Skip to content
Permalink
master
Switch branches/tags
Go to file
 
 
Cannot retrieve contributors at this time
2038 lines (1844 sloc) 88.3 KB
{-# LANGUAGE NondecreasingIndentation #-}
module Agda.TypeChecking.Conversion where
import Control.Arrow (second)
import Control.Monad
import Control.Monad.Except
-- Control.Monad.Fail import is redundant since GHC 8.8.1
import Control.Monad.Fail (MonadFail)
import Data.Function
import Data.Semigroup ((<>))
import qualified Data.List as List
import qualified Data.Map as Map
import qualified Data.Set as Set
import qualified Data.IntSet as IntSet
import Agda.Syntax.Common
import Agda.Syntax.Internal
import Agda.Syntax.Internal.MetaVars
import Agda.Syntax.Translation.InternalToAbstract (reify)
import Agda.TypeChecking.Monad
import Agda.TypeChecking.MetaVars
import Agda.TypeChecking.MetaVars.Occurs (killArgs,PruneResult(..),rigidVarsNotContainedIn)
import Agda.TypeChecking.Names
import Agda.TypeChecking.Reduce
import Agda.TypeChecking.Substitute
import qualified Agda.TypeChecking.SyntacticEquality as SynEq
import Agda.TypeChecking.Telescope
import Agda.TypeChecking.Constraints
import Agda.TypeChecking.Conversion.Pure (pureCompareAs)
import {-# SOURCE #-} Agda.TypeChecking.CheckInternal (infer)
import Agda.TypeChecking.Forcing (isForced, nextIsForced)
import Agda.TypeChecking.Free
import Agda.TypeChecking.Datatypes (getConType, getFullyAppliedConType)
import Agda.TypeChecking.Records
import Agda.TypeChecking.Pretty
import Agda.TypeChecking.Injectivity
import Agda.TypeChecking.Polarity
import Agda.TypeChecking.SizedTypes
import Agda.TypeChecking.Level
import Agda.TypeChecking.Implicit (implicitArgs)
import Agda.TypeChecking.Irrelevance
import Agda.TypeChecking.Primitive
import Agda.TypeChecking.Warnings (MonadWarning)
import Agda.Interaction.Options
import Agda.Utils.Functor
import Agda.Utils.List1 (List1, pattern (:|))
import qualified Agda.Utils.List1 as List1
import Agda.Utils.Monad
import Agda.Utils.Maybe
import Agda.Utils.Permutation
import Agda.Utils.Pretty (prettyShow)
import Agda.Utils.Size
import Agda.Utils.Tuple
import Agda.Utils.WithDefault
import Agda.Utils.Impossible
type MonadConversion m =
( PureTCM m
, MonadConstraint m
, MonadMetaSolver m
, MonadError TCErr m
, MonadWarning m
, MonadStatistics m
, MonadFresh ProblemId m
, MonadFresh Int m
, MonadFail m
)
-- | Try whether a computation runs without errors or new constraints
-- (may create new metas, though).
-- Restores state upon failure.
tryConversion
:: (MonadConstraint m, MonadWarning m, MonadError TCErr m, MonadFresh ProblemId m)
=> m () -> m Bool
tryConversion = isJust <.> tryConversion'
-- | Try whether a computation runs without errors or new constraints
-- (may create new metas, though).
-- Return 'Just' the result upon success.
-- Return 'Nothing' and restore state upon failure.
tryConversion'
:: (MonadConstraint m, MonadWarning m, MonadError TCErr m, MonadFresh ProblemId m)
=> m a -> m (Maybe a)
tryConversion' m = tryMaybe $ noConstraints m
-- | Check if to lists of arguments are the same (and all variables).
-- Precondition: the lists have the same length.
sameVars :: Elims -> Elims -> Bool
sameVars xs ys = and $ zipWith same xs ys
where
same (Apply (Arg _ (Var n []))) (Apply (Arg _ (Var m []))) = n == m
same _ _ = False
-- | @intersectVars us vs@ checks whether all relevant elements in @us@ and @vs@
-- are variables, and if yes, returns a prune list which says @True@ for
-- arguments which are different and can be pruned.
intersectVars :: Elims -> Elims -> Maybe [Bool]
intersectVars = zipWithM areVars where
-- ignore irrelevant args
areVars (Apply u) v | isIrrelevant u = Just False -- do not prune
areVars (Apply (Arg _ (Var n []))) (Apply (Arg _ (Var m []))) = Just $ n /= m -- prune different vars
areVars _ _ = Nothing
-- | Run the given computation but turn any errors into blocked computations with the given blocker
blockOnError :: MonadError TCErr m => Blocker -> m a -> m a
blockOnError blocker f
| blocker == neverUnblock = f
| otherwise = f `catchError` \case
TypeError{} -> throwError $ PatternErr blocker
PatternErr blocker' -> throwError $ PatternErr $ unblockOnEither blocker blocker'
err@Exception{} -> throwError err
err@IOException{} -> throwError err
equalTerm :: MonadConversion m => Type -> Term -> Term -> m ()
equalTerm = compareTerm CmpEq
equalAtom :: MonadConversion m => CompareAs -> Term -> Term -> m ()
equalAtom = compareAtom CmpEq
equalType :: MonadConversion m => Type -> Type -> m ()
equalType = compareType CmpEq
{- Comparing in irrelevant context always succeeds.
However, we might want to dig for solutions of irrelevant metas.
To this end, we can just ignore errors during conversion checking.
-}
-- convError :: MonadTCM tcm => TypeError -> tcm a
-- | Ignore errors in irrelevant context.
convError :: TypeError -> TCM ()
convError err = ifM ((==) Irrelevant <$> asksTC getRelevance) (return ()) $ typeError err
-- | Type directed equality on values.
--
compareTerm :: forall m. MonadConversion m => Comparison -> Type -> Term -> Term -> m ()
compareTerm cmp a u v = compareAs cmp (AsTermsOf a) u v
-- | Type directed equality on terms or types.
compareAs :: forall m. MonadConversion m => Comparison -> CompareAs -> Term -> Term -> m ()
-- If one term is a meta, try to instantiate right away. This avoids unnecessary unfolding.
-- Andreas, 2012-02-14: This is UNSOUND for subtyping!
compareAs cmp a u v = do
reportSDoc "tc.conv.term" 20 $ sep $
[ "compareTerm"
, nest 2 $ prettyTCM u <+> prettyTCM cmp <+> prettyTCM v
, nest 2 $ prettyTCM a
]
-- Check syntactic equality. This actually saves us quite a bit of work.
((u, v), equal) <- SynEq.checkSyntacticEquality u v
-- OLD CODE, traverses the *full* terms u v at each step, even if they
-- are different somewhere. Leads to infeasibility in issue 854.
-- (u, v) <- instantiateFull (u, v)
-- let equal = u == v
if equal then verboseS "profile.sharing" 20 $ tick "equal terms" else do
verboseS "profile.sharing" 20 $ tick "unequal terms"
reportSDoc "tc.conv.term" 15 $ sep $
[ "compareTerm (not syntactically equal)"
, nest 2 $ prettyTCM u <+> prettyTCM cmp <+> prettyTCM v
, nest 2 $ prettyTCM a
]
-- If we are at type Size, we cannot short-cut comparison
-- against metas by assignment.
-- Andreas, 2014-04-12: this looks incomplete.
-- It seems to assume we are never comparing
-- at function types into Size.
let fallback = compareAs' cmp a u v
unlessSubtyping :: m () -> m ()
unlessSubtyping cont =
if cmp == CmpEq then cont else do
-- Andreas, 2014-04-12 do not short cut if type is blocked.
ifBlocked a (\ _ _ -> fallback) {-else-} $ \ _ a -> do
-- do not short circuit size comparison!
caseMaybeM (isSizeType a) cont (\ _ -> fallback)
dir = fromCmp cmp
rid = flipCmp dir -- The reverse direction. Bad name, I know.
case (u, v) of
(MetaV x us, MetaV y vs)
| x /= y -> unlessSubtyping $ solve1 `orelse` solve2 `orelse` fallback
| otherwise -> fallback
where
(solve1, solve2) | x > y = (assign dir x us v, assign rid y vs u)
| otherwise = (assign rid y vs u, assign dir x us v)
(MetaV x us, _) -> unlessSubtyping $ assign dir x us v `orelse` fallback
(_, MetaV y vs) -> unlessSubtyping $ assign rid y vs u `orelse` fallback
(Def f es, Def f' es') | f == f' ->
ifNotM (optFirstOrder <$> pragmaOptions) fallback $ {- else -} unlessSubtyping $ do
def <- getConstInfo f
-- We do not shortcut projection-likes
if isJust $ isProjection_ (theDef def) then fallback else do
pol <- getPolarity' cmp f
compareElims pol [] (defType def) (Def f []) es es' `orelse` fallback
_ -> fallback
where
assign :: CompareDirection -> MetaId -> Elims -> Term -> m ()
assign dir x es v = do
-- Andreas, 2013-10-19 can only solve if no projections
reportSDoc "tc.conv.term.shortcut" 20 $ sep
[ "attempting shortcut"
, nest 2 $ prettyTCM (MetaV x es) <+> ":=" <+> prettyTCM v
]
whenM (isInstantiatedMeta x) (patternViolation alwaysUnblock) -- Already instantiated, retry right away
assignE dir x es v a $ compareAsDir dir a
reportSDoc "tc.conv.term.shortcut" 50 $
"shortcut successful" $$ nest 2 ("result:" <+> (pretty =<< instantiate (MetaV x es)))
-- Should be ok with catchError_ but catchError is much safer since we don't
-- rethrow errors.
orelse :: m () -> m () -> m ()
orelse m h = catchError m (\_ -> h)
-- | Try to assign meta. If meta is projected, try to eta-expand
-- and run conversion check again.
assignE :: (MonadConversion m)
=> CompareDirection -> MetaId -> Elims -> Term -> CompareAs -> (Term -> Term -> m ()) -> m ()
assignE dir x es v a comp = assignWrapper dir x es v $ do
case allApplyElims es of
Just vs -> assignV dir x vs v a
Nothing -> do
reportSDoc "tc.conv.assign" 30 $ sep
[ "assigning to projected meta "
, prettyTCM x <+> sep (map prettyTCM es) <+> text (":" ++ show dir) <+> prettyTCM v
]
etaExpandMeta [Records] x
res <- isInstantiatedMeta' x
case res of
Just u -> do
reportSDoc "tc.conv.assign" 30 $ sep
[ "seems like eta expansion instantiated meta "
, prettyTCM x <+> text (":" ++ show dir) <+> prettyTCM u
]
let w = u `applyE` es
comp w v
Nothing -> do
reportSLn "tc.conv.assign" 30 "eta expansion did not instantiate meta"
patternViolation (unblockOnAnyMetaIn (MetaV x es)) -- nothing happened, give up
compareAsDir :: MonadConversion m => CompareDirection -> CompareAs -> Term -> Term -> m ()
compareAsDir dir a = dirToCmp (`compareAs'` a) dir
compareAs' :: forall m. MonadConversion m => Comparison -> CompareAs -> Term -> Term -> m ()
compareAs' cmp tt m n = case tt of
AsTermsOf a -> compareTerm' cmp a m n
AsSizes -> compareSizes cmp m n
AsTypes -> compareAtom cmp AsTypes m n
compareTerm' :: forall m. MonadConversion m => Comparison -> Type -> Term -> Term -> m ()
compareTerm' cmp a m n =
verboseBracket "tc.conv.term" 20 "compareTerm" $ do
(ba, a') <- reduceWithBlocker a
(catchConstraint (ValueCmp cmp (AsTermsOf a') m n) :: m () -> m ()) $ blockOnError ba $ do
reportSDoc "tc.conv.term" 30 $ fsep
[ "compareTerm", prettyTCM m, prettyTCM cmp, prettyTCM n, ":", prettyTCM a' ]
propIrr <- isPropEnabled
isSize <- isJust <$> isSizeType a'
(bs, s) <- reduceWithBlocker $ getSort a'
mlvl <- getBuiltin' builtinLevel
reportSDoc "tc.conv.level" 60 $ nest 2 $ sep
[ "a' =" <+> pretty a'
, "mlvl =" <+> pretty mlvl
, text $ "(Just (unEl a') == mlvl) = " ++ show (Just (unEl a') == mlvl)
]
blockOnError bs $ case s of
Prop{} | propIrr -> compareIrrelevant a' m n
_ | isSize -> compareSizes cmp m n
_ -> case unEl a' of
a | Just a == mlvl -> do
a <- levelView m
b <- levelView n
equalLevel a b
a@Pi{} -> equalFun s a m n
Lam _ _ -> __IMPOSSIBLE__
Def r es -> do
isrec <- isEtaRecord r
if isrec
then do
sig <- getSignature
let ps = fromMaybe __IMPOSSIBLE__ $ allApplyElims es
-- Andreas, 2010-10-11: allowing neutrals to be blocked things does not seem
-- to change Agda's behavior
-- isNeutral Blocked{} = False
isNeutral (NotBlocked _ Con{}) = return False
-- Andreas, 2013-09-18 / 2015-06-29: a Def by copatterns is
-- not neutral if it is blocked (there can be missing projections
-- to trigger a reduction.
isNeutral (NotBlocked r (Def q _)) = do -- Andreas, 2014-12-06 optimize this using r !!
not <$> usesCopatterns q -- a def by copattern can reduce if projected
isNeutral _ = return True
isMeta b = case ignoreBlocking b of
MetaV{} -> True
_ -> False
reportSDoc "tc.conv.term" 30 $ prettyTCM a <+> "is eta record type"
m <- reduceB m
mNeutral <- isNeutral m
n <- reduceB n
nNeutral <- isNeutral n
case (m, n) of
_ | isMeta m || isMeta n ->
compareAtom cmp (AsTermsOf a') (ignoreBlocking m) (ignoreBlocking n)
_ | mNeutral && nNeutral -> do
-- Andreas 2011-03-23: (fixing issue 396)
-- if we are dealing with a singleton record,
-- we can succeed immediately
ifM (isSingletonRecordModuloRelevance r ps) (return ()) $
-- do not eta-expand if comparing two neutrals
compareAtom cmp (AsTermsOf a') (ignoreBlocking m) (ignoreBlocking n)
_ -> do
(tel, m') <- etaExpandRecord r ps $ ignoreBlocking m
(_ , n') <- etaExpandRecord r ps $ ignoreBlocking n
-- No subtyping on record terms
c <- getRecordConstructor r
-- Record constructors are covariant (see test/succeed/CovariantConstructors).
compareArgs (repeat $ polFromCmp cmp) [] (telePi_ tel __DUMMY_TYPE__) (Con c ConOSystem []) m' n'
else (do pathview <- pathView a'
equalPath pathview a' m n)
_ -> compareAtom cmp (AsTermsOf a') m n
where
-- equality at function type (accounts for eta)
equalFun :: (MonadConversion m) => Sort -> Term -> Term -> Term -> m ()
equalFun s a@(Pi dom b) m n | domFinite dom = do
mp <- fmap getPrimName <$> getBuiltin' builtinIsOne
case unEl $ unDom dom of
Def q [Apply phi]
| Just q == mp -> compareTermOnFace cmp (unArg phi) (El s (Pi (dom {domFinite = False}) b)) m n
_ -> equalFun s (Pi (dom{domFinite = False}) b) m n
equalFun _ (Pi dom@Dom{domInfo = info} b) m n | not $ domFinite dom = do
let name = suggests [ Suggestion b , Suggestion m , Suggestion n ]
addContext (name, dom) $ compareTerm cmp (absBody b) m' n'
where
(m',n') = raise 1 (m,n) `apply` [Arg info $ var 0]
equalFun _ _ _ _ = __IMPOSSIBLE__
equalPath :: (MonadConversion m) => PathView -> Type -> Term -> Term -> m ()
equalPath (PathType s _ l a x y) _ m n = do
let name = "i" :: String
interval <- el primInterval
let (m',n') = raise 1 (m, n) `applyE` [IApply (raise 1 $ unArg x) (raise 1 $ unArg y) (var 0)]
addContext (name, defaultDom interval) $ compareTerm cmp (El (raise 1 s) $ raise 1 (unArg a) `apply` [argN $ var 0]) m' n'
equalPath OType{} a' m n = cmpDef a' m n
cmpDef a'@(El s ty) m n = do
mI <- getBuiltinName' builtinInterval
mIsOne <- getBuiltinName' builtinIsOne
mGlue <- getPrimitiveName' builtinGlue
mHComp <- getPrimitiveName' builtinHComp
mSub <- getBuiltinName' builtinSub
mUnglueU <- getPrimitiveTerm' builtin_unglueU
mSubIn <- getPrimitiveTerm' builtinSubIn
case ty of
Def q es | Just q == mIsOne -> return ()
Def q es | Just q == mGlue, Just args@(l:_:a:phi:_) <- allApplyElims es -> do
aty <- el' (pure $ unArg l) (pure $ unArg a)
unglue <- prim_unglue
let mkUnglue m = apply unglue $ map (setHiding Hidden) args ++ [argN m]
reportSDoc "conv.glue" 20 $ prettyTCM (aty,mkUnglue m,mkUnglue n)
compareTermOnFace cmp (unArg phi) a' m n
compareTerm cmp aty (mkUnglue m) (mkUnglue n)
Def q es | Just q == mHComp, Just (sl:s:args@[phi,u,u0]) <- allApplyElims es
, Sort (Type lvl) <- unArg s
, Just unglueU <- mUnglueU, Just subIn <- mSubIn
-> do
let l = Level lvl
ty <- el' (pure $ l) (pure $ unArg u0)
let bA = subIn `apply` [sl,s,phi,u0]
let mkUnglue m = apply unglueU $ [argH l] ++ map (setHiding Hidden) [phi,u] ++ [argH bA,argN m]
reportSDoc "conv.hcompU" 20 $ prettyTCM (ty,mkUnglue m,mkUnglue n)
compareTermOnFace cmp (unArg phi) ty m n
compareTerm cmp ty (mkUnglue m) (mkUnglue n)
Def q es | Just q == mSub, Just args@(l:a:_) <- allApplyElims es -> do
ty <- el' (pure $ unArg l) (pure $ unArg a)
out <- primSubOut
let mkOut m = apply out $ map (setHiding Hidden) args ++ [argN m]
compareTerm cmp ty (mkOut m) (mkOut n)
Def q [] | Just q == mI -> compareInterval cmp a' m n
_ -> compareAtom cmp (AsTermsOf a') m n
compareAtomDir :: MonadConversion m => CompareDirection -> CompareAs -> Term -> Term -> m ()
compareAtomDir dir a = dirToCmp (`compareAtom` a) dir
-- | Compute the head type of an elimination. For projection-like functions
-- this requires inferring the type of the principal argument.
computeElimHeadType :: MonadConversion m => QName -> Elims -> Elims -> m Type
computeElimHeadType f es es' = do
def <- getConstInfo f
-- To compute the type @a@ of a projection-like @f@,
-- we have to infer the type of its first argument.
if projectionArgs (theDef def) <= 0 then return $ defType def else do
-- Find an first argument to @f@.
let arg = case (es, es') of
(Apply arg : _, _) -> arg
(_, Apply arg : _) -> arg
_ -> __IMPOSSIBLE__
-- Infer its type.
reportSDoc "tc.conv.infer" 30 $
"inferring type of internal arg: " <+> prettyTCM arg
targ <- infer $ unArg arg
reportSDoc "tc.conv.infer" 30 $
"inferred type: " <+> prettyTCM targ
-- getDefType wants the argument type reduced.
-- Andreas, 2016-02-09, Issue 1825: The type of arg might be
-- a meta-variable, e.g. in interactive development.
-- In this case, we postpone.
targ <- abortIfBlocked targ
fromMaybeM __IMPOSSIBLE__ $ getDefType f targ
-- | Syntax directed equality on atomic values
--
compareAtom :: forall m. MonadConversion m => Comparison -> CompareAs -> Term -> Term -> m ()
compareAtom cmp t m n =
verboseBracket "tc.conv.atom" 20 "compareAtom" $
-- if a PatternErr is thrown, rebuild constraint!
(catchConstraint (ValueCmp cmp t m n) :: m () -> m ()) $ do
reportSLn "tc.conv.atom.size" 50 $ "compareAtom term size: " ++ show (termSize m, termSize n)
reportSDoc "tc.conv.atom" 50 $
"compareAtom" <+> fsep [ prettyTCM m <+> prettyTCM cmp
, prettyTCM n
, prettyTCM t
]
-- Andreas: what happens if I cut out the eta expansion here?
-- Answer: Triggers issue 245, does not resolve 348
(mb',nb') <- do
mb' <- etaExpandBlocked =<< reduceB m
nb' <- etaExpandBlocked =<< reduceB n
return (mb', nb')
let getBlocker (Blocked b _) = b
getBlocker NotBlocked{} = neverUnblock
blocker = unblockOnEither (getBlocker mb') (getBlocker nb')
reportSLn "tc.conv.atom.size" 50 $ "term size after reduce: " ++ show (termSize $ ignoreBlocking mb', termSize $ ignoreBlocking nb')
-- constructorForm changes literal to constructors
-- only needed if the other side is not a literal
(mb'', nb'') <- case (ignoreBlocking mb', ignoreBlocking nb') of
(Lit _, Lit _) -> return (mb', nb')
_ -> (,) <$> traverse constructorForm mb'
<*> traverse constructorForm nb'
mb <- traverse unLevel mb''
nb <- traverse unLevel nb''
cmpBlocked <- viewTC eCompareBlocked
let m = ignoreBlocking mb
n = ignoreBlocking nb
checkDefinitionalEquality = unlessM (pureCompareAs CmpEq t m n) notEqual
notEqual = typeError $ UnequalTerms cmp m n t
dir = fromCmp cmp
rid = flipCmp dir -- The reverse direction. Bad name, I know.
assign dir x es v = assignE dir x es v t $ compareAtomDir dir t
reportSDoc "tc.conv.atom" 30 $
"compareAtom" <+> fsep [ prettyTCM mb <+> prettyTCM cmp
, prettyTCM nb
, prettyTCM t
]
reportSDoc "tc.conv.atom" 80 $
"compareAtom" <+> fsep [ (text . show) mb <+> prettyTCM cmp
, (text . show) nb
, ":" <+> (text . show) t ]
case (mb, nb) of
-- equate two metas x and y. if y is the younger meta,
-- try first y := x and then x := y
_ | MetaV x xArgs <- ignoreBlocking mb, -- Can be either Blocked or NotBlocked depending on
MetaV y yArgs <- ignoreBlocking nb -> -- envCompareBlocked check above.
if | x == y, cmpBlocked -> do
a <- metaType x
blockOnError (unblockOnMeta x) $
compareElims [] [] a (MetaV x []) xArgs yArgs
| x == y -> blockOnError (unblockOnMeta x) $
case intersectVars xArgs yArgs of
-- all relevant arguments are variables
Just kills -> do
-- kills is a list with 'True' for each different var
killResult <- killArgs kills x
case killResult of
NothingToPrune -> return ()
PrunedEverything -> return ()
PrunedNothing -> checkDefinitionalEquality
PrunedSomething -> checkDefinitionalEquality
-- not all relevant arguments are variables
Nothing -> checkDefinitionalEquality -- Check definitional equality on meta-variables
-- (same as for blocked terms)
| otherwise -> do
[p1, p2] <- mapM getMetaPriority [x,y]
-- First try the one with the highest priority. If that doesn't
-- work, try the low priority one.
let (solve1, solve2)
| (p1, x) > (p2, y) = (l1, r2)
| otherwise = (r1, l2)
where l1 = assign dir x xArgs n
r1 = assign rid y yArgs m
-- Careful: the first attempt might prune the low
-- priority meta! (Issue #2978)
l2 = ifM (isInstantiatedMeta x) (compareAsDir dir t m n) l1
r2 = ifM (isInstantiatedMeta y) (compareAsDir rid t n m) r1
-- Unblock on both unblockers of solve1 and solve2
catchPatternErr (`addOrUnblocker` solve2) solve1
-- one side a meta
_ | MetaV x es <- ignoreBlocking mb -> assign dir x es n
_ | MetaV x es <- ignoreBlocking nb -> assign rid x es m
(Blocked{}, Blocked{}) | not cmpBlocked -> checkDefinitionalEquality
(Blocked b _, _) | not cmpBlocked -> useInjectivity (fromCmp cmp) b t m n -- The blocked term goes first
(_, Blocked b _) | not cmpBlocked -> useInjectivity (flipCmp $ fromCmp cmp) b t n m
_ -> blockOnError blocker $ do
-- -- Andreas, 2013-10-20 put projection-like function
-- -- into the spine, to make compareElims work.
-- -- 'False' means: leave (Def f []) unchanged even for
-- -- proj-like funs.
-- m <- elimView False m
-- n <- elimView False n
-- Andreas, 2015-07-01, actually, don't put them into the spine.
-- Polarity cannot be communicated properly if projection-like
-- functions are post-fix.
case (m, n) of
(Pi{}, Pi{}) -> equalFun m n
(Sort s1, Sort s2) ->
ifM (optCumulativity <$> pragmaOptions)
(compareSort cmp s1 s2)
(equalSort s1 s2)
(Lit l1, Lit l2) | l1 == l2 -> return ()
(Var i es, Var i' es') | i == i' -> do
a <- typeOfBV i
-- Variables are invariant in their arguments
compareElims [] [] a (var i) es es'
-- The case of definition application:
(Def f es, Def f' es') -> do
-- 1. All absurd lambdas are equal.
unlessM (bothAbsurd f f') $ do
-- 2. If the heads are unequal, the only chance is subtyping between SIZE and SIZELT.
if f /= f' then trySizeUniv cmp t m n f es f' es' else do
-- 3. If the heads are equal:
-- 3a. If there are no arguments, we are done.
unless (null es && null es') $ do
-- 3b. If some cubical magic kicks in, we are done.
unlessM (compareEtaPrims f es es') $ do
-- 3c. Oh no, we actually have to work and compare the eliminations!
a <- computeElimHeadType f es es'
-- The polarity vector of projection-like functions
-- does not include the parameters.
pol <- getPolarity' cmp f
compareElims pol [] a (Def f []) es es'
-- Due to eta-expansion, these constructors are fully applied.
(Con x ci xArgs, Con y _ yArgs)
| x == y -> do
-- Get the type of the constructor instantiated to the datatype parameters.
a' <- case t of
AsTermsOf a -> conType x a
AsSizes -> __IMPOSSIBLE__
AsTypes -> __IMPOSSIBLE__
forcedArgs <- getForcedArgs $ conName x
-- Constructors are covariant in their arguments
-- (see test/succeed/CovariantConstructors).
compareElims (repeat $ polFromCmp cmp) forcedArgs a' (Con x ci []) xArgs yArgs
_ -> notEqual
where
-- returns True in case we handled the comparison already.
compareEtaPrims :: MonadConversion m => QName -> Elims -> Elims -> m Bool
compareEtaPrims q es es' = do
munglue <- getPrimitiveName' builtin_unglue
munglueU <- getPrimitiveName' builtin_unglueU
msubout <- getPrimitiveName' builtinSubOut
case () of
_ | Just q == munglue -> compareUnglueApp q es es'
_ | Just q == munglueU -> compareUnglueUApp q es es'
_ | Just q == msubout -> compareSubApp q es es'
_ -> return False
compareSubApp q es es' = do
let (as,bs) = splitAt 5 es; (as',bs') = splitAt 5 es'
case (allApplyElims as, allApplyElims as') of
(Just [a,bA,phi,u,x], Just [a',bA',phi',u',x']) -> do
tSub <- primSub
-- Andrea, 28-07-16:
-- comparing the types is most probably wasteful,
-- since b and b' should be neutral terms, but it's a
-- precondition for the compareAtom call to make
-- sense.
equalType (El (tmSSort $ unArg a) $ apply tSub $ a : map (setHiding NotHidden) [bA,phi,u])
(El (tmSSort $ unArg a) $ apply tSub $ a : map (setHiding NotHidden) [bA',phi',u'])
compareAtom cmp (AsTermsOf $ El (tmSSort $ unArg a) $ apply tSub $ a : map (setHiding NotHidden) [bA,phi,u])
(unArg x) (unArg x')
compareElims [] [] (El (tmSort (unArg a)) (unArg bA)) (Def q as) bs bs'
return True
_ -> return False
compareUnglueApp q es es' = do
let (as,bs) = splitAt 7 es; (as',bs') = splitAt 7 es'
case (allApplyElims as, allApplyElims as') of
(Just [la,lb,bA,phi,bT,e,b], Just [la',lb',bA',phi',bT',e',b']) -> do
tGlue <- getPrimitiveTerm builtinGlue
-- Andrea, 28-07-16:
-- comparing the types is most probably wasteful,
-- since b and b' should be neutral terms, but it's a
-- precondition for the compareAtom call to make
-- sense.
-- equalType (El (tmSort (unArg lb)) $ apply tGlue $ [la,lb] ++ map (setHiding NotHidden) [bA,phi,bT,e])
-- (El (tmSort (unArg lb')) $ apply tGlue $ [la',lb'] ++ map (setHiding NotHidden) [bA',phi',bT',e'])
compareAtom cmp (AsTermsOf $ El (tmSort (unArg lb)) $ apply tGlue $ [la,lb] ++ map (setHiding NotHidden) [bA,phi,bT,e])
(unArg b) (unArg b')
compareElims [] [] (El (tmSort (unArg la)) (unArg bA)) (Def q as) bs bs'
return True
_ -> return False
compareUnglueUApp :: MonadConversion m => QName -> Elims -> Elims -> m Bool
compareUnglueUApp q es es' = do
let (as,bs) = splitAt 5 es; (as',bs') = splitAt 5 es'
case (allApplyElims as, allApplyElims as') of
(Just [la,phi,bT,bAS,b], Just [la',phi',bT',bA',b']) -> do
tHComp <- primHComp
tLSuc <- primLevelSuc
tSubOut <- primSubOut
iz <- primIZero
let lsuc t = tLSuc `apply` [argN t]
s = tmSort $ unArg la
sucla = lsuc <$> la
bA <- runNamesT [] $ do
[la,phi,bT,bAS] <- mapM (open . unArg) [la,phi,bT,bAS]
(pure tSubOut <#> (pure tLSuc <@> la) <#> (Sort . tmSort <$> la) <#> phi <#> (bT <@> primIZero) <@> bAS)
compareAtom cmp (AsTermsOf $ El (tmSort . unArg $ sucla) $ apply tHComp $ [sucla, argH (Sort s), phi] ++ [argH (unArg bT), argH bA])
(unArg b) (unArg b')
compareElims [] [] (El s bA) (Def q as) bs bs'
return True
_ -> return False
-- Andreas, 2013-05-15 due to new postponement strategy, type can now be blocked
conType c t = do
t <- abortIfBlocked t
let impossible = do
reportSDoc "impossible" 10 $
"expected data/record type, found " <+> prettyTCM t
reportSDoc "impossible" 70 $ nest 2 $ "raw =" <+> pretty t
-- __IMPOSSIBLE__
-- Andreas, 2013-10-20: in case termination checking fails
-- we might get some unreduced types here.
-- In issue 921, this happens during the final attempt
-- to solve left-over constraints.
-- Thus, instead of crashing, just give up gracefully.
patternViolation neverUnblock
maybe impossible (return . snd) =<< getFullyAppliedConType c t
equalFun t1 t2 = case (t1, t2) of
(Pi dom1 b1, Pi dom2 b2) -> do
verboseBracket "tc.conv.fun" 15 "compare function types" $ do
reportSDoc "tc.conv.fun" 20 $ nest 2 $ vcat
[ "t1 =" <+> prettyTCM t1
, "t2 =" <+> prettyTCM t2
]
compareDom cmp dom2 dom1 b1 b2 errH errR errQ errC $
compareType cmp (absBody b1) (absBody b2)
where
errH = typeError $ UnequalHiding t1 t2
errR = typeError $ UnequalRelevance cmp t1 t2
errQ = typeError $ UnequalQuantity cmp t1 t2
errC = typeError $ UnequalCohesion cmp t1 t2
_ -> __IMPOSSIBLE__
-- | Check whether @a1 `cmp` a2@ and continue in context extended by @a1@.
compareDom :: (MonadConversion m , Free c)
=> Comparison -- ^ @cmp@ The comparison direction
-> Dom Type -- ^ @a1@ The smaller domain.
-> Dom Type -- ^ @a2@ The other domain.
-> Abs b -- ^ @b1@ The smaller codomain.
-> Abs c -- ^ @b2@ The bigger codomain.
-> m () -- ^ Continuation if mismatch in 'Hiding'.
-> m () -- ^ Continuation if mismatch in 'Relevance'.
-> m () -- ^ Continuation if mismatch in 'Quantity'.
-> m () -- ^ Continuation if mismatch in 'Cohesion'.
-> m () -- ^ Continuation if comparison is successful.
-> m ()
compareDom cmp0
dom1@(Dom{domInfo = i1, unDom = a1})
dom2@(Dom{domInfo = i2, unDom = a2})
b1 b2 errH errR errQ errC cont = do
hasSubtyping <- collapseDefault . optSubtyping <$> pragmaOptions
let cmp = if hasSubtyping then cmp0 else CmpEq
if | not $ sameHiding dom1 dom2 -> errH
| not $ compareRelevance cmp (getRelevance dom1) (getRelevance dom2) -> errR
| not $ compareQuantity cmp (getQuantity dom1) (getQuantity dom2) -> errQ
| not $ compareCohesion cmp (getCohesion dom1) (getCohesion dom2) -> errC
| otherwise -> do
let r = max (getRelevance dom1) (getRelevance dom2)
-- take "most irrelevant"
dependent = (r /= Irrelevant) && isBinderUsed b2
pid <- newProblem_ $ compareType cmp0 a1 a2
dom <- if dependent
then (\ a -> dom1 {unDom = a}) <$> blockTypeOnProblem a1 pid
else return dom1
-- We only need to require a1 == a2 if b2 is dependent
-- If it's non-dependent it doesn't matter what we add to the context.
let name = suggests [ Suggestion b1 , Suggestion b2 ]
addContext (name, dom) $ cont
stealConstraints pid
-- Andreas, 2013-05-15 Now, comparison of codomains is not
-- blocked any more by getting stuck on domains.
-- Only the domain type in context will be blocked.
-- But see issue #1258.
compareRelevance :: Comparison -> Relevance -> Relevance -> Bool
compareRelevance CmpEq = (==)
compareRelevance CmpLeq = (<=)
compareQuantity :: Comparison -> Quantity -> Quantity -> Bool
compareQuantity CmpEq = sameQuantity
compareQuantity CmpLeq = moreQuantity
compareCohesion :: Comparison -> Cohesion -> Cohesion -> Bool
compareCohesion CmpEq = sameCohesion
compareCohesion CmpLeq = moreCohesion
-- | When comparing argument spines (in compareElims) where the first arguments
-- don't match, we keep going, substituting the anti-unification of the two
-- terms in the telescope. More precisely:
--
-- @@
-- (u = v : A)[pid] w = antiUnify pid A u v us = vs : Δ[w/x]
-- -------------------------------------------------------------
-- u us = v vs : (x : A) Δ
-- @@
--
-- The simplest case of anti-unification is to return a fresh metavariable
-- (created by blockTermOnProblem), but if there's shared structure between
-- the two terms we can expose that.
--
-- This is really a crutch that lets us get away with things that otherwise
-- would require heterogenous conversion checking. See for instance issue
-- #2384.
antiUnify :: MonadConversion m => ProblemId -> Type -> Term -> Term -> m Term
antiUnify pid a u v = do
((u, v), eq) <- SynEq.checkSyntacticEquality u v
if eq then return u else do
(u, v) <- reduce (u, v)
reportSDoc "tc.conv.antiUnify" 30 $ vcat
[ "antiUnify"
, "a =" <+> prettyTCM a
, "u =" <+> prettyTCM u
, "v =" <+> prettyTCM v
]
case (u, v) of
(Pi ua ub, Pi va vb) -> do
wa0 <- antiUnifyType pid (unDom ua) (unDom va)
let wa = wa0 <$ ua
wb <- addContext wa $ antiUnifyType pid (absBody ub) (absBody vb)
return $ Pi wa (mkAbs (absName ub) wb)
(Lam i u, Lam _ v) ->
reduce (unEl a) >>= \case
Pi a b -> Lam i . (mkAbs (absName u)) <$> addContext a (antiUnify pid (absBody b) (absBody u) (absBody v))
_ -> fallback
(Var i us, Var j vs) | i == j -> maybeGiveUp $ do
a <- typeOfBV i
antiUnifyElims pid a (var i) us vs
-- Andreas, 2017-07-27:
-- It seems that nothing guarantees here that the constructors are fully
-- applied!? Thus, @a@ could be a function type and we need the robust
-- @getConType@ here.
-- (Note that @patternViolation@ swallows exceptions coming from @getConType@
-- thus, we would not see clearly if we used @getFullyAppliedConType@ instead.)
(Con x ci us, Con y _ vs) | x == y -> maybeGiveUp $ do
a <- maybe abort (return . snd) =<< getConType x a
antiUnifyElims pid a (Con x ci []) us vs
(Def f us, Def g vs) | f == g, length us == length vs -> maybeGiveUp $ do
a <- computeElimHeadType f us vs
antiUnifyElims pid a (Def f []) us vs
_ -> fallback
where
maybeGiveUp = catchPatternErr $ \ _ -> fallback
abort = patternViolation neverUnblock -- caught by maybeGiveUp
fallback = blockTermOnProblem a u pid
antiUnifyArgs :: MonadConversion m => ProblemId -> Dom Type -> Arg Term -> Arg Term -> m (Arg Term)
antiUnifyArgs pid dom u v
| not (sameModality (getModality u) (getModality v))
= patternViolation neverUnblock
| otherwise = applyModalityToContext u $
ifM (isIrrelevantOrPropM dom)
{-then-} (return u)
{-else-} ((<$ u) <$> antiUnify pid (unDom dom) (unArg u) (unArg v))
antiUnifyType :: MonadConversion m => ProblemId -> Type -> Type -> m Type
antiUnifyType pid (El s a) (El _ b) = workOnTypes $ El s <$> antiUnify pid (sort s) a b
antiUnifyElims :: MonadConversion m => ProblemId -> Type -> Term -> Elims -> Elims -> m Term
antiUnifyElims pid a self [] [] = return self
antiUnifyElims pid a self (Proj o f : es1) (Proj _ g : es2) | f == g = do
res <- projectTyped self a o f
case res of
Just (_, self, a) -> antiUnifyElims pid a self es1 es2
Nothing -> patternViolation neverUnblock -- can fail for projection like
antiUnifyElims pid a self (Apply u : es1) (Apply v : es2) = do
reduce (unEl a) >>= \case
Pi a b -> do
w <- antiUnifyArgs pid a u v
antiUnifyElims pid (b `lazyAbsApp` unArg w) (apply self [w]) es1 es2
_ -> patternViolation neverUnblock
antiUnifyElims _ _ _ _ _ = patternViolation neverUnblock -- trigger maybeGiveUp in antiUnify
-- | @compareElims pols a v els1 els2@ performs type-directed equality on eliminator spines.
-- @t@ is the type of the head @v@.
compareElims :: forall m. MonadConversion m => [Polarity] -> [IsForced] -> Type -> Term -> [Elim] -> [Elim] -> m ()
compareElims pols0 fors0 a v els01 els02 =
verboseBracket "tc.conv.elim" 20 "compareElims" $
(catchConstraint (ElimCmp pols0 fors0 a v els01 els02) :: m () -> m ()) $ do
let v1 = applyE v els01
v2 = applyE v els02
failure = typeError $ UnequalTerms CmpEq v1 v2 (AsTermsOf a)
-- Andreas, 2013-03-15 since one of the spines is empty, @a@
-- is the correct type here.
unless (null els01) $ do
reportSDoc "tc.conv.elim" 25 $ "compareElims" $$ do
nest 2 $ vcat
[ "a =" <+> prettyTCM a
, "pols0 (truncated to 10) =" <+> hsep (map prettyTCM $ take 10 pols0)
, "fors0 (truncated to 10) =" <+> hsep (map prettyTCM $ take 10 fors0)
, "v =" <+> prettyTCM v
, "els01 =" <+> prettyTCM els01
, "els02 =" <+> prettyTCM els02
]
case (els01, els02) of
([] , [] ) -> return ()
([] , Proj{}:_ ) -> failure -- not impossible, see issue 821
(Proj{} : _, [] ) -> failure -- could be x.p =?= x for projection p
([] , Apply{} : _) -> failure -- not impossible, see issue 878
(Apply{} : _, [] ) -> failure
([] , IApply{} : _) -> failure
(IApply{} : _, [] ) -> failure
(Apply{} : _, Proj{} : _) -> __IMPOSSIBLE__ <$ solveAwakeConstraints' True -- NB: popped up in issue 889
(Proj{} : _, Apply{} : _) -> __IMPOSSIBLE__ <$ solveAwakeConstraints' True -- but should be impossible (but again in issue 1467)
(IApply{} : _, Proj{} : _) -> __IMPOSSIBLE__ <$ solveAwakeConstraints' True
(Proj{} : _, IApply{} : _) -> __IMPOSSIBLE__ <$ solveAwakeConstraints' True
(IApply{} : _, Apply{} : _) -> __IMPOSSIBLE__ <$ solveAwakeConstraints' True
(Apply{} : _, IApply{} : _) -> __IMPOSSIBLE__ <$ solveAwakeConstraints' True
(e@(IApply x1 y1 r1) : els1, IApply x2 y2 r2 : els2) -> do
reportSDoc "tc.conv.elim" 25 $ "compareElims IApply"
-- Andrea: copying stuff from the Apply case..
let (pol, pols) = nextPolarity pols0
a <- abortIfBlocked a
va <- pathView a
reportSDoc "tc.conv.elim.iapply" 60 $ "compareElims IApply" $$ do
nest 2 $ "va =" <+> text (show (isPathType va))
case va of
PathType s path l bA x y -> do
b <- primIntervalType
compareWithPol pol (flip compareTerm b)
r1 r2
-- TODO: compare (x1,x2) and (y1,y2) ?
let r = r1 -- TODO Andrea: do blocking
codom <- el' (pure . unArg $ l) ((pure . unArg $ bA) <@> pure r)
compareElims pols [] codom -- Path non-dependent (codom `lazyAbsApp` unArg arg)
(applyE v [e]) els1 els2
-- We allow for functions (i : I) -> ... to also be heads of a IApply,
-- because @etaContract@ can produce such terms
OType t@(El _ Pi{}) -> compareElims pols0 fors0 t v (Apply (defaultArg r1) : els1) (Apply (defaultArg r2) : els2)
OType t -> patternViolation (unblockOnAnyMetaIn t) -- Can we get here? We know a is not blocked.
(Apply arg1 : els1, Apply arg2 : els2) ->
(verboseBracket "tc.conv.elim" 20 "compare Apply" :: m () -> m ()) $ do
reportSDoc "tc.conv.elim" 10 $ nest 2 $ vcat
[ "a =" <+> prettyTCM a
, "v =" <+> prettyTCM v
, "arg1 =" <+> prettyTCM arg1
, "arg2 =" <+> prettyTCM arg2
]
reportSDoc "tc.conv.elim" 50 $ nest 2 $ vcat
[ "raw:"
, "a =" <+> pretty a
, "v =" <+> pretty v
, "arg1 =" <+> pretty arg1
, "arg2 =" <+> pretty arg2
]
let (pol, pols) = nextPolarity pols0
(for, fors) = nextIsForced fors0
a <- abortIfBlocked a
reportSLn "tc.conv.elim" 40 $ "type is not blocked"
case unEl a of
(Pi (Dom{domInfo = info, unDom = b}) codom) -> do
reportSLn "tc.conv.elim" 40 $ "type is a function type"
mlvl <- tryMaybe primLevel
let freeInCoDom (Abs _ c) = 0 `freeInIgnoringSorts` c
freeInCoDom _ = False
dependent = (Just (unEl b) /= mlvl) && freeInCoDom codom
-- Level-polymorphism (x : Level) -> ... does not count as dependency here
-- NB: we could drop the free variable test and still be sound.
-- It is a trade-off between the administrative effort of
-- creating a blocking and traversing a term for free variables.
-- Apparently, it is believed that checking free vars is cheaper.
-- Andreas, 2013-05-15
-- NEW, Andreas, 2013-05-15
-- compare arg1 and arg2
pid <- newProblem_ $ applyModalityToContext info $
if isForced for then
reportSLn "tc.conv.elim" 40 $ "argument is forced"
else if isIrrelevant info then do
reportSLn "tc.conv.elim" 40 $ "argument is irrelevant"
compareIrrelevant b (unArg arg1) (unArg arg2)
else do
reportSLn "tc.conv.elim" 40 $ "argument has polarity " ++ show pol
compareWithPol pol (flip compareTerm b)
(unArg arg1) (unArg arg2)
-- if comparison got stuck and function type is dependent, block arg
solved <- isProblemSolved pid
reportSLn "tc.conv.elim" 40 $ "solved = " ++ show solved
arg <- if dependent && not solved
then applyModalityToContext info $ do
reportSDoc "tc.conv.elims" 50 $ vcat $
[ "Trying antiUnify:"
, nest 2 $ "b =" <+> prettyTCM b
, nest 2 $ "arg1 =" <+> prettyTCM arg1
, nest 2 $ "arg2 =" <+> prettyTCM arg2
]
arg <- (arg1 $>) <$> antiUnify pid b (unArg arg1) (unArg arg2)
reportSDoc "tc.conv.elims" 50 $ hang "Anti-unification:" 2 (prettyTCM arg)
reportSDoc "tc.conv.elims" 70 $ nest 2 $ "raw:" <+> pretty arg
return arg
else return arg1
-- continue, possibly with blocked instantiation
compareElims pols fors (codom `lazyAbsApp` unArg arg) (apply v [arg]) els1 els2
-- any left over constraints of arg are associated to the comparison
reportSLn "tc.conv.elim" 40 $ "stealing constraints from problem " ++ show pid
stealConstraints pid
{- Stealing solves this issue:
Does not create enough blocked tc-problems,
see test/fail/DontPrune.
(There are remaining problems which do not show up as yellow.)
Need to find a way to associate pid also to result of compareElims.
-}
a -> do
reportSDoc "impossible" 10 $
"unexpected type when comparing apply eliminations " <+> prettyTCM a
reportSDoc "impossible" 50 $ "raw type:" <+> pretty a
patternViolation (unblockOnAnyMetaIn a)
-- Andreas, 2013-10-22
-- in case of disabled reductions (due to failing termination check)
-- we might get stuck, so do not crash, but fail gently.
-- __IMPOSSIBLE__
-- case: f == f' are projections
(Proj o f : els1, Proj _ f' : els2)
| f /= f' -> typeError . GenericDocError =<< prettyTCM f <+> "/=" <+> prettyTCM f'
| otherwise -> do
a <- abortIfBlocked a
res <- projectTyped v a o f -- fails only if f is proj.like but parameters cannot be retrieved
case res of
Just (_, u, t) -> do
-- Andreas, 2015-07-01:
-- The arguments following the principal argument of a projection
-- are invariant. (At least as long as we have no explicit polarity
-- annotations.)
compareElims [] [] t u els1 els2
Nothing -> do
reportSDoc "tc.conv.elims" 30 $ sep
[ text $ "projection " ++ prettyShow f
, text "applied to value " <+> prettyTCM v
, text "of unexpected type " <+> prettyTCM a
]
patternViolation (unblockOnAnyMetaIn a)
-- | "Compare" two terms in irrelevant position. This always succeeds.
-- However, we can dig for solutions of irrelevant metas in the
-- terms we compare.
-- (Certainly not the systematic solution, that'd be proof search...)
compareIrrelevant :: MonadConversion m => Type -> Term -> Term -> m ()
{- 2012-04-02 DontCare no longer present
compareIrrelevant t (DontCare v) w = compareIrrelevant t v w
compareIrrelevant t v (DontCare w) = compareIrrelevant t v w
-}
compareIrrelevant t v0 w0 = do
let v = stripDontCare v0
w = stripDontCare w0
reportSDoc "tc.conv.irr" 20 $ vcat
[ "compareIrrelevant"
, nest 2 $ "v =" <+> prettyTCM v
, nest 2 $ "w =" <+> prettyTCM w
]
reportSDoc "tc.conv.irr" 50 $ vcat
[ nest 2 $ "v =" <+> pretty v
, nest 2 $ "w =" <+> pretty w
]
try v w $ try w v $ return ()
where
try (MetaV x es) w fallback = do
mv <- lookupMeta x
let rel = getMetaRelevance mv
inst = case mvInstantiation mv of
InstV{} -> True
_ -> False
reportSDoc "tc.conv.irr" 20 $ vcat
[ nest 2 $ text $ "rel = " ++ show rel
, nest 2 $ "inst =" <+> pretty inst
]
if not (isIrrelevant rel) || inst
then fallback
-- Andreas, 2016-08-08, issue #2131:
-- Mining for solutions for irrelevant metas is not definite.
-- Thus, in case of error, leave meta unsolved.
else assignE DirEq x es w (AsTermsOf t) (compareIrrelevant t) `catchError` \ _ -> fallback
-- the value of irrelevant or unused meta does not matter
try v w fallback = fallback
compareWithPol :: MonadConversion m => Polarity -> (Comparison -> a -> a -> m ()) -> a -> a -> m ()
compareWithPol Invariant cmp x y = cmp CmpEq x y
compareWithPol Covariant cmp x y = cmp CmpLeq x y
compareWithPol Contravariant cmp x y = cmp CmpLeq y x
compareWithPol Nonvariant cmp x y = return ()
polFromCmp :: Comparison -> Polarity
polFromCmp CmpLeq = Covariant
polFromCmp CmpEq = Invariant
-- | Type-directed equality on argument lists
--
compareArgs :: MonadConversion m => [Polarity] -> [IsForced] -> Type -> Term -> Args -> Args -> m ()
compareArgs pol for a v args1 args2 =
compareElims pol for a v (map Apply args1) (map Apply args2)
---------------------------------------------------------------------------
-- * Types
---------------------------------------------------------------------------
-- | Equality on Types
compareType :: MonadConversion m => Comparison -> Type -> Type -> m ()
compareType cmp ty1@(El s1 a1) ty2@(El s2 a2) =
workOnTypes $
verboseBracket "tc.conv.type" 20 "compareType" $ do
reportSDoc "tc.conv.type" 50 $ vcat
[ "compareType" <+> sep [ prettyTCM ty1 <+> prettyTCM cmp
, prettyTCM ty2 ]
, hsep [ " sorts:", prettyTCM s1, " and ", prettyTCM s2 ]
]
compareAs cmp AsTypes a1 a2
leqType :: MonadConversion m => Type -> Type -> m ()
leqType = compareType CmpLeq
-- | @coerce v a b@ coerces @v : a@ to type @b@, returning a @v' : b@
-- with maybe extra hidden applications or hidden abstractions.
--
-- In principle, this function can host coercive subtyping, but
-- currently it only tries to fix problems with hidden function types.
--
coerce :: (MonadConversion m, MonadTCM m) => Comparison -> Term -> Type -> Type -> m Term
coerce cmp v t1 t2 = blockTerm t2 $ do
verboseS "tc.conv.coerce" 10 $ do
(a1,a2) <- reify (t1,t2)
let dbglvl = 30
reportSDoc "tc.conv.coerce" dbglvl $
"coerce" <+> vcat
[ "term v =" <+> prettyTCM v
, "from type t1 =" <+> prettyTCM a1
, "to type t2 =" <+> prettyTCM a2
, "comparison =" <+> prettyTCM cmp
]
reportSDoc "tc.conv.coerce" 70 $
"coerce" <+> vcat
[ "term v =" <+> pretty v
, "from type t1 =" <+> pretty t1
, "to type t2 =" <+> pretty t2
, "comparison =" <+> pretty cmp
]
-- v <$ do workOnTypes $ leqType t1 t2
-- take off hidden/instance domains from t1 and t2
TelV tel1 b1 <- telViewUpTo' (-1) notVisible t1
TelV tel2 b2 <- telViewUpTo' (-1) notVisible t2
let n = size tel1 - size tel2
-- the crude solution would be
-- v' = λ {tel2} → v {tel1}
-- however, that may introduce unneccessary many function types
-- If n > 0 and b2 is not blocked, it is safe to
-- insert n many hidden args
if n <= 0 then fallback else do
ifBlocked b2 (\ _ _ -> fallback) $ \ _ _ -> do
(args, t1') <- implicitArgs n notVisible t1
let v' = v `apply` args
v' <$ coerceSize (compareType cmp) v' t1' t2
where
fallback = v <$ coerceSize (compareType cmp) v t1 t2
-- | Account for situations like @k : (Size< j) <= (Size< k + 1)@
--
-- Actually, the semantics is
-- @(Size<= k) ∩ (Size< j) ⊆ rhs@
-- which gives a disjunctive constraint. Mmmh, looks like stuff
-- TODO.
--
-- For now, we do a cheap heuristics.
--
coerceSize :: MonadConversion m => (Type -> Type -> m ()) -> Term -> Type -> Type -> m ()
coerceSize leqType v t1 t2 = verboseBracket "tc.conv.size.coerce" 45 "coerceSize" $
workOnTypes $ do
reportSDoc "tc.conv.size.coerce" 70 $
"coerceSize" <+> vcat
[ "term v =" <+> pretty v
, "from type t1 =" <+> pretty t1
, "to type t2 =" <+> pretty t2
]
let fallback = leqType t1 t2
done = caseMaybeM (isSizeType =<< reduce t1) fallback $ \ _ -> return ()
-- Andreas, 2015-07-22, Issue 1615:
-- If t1 is a meta and t2 a type like Size< v2, we need to make sure we do not miss
-- the constraint v < v2!
caseMaybeM (isSizeType =<< reduce t2) fallback $ \ b2 -> do
-- Andreas, 2017-01-20, issue #2329:
-- If v is not a size suitable for the solver, like a neutral term,
-- we can only rely on the type.
mv <- sizeMaxView v
if any (\case{ DOtherSize{} -> True; _ -> False }) mv then fallback else do
-- Andreas, 2015-02-11 do not instantiate metas here (triggers issue 1203).
unlessM (tryConversion $ dontAssignMetas $ leqType t1 t2) $ do
-- A (most probably weaker) alternative is to just check syn.eq.
-- ifM (snd <$> checkSyntacticEquality t1 t2) (return v) $ {- else -} do
reportSDoc "tc.conv.size.coerce" 20 $ "coercing to a size type"
case b2 of
-- @t2 = Size@. We are done!
BoundedNo -> done
-- @t2 = Size< v2@
BoundedLt v2 -> do
sv2 <- sizeView v2
case sv2 of
SizeInf -> done
OtherSize{} -> do
-- Andreas, 2014-06-16:
-- Issue 1203: For now, just treat v < v2 as suc v <= v2
-- TODO: Need proper < comparison
vinc <- sizeSuc 1 v
compareSizes CmpLeq vinc v2
done
-- @v2 = a2 + 1@: In this case, we can try @v <= a2@
SizeSuc a2 -> do
compareSizes CmpLeq v a2
done -- to pass Issue 1136
---------------------------------------------------------------------------
-- * Sorts and levels
---------------------------------------------------------------------------
compareLevel :: MonadConversion m => Comparison -> Level -> Level -> m ()
compareLevel CmpLeq u v = leqLevel u v
compareLevel CmpEq u v = equalLevel u v
compareSort :: MonadConversion m => Comparison -> Sort -> Sort -> m ()
compareSort CmpEq = equalSort
compareSort CmpLeq = leqSort
-- | Check that the first sort is less or equal to the second.
--
-- We can put @SizeUniv@ below @Inf@, but otherwise, it is
-- unrelated to the other universes.
--
leqSort :: forall m. MonadConversion m => Sort -> Sort -> m ()
leqSort s1 s2 = (catchConstraint (SortCmp CmpLeq s1 s2) :: m () -> m ()) $ do
(s1,s2) <- reduce (s1,s2)
let postpone = addConstraint (unblockOnAnyMetaIn (s1, s2)) (SortCmp CmpLeq s1 s2)
no = typeError $ NotLeqSort s1 s2
yes = return ()
synEq = ifNotM (optSyntacticEquality <$> pragmaOptions) postpone $ do
((s1,s2) , equal) <- SynEq.checkSyntacticEquality s1 s2
if | equal -> yes
| otherwise -> postpone
reportSDoc "tc.conv.sort" 30 $
sep [ "leqSort"
, nest 2 $ fsep [ prettyTCM s1 <+> "=<"
, prettyTCM s2 ]
]
propEnabled <- isPropEnabled
typeInTypeEnabled <- typeInType
omegaInOmegaEnabled <- optOmegaInOmega <$> pragmaOptions
let fvsRHS = (`IntSet.member` allFreeVars s2)
badRigid <- s1 `rigidVarsNotContainedIn` fvsRHS
case (s1, s2) of
-- Andreas, 2018-09-03: crash on dummy sort
(DummyS s, _) -> impossibleSort s
(_, DummyS s) -> impossibleSort s
-- The most basic rule: @Set l =< Set l'@ iff @l =< l'@
(Type a , Type b ) -> leqLevel a b
-- Likewise for @Prop@
(Prop a , Prop b ) -> leqLevel a b
-- Likewise for @SSet@
(SSet a , SSet b ) -> leqLevel a b
-- @Prop l@ is below @Set l@
(Prop a , Type b ) -> leqLevel a b
(Type a , Prop b ) -> no
-- @Setωᵢ@ is above all small sorts (spelling out all cases
-- for the exhaustiveness checker)
(Inf f m , Inf f' n) ->
if leqFib f f' && (m <= n || typeInTypeEnabled || omegaInOmegaEnabled) then yes else no
(Type{} , Inf f _) -> yes
(Prop{} , Inf f _) -> yes
(Inf f _, Type{} ) -> if f == IsFibrant && typeInTypeEnabled then yes else no
(Inf f _, SSet{} ) -> if f == IsStrict && typeInTypeEnabled then yes else no
(Inf _ _, Prop{} ) -> no
-- @Set l@ is below @SSet l@
(Type a , SSet b ) -> leqLevel a b
(SSet a , Type b ) -> no
-- @Prop l@ is below @SSet l@
(Prop a , SSet b ) -> leqLevel a b
(SSet a , Prop b ) -> no
-- @SSet@ is below @SSetω@
(SSet{} , Inf IsStrict _) -> yes
(SSet{} , Inf IsFibrant _) -> no
-- @SizeUniv@ and @Prop0@ are bottom sorts.
-- So is @Set0@ if @Prop@ is not enabled.
(_ , LockUniv) -> equalSort s1 s2
(_ , SizeUniv) -> equalSort s1 s2
(_ , Prop (Max 0 [])) -> equalSort s1 s2
(_ , Type (Max 0 []))
| not propEnabled -> equalSort s1 s2
-- SizeUniv is unrelated to any @Set l@ or @Prop l@
(SizeUniv, Type{} ) -> no
(SizeUniv, Prop{} ) -> no
(SizeUniv , Inf{} ) -> no
(SizeUniv, SSet{} ) -> no
(LockUniv, Type{} ) -> no
(LockUniv, Prop{} ) -> no
(LockUniv , Inf{} ) -> no
(LockUniv, SSet{} ) -> no
-- If the first sort is a small sort that rigidly depends on a
-- variable and the second sort does not mention this variable,
-- the second sort must be at least @Setω@.
(_ , _ ) | Just (True,f) <- isSmallSort s1 , badRigid -> leqSort (Inf f 0) s2
-- PiSort, FunSort, UnivSort and MetaS might reduce once we instantiate
-- more metas, so we postpone.
(PiSort{}, _ ) -> synEq
(_ , PiSort{}) -> synEq
(FunSort{}, _ ) -> synEq
(_ , FunSort{}) -> synEq
(UnivSort{}, _ ) -> synEq
(_ , UnivSort{}) -> synEq
(MetaS{} , _ ) -> synEq
(_ , MetaS{} ) -> synEq
-- DefS are postulated sorts, so they do not reduce.
(DefS{} , _ ) -> synEq
(_ , DefS{}) -> synEq
where
leqFib IsFibrant _ = True
leqFib IsStrict IsStrict = True
leqFib _ _ = False
impossibleSort s = do
reportS "impossible" 10
[ "leqSort: found dummy sort with description:"
, s
]
__IMPOSSIBLE__
leqLevel :: MonadConversion m => Level -> Level -> m ()
leqLevel a b = catchConstraint (LevelCmp CmpLeq a b) $ do
reportSDoc "tc.conv.level" 30 $
"compareLevel" <+>
sep [ prettyTCM a <+> "=<"
, prettyTCM b ]
(a, b) <- reduce (a, b)
((a, b), equal) <- SynEq.checkSyntacticEquality a b
let notok = unlessM typeInType $ typeError $ NotLeqSort (Type a) (Type b)
postpone = patternViolation (unblockOnAnyMetaIn (a, b))
wrap m = m `catchError` \case
TypeError{} -> notok
err -> throwError err
reportSDoc "tc.conv.level" 60 $
"checkSyntacticEquality returns" <+> prettyTCM equal
unless equal $ do
cumulativity <- optCumulativity <$> pragmaOptions
areWeComputingOverlap <- viewTC eConflComputingOverlap
reportSDoc "tc.conv.level" 40 $
"compareLevelView" <+>
sep [ prettyList_ $ fmap (pretty . unSingleLevel) $ levelMaxView a
, "=<"
, prettyList_ $ fmap (pretty . unSingleLevel) $ levelMaxView b
]
-- Extra reduce on level atoms, but should be cheap since they are already reduced.
aB <- mapM reduceB a
bB <- mapM reduceB b
wrap $ case (levelMaxView aB, levelMaxView bB) of
-- 0 ≤ any
(SingleClosed 0 :| [] , _) -> return ()
-- any ≤ 0
(as , SingleClosed 0 :| []) ->
forM_ as $ \ a' -> equalLevel (unSingleLevel $ fmap ignoreBlocking a') (ClosedLevel 0)
-- closed ≤ closed
(SingleClosed m :| [], SingleClosed n :| []) -> unless (m <= n) notok
-- closed ≤ b
(SingleClosed m :| [] , _)
| m <= levelLowerBound b -> return ()
-- as ≤ neutral/closed
(as, bs)
| all neutralOrClosed bs , levelLowerBound a > levelLowerBound b -> notok
-- ⊔ as ≤ single
(as@(_:|_:_), b :| []) ->
forM_ as $ \ a' -> leqLevel (unSingleLevel $ ignoreBlocking <$> a')
(unSingleLevel $ ignoreBlocking <$> b)
-- reduce constants
(as, bs)
| let minN = min (fst $ levelPlusView a) (fst $ levelPlusView b)
a' = fromMaybe __IMPOSSIBLE__ $ subLevel minN a
b' = fromMaybe __IMPOSSIBLE__ $ subLevel minN b
, minN > 0 -> leqLevel a' b'
-- remove subsumed
-- Andreas, 2014-04-07: This is ok if we do not go back to equalLevel
(as, bs)
| (subsumed@(_:_) , as') <- List1.partition (isSubsumed . fmap ignoreBlocking) as
-> leqLevel (unSingleLevels $ (fmap . fmap) ignoreBlocking as') b
where
isSubsumed a = any (`subsumes` a) $ (fmap . fmap) ignoreBlocking bs
subsumes :: SingleLevel -> SingleLevel -> Bool
subsumes (SingleClosed m) (SingleClosed n) = m >= n
subsumes (SinglePlus (Plus m _)) (SingleClosed n) = m >= n
subsumes (SinglePlus (Plus m a)) (SinglePlus (Plus n b)) = a == b && m >= n
subsumes _ _ = False
-- as ≤ _l x₁ .. xₙ ⊔ bs
-- We can solve _l := λ x₁ .. xₙ -> as ⊔ (_l' x₁ .. xₙ)
-- (where _l' is a new metavariable)
(as , bs)
| cumulativity
, not areWeComputingOverlap
, Just (mb@(MetaV x es) , bs') <- singleMetaView $ (map . fmap) ignoreBlocking (List1.toList bs)
, null bs' || noMetas (Level a , unSingleLevels bs') -> do
mv <- lookupMeta x
-- Jesper, 2019-10-13: abort if this is an interaction
-- meta or a generalizable meta
abort <- (isJust <$> isInteractionMeta x) `or2M`
((== YesGeneralize) <$> isGeneralizableMeta x)
if | abort -> postpone
| otherwise -> do
x' <- case mvJudgement mv of
IsSort{} -> __IMPOSSIBLE__
HasType _ cmp t -> do
TelV tel t' <- telView t
newMeta Instantiable (mvInfo mv) normalMetaPriority (idP $ size tel) $ HasType () cmp t
reportSDoc "tc.conv.level" 20 $ fsep
[ "attempting to solve" , prettyTCM (MetaV x es) , "to the maximum of"
, prettyTCM (Level a) , "and the fresh meta" , prettyTCM (MetaV x' es)
]
equalLevel (atomicLevel mb) $ levelLub a (atomicLevel $ MetaV x' es)
-- Andreas, 2016-09-28: This simplification loses the solution lzero.
-- Thus, it is invalid.
-- See test/Succeed/LevelMetaLeqNeutralLevel.agda.
-- -- [a] ≤ [neutral]
-- ([a@(Plus n _)], [b@(Plus m NeutralLevel{})])
-- | m == n -> equalLevel' (Max [a]) (Max [b])
-- -- Andreas, 2014-04-07: This call to equalLevel is ok even if we removed
-- -- subsumed terms from the lhs.
-- anything else
_ | noMetas (a, b) -> notok
| otherwise -> postpone
where
neutralOrClosed (SingleClosed _) = True
neutralOrClosed (SinglePlus (Plus _ NotBlocked{})) = True
neutralOrClosed _ = False
-- Is there exactly one @MetaV@ in the list of single levels?
singleMetaView :: [SingleLevel] -> Maybe (Term, [SingleLevel])
singleMetaView (SinglePlus (Plus 0 l@(MetaV m es)) : ls)
| all (not . isMetaLevel) ls = Just (l,ls)
singleMetaView (l : ls)
| not $ isMetaLevel l = second (l:) <$> singleMetaView ls
singleMetaView _ = Nothing
isMetaLevel :: SingleLevel -> Bool
isMetaLevel (SinglePlus (Plus _ MetaV{})) = True
isMetaLevel _ = False
equalLevel :: forall m. MonadConversion m => Level -> Level -> m ()
equalLevel a b = do
reportSDoc "tc.conv.level" 50 $ sep [ "equalLevel", nest 2 $ parens $ pretty a, nest 2 $ parens $ pretty b ]
-- Andreas, 2013-10-31 remove common terms (that don't contain metas!)
-- THAT's actually UNSOUND when metas are instantiated, because
-- max a b == max a c does not imply b == c
-- as <- return $ Set.fromList $ closed0 as
-- bs <- return $ Set.fromList $ closed0 bs
-- let cs = Set.filter (not . hasMeta) $ Set.intersection as bs
-- as <- return $ Set.toList $ as Set.\\ cs
-- bs <- return $ Set.toList $ bs Set.\\ cs
reportSDoc "tc.conv.level" 40 $
sep [ "equalLevel"
, vcat [ nest 2 $ sep [ prettyTCM a <+> "=="
, prettyTCM b
]
]
]
(a, b) <- reduce (a, b)
((a, b), equal) <- SynEq.checkSyntacticEquality a b
reportSDoc "tc.conv.level" 60 $
"checkSyntacticEquality returns" <+> prettyTCM equal
unless equal $ do
-- Jesper, 2014-02-02 remove terms that certainly do not contribute
-- to the maximum
let (a', b') = removeSubsumed a b
let notok = unlessM typeInType notOk
notOk = typeError $ UnequalLevel CmpEq a' b'
postpone = do
reportSDoc "tc.conv.level" 30 $ hang "postponing:" 2 $ hang (pretty a' <+> "==") 0 (pretty b')
patternViolation (unblockOnAnyMetaIn (a', b'))
reportSDoc "tc.conv.level" 50 $
sep [ "equalLevel (w/o subsumed)"
, vcat [ nest 2 $ sep [ prettyTCM a' <+> "=="
, prettyTCM b'
]
]
]
let as = levelMaxView a'
bs = levelMaxView b'
reportSDoc "tc.conv.level" 50 $
sep [ text "equalLevel"
, vcat [ nest 2 $ sep [ prettyList_ $ fmap (pretty . unSingleLevel) as
, "=="
, prettyList_ $ fmap (pretty . unSingleLevel) bs
]
]
]
reportSDoc "tc.conv.level" 80 $
sep [ text "equalLevel"
, vcat [ nest 2 $ sep [ prettyList_ $ fmap (text . show . unSingleLevel) as
, "=="
, prettyList_ $ fmap (text . show . unSingleLevel) bs
]
]
]
-- Extra reduce on level atoms, but should be cheap since they are already reduced.
as <- (mapM . mapM) reduceB as
bs <- (mapM . mapM) reduceB bs
catchConstraint (LevelCmp CmpEq a b) $ case (as, bs) of
-- closed == closed
(SingleClosed m :| [], SingleClosed n :| [])
| m == n -> return ()
| otherwise -> notok
-- closed == neutral
(SingleClosed m :| [] , bs) | any isNeutral bs -> notok
(as , SingleClosed n :| []) | any isNeutral as -> notok
-- closed == b
(SingleClosed m :| [] , _) | m < levelLowerBound b -> notok
(_ , SingleClosed n :| []) | n < levelLowerBound a -> notok
-- 0 == a ⊔ b
(SingleClosed 0 :| [] , bs@(_:|_:_)) ->
forM_ bs $ \ b' -> equalLevel (ClosedLevel 0) (unSingleLevel $ ignoreBlocking <$> b')
(as@(_:|_:_) , SingleClosed 0 :| []) ->
forM_ as $ \ a' -> equalLevel (unSingleLevel $ ignoreBlocking <$> a') (ClosedLevel 0)
-- meta == any
(SinglePlus (Plus k a) :| [] , SinglePlus (Plus l b) :| [])
-- there is only a potential choice when k == l
| MetaV x as' <- ignoreBlocking a
, MetaV y bs' <- ignoreBlocking b
, k == l -> do
lvl <- levelType
equalAtom (AsTermsOf lvl) (MetaV x as') (MetaV y bs')
(SinglePlus (Plus k a) :| [] , _)
| MetaV x as' <- ignoreBlocking a
, Just b' <- subLevel k b -> meta x as' b'
(_ , SinglePlus (Plus l b) :| [])
| MetaV y bs' <- ignoreBlocking b
, Just a' <- subLevel l a -> meta y bs' a'
-- a' ⊔ b == b
_ | Just a' <- levelMaxDiff a b
, b /= ClosedLevel 0 -> leqLevel a' b
-- a == b' ⊔ a
_ | Just b' <- levelMaxDiff b a
, a /= ClosedLevel 0 -> leqLevel b' a
-- neutral/closed == neutral/closed
(as , bs)
| all isNeutralOrClosed (as <> bs)
-- Andreas, 2013-10-31: There could be metas in neutral levels (see Issue 930).
-- Should not we postpone there as well? Yes!
, not (any hasMeta (as <> bs))
, length as == length bs -> do
reportSLn "tc.conv.level" 60 $ "equalLevel: all are neutral or closed"
List1.zipWithM_ ((===) `on` levelTm . unSingleLevel . fmap ignoreBlocking) as bs
-- more cases?
_ | noMetas (Level a , Level b) -> notok
| otherwise -> postpone
where
a === b = unlessM typeInType $ do
lvl <- levelType
equalAtom (AsTermsOf lvl) a b
-- perform assignment (MetaV x as) := b
meta x as b = do
reportSLn "tc.meta.level" 30 $ "Assigning meta level"
reportSDoc "tc.meta.level" 50 $ "meta" <+> sep [prettyList $ map pretty as, pretty b]
lvl <- levelType
assignE DirEq x as (levelTm b) (AsTermsOf lvl) (===) -- fallback: check equality as atoms
isNeutral (SinglePlus (Plus _ NotBlocked{})) = True
isNeutral _ = False
isNeutralOrClosed (SingleClosed _) = True
isNeutralOrClosed (SinglePlus (Plus _ NotBlocked{})) = True
isNeutralOrClosed _ = False
hasMeta (SinglePlus (Plus _ Blocked{})) = True
hasMeta (SinglePlus (Plus _ a)) = isJust $ firstMeta $ ignoreBlocking a
hasMeta (SingleClosed _) = False
removeSubsumed a b =
let as = List1.toList $ levelMaxView a
bs = List1.toList $ levelMaxView b
a' = unSingleLevels $ filter (not . (`isStrictlySubsumedBy` bs)) as
b' = unSingleLevels $ filter (not . (`isStrictlySubsumedBy` as)) bs
in (a',b')
x `isStrictlySubsumedBy` ys = any (`strictlySubsumes` x) ys
SingleClosed m `strictlySubsumes` SingleClosed n = m > n
SinglePlus (Plus m a) `strictlySubsumes` SingleClosed n = m > n
SinglePlus (Plus m a) `strictlySubsumes` SinglePlus (Plus n b) = a == b && m > n
_ `strictlySubsumes` _ = False
-- | Check that the first sort equal to the second.
equalSort :: forall m. MonadConversion m => Sort -> Sort -> m ()
equalSort s1 s2 = do
catchConstraint (SortCmp CmpEq s1 s2) $ do
(s1,s2) <- reduce (s1,s2)
let yes = return ()
no = typeError $ UnequalSorts s1 s2
reportSDoc "tc.conv.sort" 30 $ sep
[ "equalSort"
, vcat [ nest 2 $ fsep [ prettyTCM s1 <+> "=="
, prettyTCM s2 ]
, nest 2 $ fsep [ pretty s1 <+> "=="
, pretty s2 ]
]
]
propEnabled <- isPropEnabled
typeInTypeEnabled <- typeInType
omegaInOmegaEnabled <- optOmegaInOmega <$> pragmaOptions
case (s1, s2) of
-- Andreas, 2018-09-03: crash on dummy sort
(DummyS s, _) -> impossibleSort s
(_, DummyS s) -> impossibleSort s
-- one side is a meta sort: try to instantiate
-- In case both sides are meta sorts, instantiate the
-- bigger (i.e. more recent) one.
(MetaS x es , MetaS y es')
| x == y -> synEq s1 s2
| x < y -> meta y es' s1
| otherwise -> meta x es s2
(MetaS x es , _ ) -> meta x es s2
(_ , MetaS x es ) -> meta x es s1
-- diagonal cases for rigid sorts
(Type a , Type b ) -> equalLevel a b `catchInequalLevel` no
(SizeUniv , SizeUniv ) -> yes
(LockUniv , LockUniv ) -> yes
(Prop a , Prop b ) -> equalLevel a b `catchInequalLevel` no
(Inf f m , Inf f' n ) ->
if f == f' && (m == n || typeInTypeEnabled || omegaInOmegaEnabled) then yes else no
(SSet a , SSet b ) -> equalLevel a b
-- if --type-in-type is enabled, Setωᵢ is equal to any Set ℓ (see #3439)
(Type{} , Inf{} )
| typeInTypeEnabled -> yes
(Inf{} , Type{} )
| typeInTypeEnabled -> yes
-- equating @PiSort a b@ to another sort
(s1 , PiSort a b c) -> piSortEquals s1 a b c
(PiSort a b c , s2) -> piSortEquals s2 a b c
-- equating @FunSort a b@ to another sort
(s1 , FunSort a b) -> funSortEquals s1 a b
(FunSort a b , s2) -> funSortEquals s2 a b
-- equating @UnivSort s@ to another sort
(s1 , UnivSort s2) -> univSortEquals s1 s2
(UnivSort s1 , s2 ) -> univSortEquals s2 s1
-- postulated sorts can only be equal if they have the same head
(DefS d es , DefS d' es')
| d == d' -> synEq s1 s2
| otherwise -> no
-- any other combinations of sorts are not equal
(_ , _ ) -> no
where
-- perform assignment (MetaS x es) := s
meta :: MetaId -> [Elim' Term] -> Sort -> m ()
meta x es s = do
reportSLn "tc.meta.sort" 30 $ "Assigning meta sort"
reportSDoc "tc.meta.sort" 50 $ "meta" <+> sep [pretty x, prettyList $ map pretty es, pretty s]
assignE DirEq x es (Sort s) AsTypes __IMPOSSIBLE__
-- fall back to syntactic equality check, postpone if it fails
synEq :: Sort -> Sort -> m ()
synEq s1 s2 = do
let postpone = addConstraint (unblockOnAnyMetaIn (s1, s2)) $ SortCmp CmpEq s1 s2
doSynEq <- optSyntacticEquality <$> pragmaOptions
if | doSynEq -> do
((s1,s2) , equal) <- SynEq.checkSyntacticEquality s1 s2
if | equal -> return ()
| otherwise -> postpone
| otherwise -> postpone
-- Equate a sort @s1@ to @univSort s2@
-- Precondition: @s1@ and @univSort s2@ are already reduced.
univSortEquals :: Sort -> Sort -> m ()
univSortEquals s1 s2 = do
reportSDoc "tc.conv.sort" 35 $ vcat
[ "univSortEquals"
, " s1 =" <+> prettyTCM s1
, " s2 =" <+> prettyTCM s2
]
let no = typeError $ UnequalSorts s1 (UnivSort s2)
case s1 of
-- @Set l1@ is the successor sort of either @Set l2@ or
-- @Prop l2@ where @l1 == lsuc l2@.
Type l1 -> do
propEnabled <- isPropEnabled
-- @s2@ is definitely not @Inf n@ or @SizeUniv@
if | Inf _ n <- s2 -> no
| SizeUniv <- s2 -> no
-- If @Prop@ is not used, then @s2@ must be of the form
-- @Set l2@
| not propEnabled -> do
l2 <- case subLevel 1 l1 of
Just l2 -> return l2
Nothing -> do
l2 <- newLevelMeta
equalLevel l1 (levelSuc l2)
return l2
equalSort (Type l2) s2
-- Otherwise we postpone
| otherwise -> synEq (Type l1) (UnivSort s2)
-- @Setωᵢ@ is a successor sort if n > 0, or if
-- --type-in-type or --omega-in-omega is enabled.
Inf f n | n > 0 -> equalSort (Inf f $ n - 1) s2
Inf f 0 -> do
infInInf <- (optOmegaInOmega <$> pragmaOptions) `or2M` typeInType
if | infInInf -> equalSort (Inf f 0) s2
| otherwise -> no
-- @Prop l@ and @SizeUniv@ are not successor sorts
Prop{} -> no
SizeUniv{} -> no
-- Anything else: postpone
_ -> synEq s1 (UnivSort s2)
-- Equate a sort @s@ to @piSort a s1 s2@
-- Precondition: @s@ and @piSort a s1 s2@ are already reduced.
piSortEquals :: Sort -> Dom Term -> Sort -> Abs Sort -> m ()
piSortEquals s a s1 NoAbs{} = __IMPOSSIBLE__
piSortEquals s a s1 s2Abs@(Abs x s2) = do
let adom = El s1 <$> a
reportSDoc "tc.conv.sort" 35 $ vcat
[ "piSortEquals"
, " s =" <+> prettyTCM s
, " a =" <+> prettyTCM adom
, " s1 =" <+> prettyTCM s1
, " s2 =" <+> addContext (x,adom) (prettyTCM s2)
]
propEnabled <- isPropEnabled
-- If @s2@ is dependent, then @piSort a s1 s2@ computes to
-- @Setωi@. Hence, if @s@ is small, then @s2@
-- cannot be dependent.
if | Just (True,_) <- isSmallSort s -> do
-- We force @s2@ to be non-dependent by unifying it with
-- a fresh meta that does not depend on @x : a@
s2' <- newSortMeta
addContext (x , adom) $ equalSort s2 (raise 1 s2')
funSortEquals s s1 s2'
-- Otherwise: postpone
| otherwise -> synEq (PiSort a s1 s2Abs) s
-- Equate a sort @s@ to @funSort s1 s2@
-- Precondition: @s@ and @funSort s1 s2@ are already reduced
funSortEquals :: Sort -> Sort -> Sort -> m ()
funSortEquals s0 s1 s2 = do
reportSDoc "tc.conv.sort" 35 $ vcat
[ "funSortEquals"
, " s0 =" <+> prettyTCM s0
, " s1 =" <+> prettyTCM s1
, " s2 =" <+> prettyTCM s2
]
propEnabled <- isPropEnabled
sizedTypesEnabled <- sizedTypesOption
case s0 of
-- If @Setωᵢ == funSort s1 s2@, then either @s1@ or @s2@ must
-- be @Setωᵢ@.
Inf f n | Just (True,_) <- isSmallSort s1, Just (True,_) <- isSmallSort s2 -> do
typeError $ UnequalSorts s0 (FunSort s1 s2)
| Just (True, IsFibrant) <- isSmallSort s1 -> equalSort (Inf f n) s2
| Just (True, IsFibrant) <- isSmallSort s2 -> equalSort (Inf f n) s1
-- TODO 2ltt: handle IsStrict cases.
| otherwise -> synEq s0 (FunSort s1 s2)
-- If @Set l == funSort s1 s2@, then @s2@ must be of the
-- form @Set l2@. @s1@ can be one of @Set l1@, @Prop l1@, or
-- @SizeUniv@.
Type l -> do
l2 <- forceType s2
-- We must have @l2 =< l@, this might help us to solve
-- more constraints (in particular when @l == 0@).
leqLevel l2 l
-- Jesper, 2019-12-27: SizeUniv is disabled at the moment.
if | {- sizedTypesEnabled || -} propEnabled -> case funSort' s1 (Type l2) of
-- If the work we did makes the @funSort@ compute,
-- continue working.
Just s -> equalSort (Type l) s
-- Otherwise: postpone
Nothing -> synEq (Type l) (FunSort s1 $ Type l2)
-- If both Prop and sized types are disabled, only the
-- case @s1 == Set l1@ remains.
| otherwise -> do
l1 <- forceType s1
equalLevel l (levelLub l1 l2)
-- If @Prop l == funSort s1 s2@, then @s2@ must be of the
-- form @Prop l2@, and @s1@ can be one of @Set l1@, Prop
-- l1@, or @SizeUniv@.
Prop l -> do
l2 <- forceProp s2
leqLevel l2 l
case funSort' s1 (Prop l2) of
-- If the work we did makes the @funSort@ compute,
-- continue working.
Just s -> equalSort (Prop l) s
-- Otherwise: postpone
Nothing -> synEq (Prop l) (FunSort s1 $ Prop l2)
-- We have @SizeUniv == funSort s1 s2@ iff @s2 == SizeUniv@
SizeUniv -> equalSort SizeUniv s2
-- Anything else: postpone
_ -> synEq s0 (FunSort s1 s2)
-- check if the given sort @s0@ is a (closed) bottom sort
-- i.e. @piSort a b == s0@ implies @b == s0@.
isBottomSort :: Bool -> Sort -> Bool
isBottomSort propEnabled (Prop (ClosedLevel 0)) = True
isBottomSort propEnabled (Type (ClosedLevel 0)) = not propEnabled
isBottomSort propEnabled _ = False
-- (NB: Defined but not currently used)
forceType :: Sort -> m Level
forceType (Type l) = return l
forceType s = do
l <- newLevelMeta
equalSort s (Type l)
return l
forceProp :: Sort -> m Level
forceProp (Prop l) = return l
forceProp s = do
l <- newLevelMeta
equalSort s (Prop l)
return l
impossibleSort s = do
reportS "impossible" 10
[ "equalSort: found dummy sort with description:"
, s
]
__IMPOSSIBLE__
catchInequalLevel m fail = m `catchError` \case
TypeError{} -> fail
err -> throwError err
-- -- This should probably represent face maps with a more precise type
-- toFaceMaps :: Term -> TCM [[(Int,Term)]]
-- toFaceMaps t = do
-- view <- intervalView'
-- iz <- primIZero
-- io <- primIOne
-- ineg <- (\ q t -> Def q [Apply $ Arg defaultArgInfo t]) <$> fromMaybe __IMPOSSIBLE__ <$> getPrimitiveName' "primINeg"
-- let f IZero = mzero
-- f IOne = return []
-- f (IMin x y) = do xs <- (f . view . unArg) x; ys <- (f . view . unArg) y; return (xs ++ ys)
-- f (IMax x y) = msum $ map (f . view . unArg) [x,y]
-- f (INeg x) = map (id -*- not) <$> (f . view . unArg) x
-- f (OTerm (Var i [])) = return [(i,True)]
-- f (OTerm _) = return [] -- what about metas? we should suspend? maybe no metas is a precondition?
-- isConsistent xs = all (\ xs -> length xs == 1) . map nub . Map.elems $ xs -- optimize by not doing generate + filter
-- as = map (map (id -*- head) . Map.toAscList) . filter isConsistent . map (Map.fromListWith (++) . map (id -*- (:[]))) $ (f (view t))
-- xs <- mapM (mapM (\ (i,b) -> (,) i <$> intervalUnview (if b then IOne else IZero))) as
-- return xs
forallFaceMaps :: MonadConversion m => Term -> (Map.Map Int Bool -> Blocker -> Term -> m a) -> (Substitution -> m a) -> m [a]
forallFaceMaps t kb k = do
reportSDoc "conv.forall" 20 $
fsep ["forallFaceMaps"
, prettyTCM t
]
as <- decomposeInterval t
boolToI <- do
io <- primIOne
iz <- primIZero
return (\b -> if b then io else iz)
forM as $ \ (ms,ts) -> do
ifBlockeds ts (kb ms) $ \ _ _ -> do
let xs = map (second boolToI) $ Map.toAscList ms
cxt <- getContext
reportSDoc "conv.forall" 20 $
fsep ["substContextN"
, prettyTCM cxt
, prettyTCM xs
]
(cxt',sigma) <- substContextN cxt xs
resolved <- forM xs (\ (i,t) -> (,) <$> lookupBV i <*> return (applySubst sigma t))
updateContext sigma (const cxt') $
addBindings resolved $ do
cl <- buildClosure ()
tel <- getContextTelescope
m <- currentModule
sub <- getModuleParameterSub m
reportS "conv.forall" 10
[ replicate 10 '-'
, show (envCurrentModule $ clEnv cl)
, show (envLetBindings $ clEnv cl)
, show tel -- (toTelescope $ envContext $ clEnv cl)
, show sigma
, show m
, show sub
]
k sigma
where
-- TODO Andrea: inefficient because we try to reduce the ts which we know are in whnf
ifBlockeds ts blocked unblocked = do
and <- getPrimitiveTerm "primIMin"
io <- primIOne
let t = foldr (\ x r -> and `apply` [argN x,argN r]) io ts
ifBlocked t blocked unblocked
addBindings [] m = m
addBindings ((Dom{domInfo = info,unDom = (nm,ty)},t):bs) m = addLetBinding info nm t ty (addBindings bs m)
substContextN :: MonadConversion m => Context -> [(Int,Term)] -> m (Context , Substitution)
substContextN c [] = return (c, idS)
substContextN c ((i,t):xs) = do
(c', sigma) <- substContext i t c
(c'', sigma') <- substContextN c' (map (subtract 1 -*- applySubst sigma) xs)
return (c'', applySubst sigma' sigma)
-- assumes the term can be typed in the shorter telescope
-- the terms we get from toFaceMaps are closed.
substContext :: MonadConversion m => Int -> Term -> Context -> m (Context , Substitution)
substContext i t [] = __IMPOSSIBLE__
substContext i t (x:xs) | i == 0 = return $ (xs , singletonS 0 t)
substContext i t (x:xs) | i > 0 = do
reportSDoc "conv.forall" 20 $
fsep ["substContext"
, text (show (i-1))
, prettyTCM t
, prettyTCM xs
]
(c,sigma) <- substContext (i-1) t xs
let e = applySubst sigma x
return (e:c, liftS 1 sigma)
substContext i t (x:xs) = __IMPOSSIBLE__
compareInterval :: MonadConversion m => Comparison -> Type -> Term -> Term -> m ()
compareInterval cmp i t u = do
reportSDoc "tc.conv.interval" 15 $
sep [ "{ compareInterval" <+> prettyTCM t <+> "=" <+> prettyTCM u ]
tb <- reduceB t
ub <- reduceB u
let t = ignoreBlocking tb
u = ignoreBlocking ub
it <- decomposeInterval' t
iu <- decomposeInterval' u
case () of
_ | isBlocked tb || isBlocked ub -> do
-- in case of metas we wouldn't be able to make progress by how we deal with de morgan laws.
-- (because the constraints generated by decomposition are sufficient but not necessary).
-- but we could still prune/solve some metas by comparing the terms as atoms.
-- also if blocked we won't find the terms conclusively unequal(?) so compareAtom
-- won't report type errors when we should accept.
interval <- primIntervalType
compareAtom CmpEq (AsTermsOf interval) t u
_ | otherwise -> do
x <- leqInterval it iu
y <- leqInterval iu it
let final = isCanonical it && isCanonical iu
if x && y then reportSDoc "tc.conv.interval" 15 $ "Ok! }" else
if final then typeError $ UnequalTerms cmp t u (AsTermsOf i)
else do
reportSDoc "tc.conv.interval" 15 $ "Giving up! }"
patternViolation (unblockOnAnyMetaIn (t, u))
where
isBlocked Blocked{} = True
isBlocked NotBlocked{} = False
type Conj = (Map.Map Int (Set.Set Bool),[Term])
isCanonical :: [Conj] -> Bool
isCanonical = all (null . snd)
-- | leqInterval r q = r ≤ q in the I lattice.
-- (∨ r_i) ≤ (∨ q_j) iff ∀ i. ∃ j. r_i ≤ q_j
leqInterval :: MonadConversion m => [Conj] -> [Conj] -> m Bool
leqInterval r q =
and <$> forM r (\ r_i ->
or <$> forM q (\ q_j -> leqConj r_i q_j)) -- TODO shortcut
-- | leqConj r q = r ≤ q in the I lattice, when r and q are conjuctions.
-- ' (∧ r_i) ≤ (∧ q_j) iff
-- ' (∧ r_i) ∧ (∧ q_j) = (∧ r_i) iff
-- ' {r_i | i} ∪ {q_j | j} = {r_i | i} iff
-- ' {q_j | j} ⊆ {r_i | i}
leqConj :: MonadConversion m => Conj -> Conj -> m Bool
leqConj (rs, rst) (qs, qst) = do
if toSet qs `Set.isSubsetOf` toSet rs
then do
interval <-
elSSet $ fromMaybe __IMPOSSIBLE__ <$> getBuiltin' builtinInterval
-- we don't want to generate new constraints here because
-- 1. in some situations the same constraint would get generated twice.
-- 2. unless things are completely accepted we are going to
-- throw patternViolation in compareInterval.
let eqT t u = tryConversion (compareAtom CmpEq (AsTermsOf interval) t u)
let listSubset ts us =
and <$> forM ts (\t -> or <$> forM us (\u -> eqT t u)) -- TODO shortcut
listSubset qst rst
else
return False
where
toSet m = Set.fromList [(i, b) | (i, bs) <- Map.toList m, b <- Set.toList bs]
-- | equalTermOnFace φ A u v = _ , φ ⊢ u = v : A
equalTermOnFace :: MonadConversion m => Term -> Type -> Term -> Term -> m ()
equalTermOnFace = compareTermOnFace CmpEq
compareTermOnFace :: MonadConversion m => Comparison -> Term -> Type -> Term -> Term -> m ()
compareTermOnFace = compareTermOnFace' compareTerm
compareTermOnFace' :: MonadConversion m => (Comparison -> Type -> Term -> Term -> m ()) -> Comparison -> Term -> Type -> Term -> Term -> m ()
compareTermOnFace' k cmp phi ty u v = do
reportSDoc "tc.conv.face" 40 $
text "compareTermOnFace:" <+> pretty phi <+> "|-" <+> pretty u <+> "==" <+> pretty v <+> ":" <+> pretty ty
phi <- reduce phi
_ <- forallFaceMaps phi postponed
$ \ alpha -> k cmp (applySubst alpha ty) (applySubst alpha u) (applySubst alpha v)
return ()
where
postponed ms blocker psi = do
phi <- runNamesT [] $ do
imin <- cl $ getPrimitiveTerm "primIMin"
ineg <- cl $ getPrimitiveTerm "primINeg"
psi <- open psi
let phi = foldr (\ (i,b) r -> do i <- open (var i); pure imin <@> (if b then i else pure ineg <@> i) <@> r)
psi (Map.toList ms) -- TODO Andrea: make a view?
phi
addConstraint blocker (ValueCmpOnFace cmp phi ty u v)
---------------------------------------------------------------------------
-- * Definitions
---------------------------------------------------------------------------
bothAbsurd :: MonadConversion m => QName -> QName -> m Bool
bothAbsurd f f'
| isAbsurdLambdaName f, isAbsurdLambdaName f' = do
-- Double check we are really dealing with absurd lambdas:
-- Their functions should not have bodies.
def <- getConstInfo f
def' <- getConstInfo f'
case (theDef def, theDef def') of
(Function{ funClauses = [Clause{ clauseBody = Nothing }] },
Function{ funClauses = [Clause{ clauseBody = Nothing }] }) -> return True
_ -> return False
| otherwise = return False