s distance which is available using the
diagnostics of a linear model fit
plot(lm(log(Speed)~log(Mass),data=rodent),4)
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plot(lm(log(Speed)~log(Mass),data=rodent),5)
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The plot of Speed vs Mass shows an odd pattern. There is no obvious linear relationship between the two
variables. Once we take the log transformation, the linear relationship is much more clear. However, there is
still one point, located at the bottom right that looks odd.

Again we can see that the North American Porcupine stands out. The R library car also has a function called
outlierTest which performs a formal test for detecting an outlier.
library(car)
outlierTest(lm(log(Mass)~log(Speed),data=rodent))

rstudent unadjusted p-value Bonferonni p
North American Porcupine 4.026755 0.00066086 0.0152

Time to work on Task 1

2 Interval Estimation and Hypothesis Testing
Now we will focus on hypothesis testing of the regression parameters. In the previous session we considered
diagnostics for and assumptions about linear regression models. Now we will consider inference for model
parameters, model comparison and selection. We will construct interval estimates and hypothesis tests for
various parameters of our models and use these along with R2 for model selection. We will also consider
basic approaches for model selection in the case of many explanatory variables.

Instead of solving several different types of inferential problems, e.g. involving a single parameter, involving
two parameters or in some cases involving a linear combination of parameters we will develop a general
theory for doing inference on linear combinations of parameters. Each of the cases described in the previous
sentence can then be derived as a special case of the general theory. For example if we want to predict a
future value, at x = 5 based on a simple linear model

yi = β0 + β1x+ εi =⇒ ŷi = β̂0 + β̂1x

we are interested in the linear combination:
β0 + 5β1,

which can be written as:
(1 5)

(
β0
β1

)
.
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We will now start by considering how to form linear functions of the parameters in a linear model.

2.1 The least-squares estimate of (linear) functions of the parameters in a (lin-
ear) model

Data: (yi, x1i, x2i, . . . , xpi); i = 1, . . . , n

Model: Y = Xβ + ε

Suppose we want the least-squares estimate for a linear function of the parameters,

• Say bT1 β for some given vector b1, or

• possibly for a set of s linearly independent linear combinations bT1 β, . . . ,bTs β, s ≤ p where the bi’s are
given vectors.

It is always possible to create a non-singular transformation from β ↔ φ where

φ =


bT1
bT2
.
.
.

bTs

β = Bβ,

where B is a nonsingular matrix. So

β = B−1φ

It is now possible to rewrite our model in terms of φ, where φ1 or φ1, . . . , φs are the parameters of interest.

Data: (yi, x1i, x2i, . . . , xpi); i = 1, . . . , n

Model: Y = Xβ + ε = (XB−1)φ + ε where

(XB−1) is an n× p matrix which is known and φ is a p vector of unknown parameters.

The form of the model is mathematically equivalent to our original form, substituting (XB−1) for the design
matrix and φ for the parameter vector.

Hence, we can write down the solution for the parameter estimates, based on least-squares, from our earlier
results.

φ̂ = {(XB−1)T (XB−1)}−1(XB−1)TY
= {(B−1)T (XTX)B−1}−1(B−1)TXTY
= B(XTX)−1BT (BT )−1XTY
= B(XTX)−1XTY

= Bβ̂.

Hence the least-squares estimates of a set of linear functions of parameters is just the set of linear functions
of the least-squares estimates.

A useful application of this result may sometimes simplify the calculation of least-squares estimates. The
basic idea is that it may be possible to rewrite a model in terms of parameters whose estimates are “easier”
to calculate and then we can transform back to the original parameters. This approach is often referred to as
‘centering’. Centering in often useful to produce orthogonal columns which in turn gives us diagonal matrices
to invert.
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2.1.1 Example: Application of linear transformation of parameters for two parameter case

Data: (yi, xi); i = 1, . . . , n

Model: Y = Xβ + ε = (XB−1)φ + ε

Suppose we transform

yi = α+ βxi + εi (Model 1) to

yi = α′ + β(xi − x̄) + εi (Model 2)

β =
(
α
β

)
↔ φ =

(
α′

β

)
=
(
α+ βx̄
β

)
, x̄ = (

n∑
i=1

xi)/n.

E(Y) =


1 (x1 − x̄)
. .
. .
. .
. .
1 (xn − x̄)


(
α′

β

)
= XB−1φ

where φ = Bβ and B =
(

1 x̄
0 1

)
φ̂ = {(XB−1)T (XB−1)}−1(XB−1)TY

(XB−1)T (XB−1) =
(

n
∑n
i=1(xi − x̄)∑n

i=1(xi − x̄)
∑n
i=1(xi − x̄)2

)
=
(
n 0
0
∑n
i=1(xi − x̄)2

)
i.e. (XB−1)T (XB−1) is diagonal.

(XB−1)TY =
( ∑n

i=1 yi∑n
i=1 yi(xi − x̄)

)
=
( ∑n

i=1 yi∑n
i=1(yi − ȳ)(xi − x̄)

)
{(XB−1)T (XB−1)}−1 =

( 1
n 0
0 1∑n

i=1
(xi−x̄)2

)

i.e.

φ̂ =

 ∑n
i=1 yi/n∑n

i=1
(yi−ȳ)(xi−x̄)∑n

i=1
(xi−x̄)2

 =
(
α̂′

β̂

)

Because of our choice of φ, (XB−1)T (XB−1) is easier to invert and hence the calculations are simpler.

From the nature of the transformation it is clear that

α̂ = α̂′ − β̂x̄

The benefits of this type of transformation are more obvious when applied to a 3 parameter example.
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2.1.2 Example: Application of linear transformation of parameters for three parameter case

Data: (yi, x1i, x2i), i = 1, . . . , n

Model: E(Yi) = α+ βx1i + γx2i

Reparametrise to

Model :E(Yi) = α′ + β(x1i − x̄1.) + γ(x2i − x̄2.)

β =

 α
β
γ

↔ φ =

 α′

β
γ

 =

 α+ βx̄1. + γx̄2.
β
γ

 ,

where x̄1. =
∑n
i=1 x1i/n, x̄2. =

∑n
i=1 x2i/n. i.e.

E(Y) =


1 (x11 − x̄1.) (x21 − x̄2.)
. . .
. . .
. . .
. . .
1 (x1n − x̄1.) (x2n − x̄2.)


 α′

β
γ

 = XB−1φ

φ̂ = ((XB−1)T (XB−1))−1(XB−1)TY

((XB−1)T (XB−1)) =

 n 0 0
0

∑n
i=1(x1i − x̄1.)2 ∑n

i=1(x1i − x̄1.)(x2i − x̄2.)
0
∑n
i=1(x1i − x̄1.)(x2i − x̄2.)

∑n
i=1(x2i − x̄2.)2


=
(

n 0
0T Ψ

)

((XB−1)T (XB−1))−1 =
( 1

n 0
0T Ψ−1

)
Hence inversion of ((XB−1)T (XB−1)) is reduced to inversion of a (2×2) matrix, a great saving in calculation.
In general a similar transformation will reduce the inversion of a (p × p) matrix to the inversion of a
(p− 1)× (p− 1) matrix.

After calculation of φ̂, α̂ can be obtained from

α̂ = α̂′ − β̂x̄1. − γ̂x̄2.

2.2 Inferences from regression equations
If we are interested in bTβ (a linear function of the parameters), where b is a given vector of constants, we
will use the concept of pivotal functions that you have learnt in the course Learning from Data.
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2.2.1 Theorem: Pivotal function for a linear function of the parameters

(bT β̂ − bTβ)√
RSS
n−pbT (XTX)−1b

is a pivotal function since

(bT β̂ − bTβ)√
RSS
n−pbT (XTX)−1b

∼ t(n− p),

where p is the number of parameters, n is the sample size and RSS is the residual sum-of-squares in a linear
model.

This result is stated without proof. It is helpful to use the notation estimated standard error for the
quantity

√
RSS

n− p
bT (XTX)−1b

(The word “estimated” is often omitted from the name).

The above result can be used to construct hypothesis tests and interval estimates for model parameters.

2.3 Hypothesis Testing
For example, if we were interested in making inferences about β in a simple linear regression model i.e.
yi = α+ βxi + εi, bTβ = β i.e. bT = (0 1) and this gives us:

β̂ − β
e.s.e(β̂)

∼ t(n− p)

Under the null hypothesis:

H0: β = 0 (where H1 : β 6= 0)

β̂

e.s.e(β̂)
∼ t(n− p)

and β̂

e.s.e(β̂) is typically called the t-statistic. Therefore, the null hypothesis is rejected for large absolute
values of the t-statistic, usually values > 2 i.e. for small p-values in R (where a p-value is the probability
that we obtain a t-statistic value as extreme or more extreme if the null hypothesis is true). In general, we
reject H0 for p-values < 0.05 and this would indicate a significant relationship between a response and an
explanatory variable in the model.

2.4 Interval estimate for bT β

It is easy to show that an interval estimate for bTβ with confidence c is

bT β̂ ± t
(
n− p; 1 + c

2

)√
RSS

n− p
(bT (XTX)−1b).
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2.5 Prediction interval (PI) for Y given x
The quantity of interest here is a future observation of Y , Yf say, when x takes the value xf , which denotes
the value of the explanatory variable at the position where a prediction of Y is required. The expected value
E(Y |xf ) can be written in the form bTf β .

For example, with a simple linear regression, E(Y ) = α + βx , we can write E(Y |xf ) = α + βxf = bTβ ,
where bT = (1, xf ) and βT = (α, β).

(bT β̂ − bTβ)√
RSS
n−p (1 + bT (XTX)−1b)

is a prediction interval for yf since

(bT β̂ − bTβ)√
RSS
n−p (1 + bT (XTX)−1b)

∼ t(n− p)

Applying the results again, it is easy to show that a prediction interval for yf with confidence c is

bT β̂ ± t
(
n− p; 1 + c

2

)√
RSS

n− p
(1 + bT (XTX)−1b).

2.5.1 Examples

Now we will use the expressions for Hypothesis and confidence/prediction intervals to answer inferential
questions for specific parameters and apply them to real data examples.

We might be interested in a 95% C.I. (confidence interval) for β for the model yi = α+ βx1i + γx2i + εi . We
can write this C.I. as

β̂ ± t(n− p; 0.975)s.e.(β̂)

where

s.e.(β̂) =

√
RSS

n− p
bT (XTX)−1b

and

b =

 0
1
0


R automatically prints the standard error (s.e.) of each individual parameter when it fits a regression model.
This makes the construction of C.I.s for each parameter very easy. A parameter estimate is a random variable
and in probability terms the estimated standard error of a parameter estimate is an estimate of its standard
deviation.
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2.5.2 Example: Hypothesis testing for Pregnancy Data

We have seen this example for parameter estimation.

Data: (yi, xi) i = 1, . . . , 19

Model: E(Yi) = α+ βxi

We will now test the slope parameter in the model β, build a confidence interval for β and finally predict a
future observation y at x = 27.

To answer the questions we will need the following:

X =


1 x1
. .
. .
. .
. .
1 xn


(XTX) =

(
n

∑n
i=1 xi∑n

i=1 xi
∑n
i=1 x

2
i

)
=
(

19 456
456 12164

)
(XTX)−1 =

(
0.524763 −0.019672
−0.019672 0.000820

)
(2)

and the R output
pregnancy<-read.csv("../Data/PROTEIN.CSV",header=T)
fit1<-lm(formula = Protein ~ Gestation,data=pregnancy)
summary(fit1)

Call:
lm(formula = Protein ~ Gestation, data = pregnancy)

Residuals:
Min 1Q Median 3Q Max

-0.16853 -0.08720 -0.01009 0.08578 0.20422

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.201738 0.083363 2.420 0.027 *
Gestation 0.022844 0.003295 6.934 2.42e-06 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.1151 on 17 degrees of freedom
Multiple R-squared: 0.7388, Adjusted R-squared: 0.7234
F-statistic: 48.08 on 1 and 17 DF, p-value: 2.416e-06
anova(fit1)

Analysis of Variance Table

Response: Protein
Df Sum Sq Mean Sq F value Pr(>F)

Gestation 1 0.63667 0.63667 48.076 2.416e-06 ***
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Residuals 17 0.22513 0.01324
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Hypothesis Testing (1)

The hypotheses being tested for the coefficient of β are:

H0 : β = 0

H1 : β 6= 0

Since the p-value for gestation is < 0.001 (and hence < 0.05) the null hypothesis is rejected and we conclude
that there is a statistically significant relationship between protein and gestation. The gestational age is a
useful predictor of the protein level.

A confidence interval can be produced to provide a range of likely values for the coefficient of gestation.

Confidence Intervals (2)

So, a 95% C.I. for β is

0.0228± t(17; 0.975)
√

0.2251
17 bT (XTX)−1b

and since b =
(

0
1

)
ie

0.0228± 2.11
√

0.2251
17 0.000820

0.0228± 2.11(0.003295)

i.e. 0.0228± 0.0070,

i.e. (0.016, 0.030)

The fact that this interval contains only positive values tells us that there is clear evidence that the average
level of protein increases with gestation. The coefficient for β is highly likely to lie somewhere between 0.02
and 0.03.

Note: A confidence interval that includes zero indicates that there is insufficient evidence of a relationship
between the response and the explanatory variable. In this situation we would expect the p-value for testing
H0 : β = 0 to be > 0.05.

Prediction Intervals

In order to use this model in a clinical setting we need a means of telling what values of protein level are
expected for a future healthy mother who attends this clinic. For example, if a woman who is 27 weeks
pregnant has a protein level of 1.06, should this be regarded as unusual? A prediction interval helps us to
answer this question.

A 95% P.I. for a future observation y at x = 27 is done in the following way:

Here b =
(

1
27

)
.
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Thus the

Thus the prediction interval is

(0.02017 + 27× 0.0228)± 2.11
√

0.2251
17 (1 + 0.060255)

(.57,1.07)

Since it lies within this interval (just) we have strong grounds for regarding a protein level of 1.06 as unusual.
(Even if it did lie outside the interval, this only says that the result is unusual).

Note that Prediction intervals will always be wider than confidence intervals.

Analyzing the ANOVA table

The F statistic value: MSmodel/MSresiduals provides a test statistic that allows us to test whether there is any
evidence that at least one of the model parameters is not zero.

The null hypothesis is H0: all p parameters = 0, which will be tested against the alternative that at least one
of the parameters is not zero.

If the null hypothesis is true, the statistic has an F(Dfmodel, Dfresiduals) distribution. This implies that

F = MSmodel

MSresiduals
∼ F (Dfmodel, Dfresiduals).

If H0 is false, we would expect MSresiduals to be smaller than MSmodel and so large values of F should lead us
to reject H0. (i.e. for large values of F the p-value will be small)

In this example, the p-value is < 0.001 and hence the null hypothesis is rejected and we conclude that at
least one of the parameters is not zero.

2.5.3 Example: Trees Data

Our full model for the trees data was

E(Y ) = α+ βx1 + γx2

where Y denotes log (volume), x1 denotes log (diameter) and x2 denotes log (height) of 31 trees.

The fitted model produces:

β̂ =

 −6.632
1.983
1.117


RSS = 0.1855
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(XTX)−1 =

 96.5721 3.1393 −24.1651
3.1393 0.8495 −1.2275
−24.1651 −1.2275 6.3099


The matrix (XTX)−1 was obtained from R.

In order to check whether or not there is clear evidence of a relationship between each of the explanatory
variables and the response, we can construct interval estimates for β and γ.

A 95% C.I. for β is given by

bT β̂ ± t(n− 3; 0.975)
√
RSS

n− 3bT (XTX)−1b

where b =

 0
1
0


β̂ ± t(28; 0.975)

√
0.1855

28 0.8495

1.983± 0.15

(1.83, 2.13)

This interval does not contain zero. There is therefore clear evidence of a relationship between log(diameter)
and log(volume), (i.e. log diameter is a significant predictor in addition to log height, and it is highly likely
that the coefficient for log diameter lies between 1.83 and 2.13).

Note also that 2 is a plausible value for the coefficient of log(diameter). This is therefore consistent with the
cylindrical model discussed in chapter 2, where (V = π(d

2 )2h; log(V) = (π/4)+2logd+logh).

A 95% C.I. for γ is given by

bT β̂ ± t(n− 3; 0.975)
√
RSS

n− 3bT (XTX)−1b

where b =

 0
0
1


γ̂ ± t(28; 0.975)

√
0.1855

28 6.3099

1.12± 0.42

(0.70, 1.54)

Again there is clear evidence of a relationship between log(height) and log(volume), since 0 does not lie
in the interval estimate. Log height is a significant predictor in addition to log diameter. The results are
again consistent with the cylindrical model since the value 1 lies in the interval. It is highly likely that the
coefficient for log height lies between 0.70 and 1.54.
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2.5.3.1 Task: Confidence interval for Autoanalyser data

Blood plasma concentrations are usually measured using a lengthy laboratory process. A simpler, cheaper
method using an autoanalyser is often used. The autoanalyser is regularly tested to see if it is performing
properly. On this occasion, 12 measurements have been made on samples of known concentration (3 replicates
at each of 4 concentrations).

The following model has been fitted in R to estimate the autoanalyser concentration from the true concentration:

autoanalyseri = β0 + β1truei + εi, i = 1, . . . , 12

Construct a 95% C.I. for the population mean autoanalyser concentration when the true concentration is 6
units and interpret the interval.
auto<-read.csv("../Data/autoanalyser.CSV")
auto.lm<-lm(autoanalyser~true,data=auto)
summary(auto.lm)

Call:
lm(formula = autoanalyser ~ true, data = auto)

Residuals:
Min 1Q Median 3Q Max

-0.23333 -0.09583 -0.03333 0.10417 0.21667

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.68333 0.18993 3.598 0.00487 **
true 0.85000 0.04096 20.752 1.5e-09 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.1586 on 10 degrees of freedom
Multiple R-squared: 0.9773, Adjusted R-squared: 0.975
F-statistic: 430.6 on 1 and 10 DF, p-value: 1.496e-09
anova(auto.lm)

Analysis of Variance Table

Response: autoanalyser
Df Sum Sq Mean Sq F value Pr(>F)

true 1 10.8375 10.8375 430.63 1.496e-09 ***
Residuals 10 0.2517 0.0252
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

We also have
(XTX)−1 = 1

180

(
258 −54
−54 12

)
We require an interval estimate for

α+ 6β = bTβ
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β =
(
α
β

)
and b =

(
1
6

)
bT β̂ = α̂+ 6× β̂

= 0.683 + 0.85× 6
= 5.783

RSS = 0.252
n = 12

t(10;0.975) = 2.228

(XTX)−1 = 1
180

(
258 −54
−54 12

)
Interval Estimate for (α+ 6β): (5.61, 5.95)

The population mean autoanalyser concentration (when the true concentration is 6 units) is very likely to lie
between 5.61 and 5.95 units.

Time to work on Task 2

2.5.4 Example: Confidence interval for the difference in two population means

Data: (yij); i = 1, 2; j = 1, . . . , ni
Model: E(Yij) = µi, Yij ∼ N(µi, σ2)

Construct a confidence interval for (µ1 − µ2)

Y =



y11
y12
.

y1,n1

y21
y22
.

y2,n2


β =

(
µ1
µ2

)
, X =



1 0
1 0
. .
1 0
0 1
0 1
. .
0 1


Interest is in (µ1 − µ2), i.e. b =

(
1
−1

)

(XTX) =
(
n1 0
0 n2

)
, (XTX)−1 =

( 1
n1

0
0 1

n2

)

XTY =
( ∑n1

j=1 y1j∑n2
j=1 y2j

)
, (XTX)−1XTY =

(
ȳ1
ȳ2

)
= β̂

bT β̂ = (ȳ1 − ȳ2), bT (XTX)−1b =
(

1 −1
)( 1

n1
0

0 1
n2

)(
1
−1

)
= ( 1

n1
+ 1
n2

)

What about the RSS (residual sum-of-squares)?
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RSS = YTY−YTXβ̂

=
n1∑
i=1

n2∑
j=1

y2
ij − (n1ȳ1

2 + n2ȳ2
2)

= RSS1 +RSS2

where RSSi =
∑ni

j=1(yij − ȳi)2

Interval for µ1 − µ2:

(ȳ1 − ȳ2)± t
(
n1 + n2 − 2; 1 + c

2

)√
RSS1 +RSS2

n1 + n2 − 2

(
1
n1

+ 1
n2

)
More examples, along the R codes can be found in the following reading materials:

• Sections 3.2, 3.5, 4.1, 4.2 and 4.4 from Linear Models with R by Julian J. Faraway

• Sections 3.9, 3.10 and 3.11 from Regression Analysis by Example - Samprit Chatterjee, Ali S. Hadi

Learning outcomes for Session 5
After studying this session’s material you should be able to:

• check whether assumptions of linear models are satisfied (by interpreting residual plots),
• understand when transformations are needed,
• identify outliers from residual plots,
• be able to quote the general formulas for interval and prediction intervals,
• calculate interval estimates from summary statistics and/or R-output,
• perform hypothesis testing from summary statistics and/or R-output.
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Tasks
1. Outlier detection for Scottish Hills data

The data set gives the record times in 1984 for 35 Scottish hill races. The variables are

• dist distance in miles (on the map),
• climb total height gained during the route, in feet,
• time record time in minutes.

The goal is to predict time from the variables dist and climb.
library(MASS)
data(hills)
head(hills)

dist climb time
Greenmantle 2.5 650 16.083
Carnethy 6.0 2500 48.350
Craig Dunain 6.0 900 33.650
Ben Rha 7.5 800 45.600
Ben Lomond 8.0 3070 62.267
Goatfell 8.0 2866 73.217
pairs(hills)

dist

10
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00

5 10 15 20 25

1000 3000 5000 7000

climb
5

15
25

50 100 150 200

50
10

0
20

0

time

Perform model diagnostics for the above data. In particular you can try doing the following:

• Check whether a log transformation provides better a prediction,
• Check whether there are any outliers,
• Check whether the assumption of the normality of errors is satisfied.

Answer to Task 1

Without log transformation
hills.lm=lm(time~.,data=hills)
summary(hills.lm)

Call:
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lm(formula = time ~ ., data = hills)

Residuals:
Min 1Q Median 3Q Max

-16.215 -7.129 -1.186 2.371 65.121

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -8.992039 4.302734 -2.090 0.0447 *
dist 6.217956 0.601148 10.343 9.86e-12 ***
climb 0.011048 0.002051 5.387 6.45e-06 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 14.68 on 32 degrees of freedom
Multiple R-squared: 0.9191, Adjusted R-squared: 0.914
F-statistic: 181.7 on 2 and 32 DF, p-value: < 2.2e-16
par(mfrow=c(2,2))
plot(hills.lm)
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outlierTest(hills.lm)

rstudent unadjusted p-value Bonferonni p
Knock Hill 7.610845 1.3973e-08 4.8905e-07

We can see that the Knock Hill, Black Hill and Beans of Jura races stand out from the other races, the
outlierTest() shows us that the Knock Hill race is an outlier.

Let us apply a log transformation to the variables and see if that provides a better fit.

Taking the log transformation
pairs(log(hills))
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lhills=log(hills)
lhills.lm=lm(time~.,data=lhills)
summary(lhills.lm)

Call:
lm(formula = time ~ ., data = lhills)

Residuals:
Min 1Q Median 3Q Max

-0.59294 -0.11255 -0.05080 0.04439 1.45806

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.91921 0.53517 1.718 0.0955 .
dist 0.89752 0.12803 7.011 6.04e-08 ***
climb 0.17100 0.09329 1.833 0.0761 .
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.3149 on 32 degrees of freedom
Multiple R-squared: 0.8121, Adjusted R-squared: 0.8003
F-statistic: 69.15 on 2 and 32 DF, p-value: 2.417e-12
par(mfrow=c(2,2))
plot(lhills.lm)
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outlierTest(lhills.lm)

rstudent unadjusted p-value Bonferonni p
Knock Hill 9.646392 7.5181e-11 2.6313e-09

After taking a log transformation the plots show that the Beans of Jura and Black hill races fit in much
better with the other races, however the Knock Hill race is still very influential; this is confirmed by the
outlierTest.

We will remove the Knock Hill race and refit the data.
lhills <- lhills[rownames(lhills) != "Knock Hill",]
lhills.lm=lm(time~.,data=lhills)
summary(lhills.lm)

Call:
lm(formula = time ~ ., data = lhills)

Residuals:
Min 1Q Median 3Q Max

-0.51726 -0.07516 0.00873 0.06822 0.32955

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.20937 0.28159 0.744 0.463
dist 0.91328 0.06504 14.041 5.57e-15 ***
climb 0.25938 0.04826 5.375 7.33e-06 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.16 on 31 degrees of freedom
Multiple R-squared: 0.9521, Adjusted R-squared: 0.949
F-statistic: 307.9 on 2 and 31 DF, p-value: < 2.2e-16
par(mfrow=c(2,2))
plot(lhills.lm)
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outlierTest(lhills.lm)

rstudent unadjusted p-value Bonferonni p
Black Hill -4.031848 0.00034982 0.011894

After removing the Knock Hill race we can see that diagnostic plots all look much better, furthermore the
adjusted R2 value has increased so that now 95% of the variance in the data is explained by the model.

The outlierTest shows that Black Hill may also be an outlier, however you should be careful removing too
many data points from the model — especially if you do not have a reason that explains why the data point
is different from the other points, like we had in the rodent example.

Feel free to experiment and remove Black Hill, you will find that it only slightly improves adjusted R2 and
that outlierTest shows no more outliers.

2. Prediction interval for Autoanalyser data

Using the output from before, construct a 95% prediction interval for the autoanalyser concentration y when
the true value x is 6 and interpret the interval

Answer to Task 2

5.783± 2.228
√

0.252
10 (1 + 0.233)

5.783± 0.393

(5.390, 6.176)

A future observation for the autoanalyser concentration is highly likely to lie between 5.39 and 6.18 when the
true value is 6.
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