diff --git a/Cubical/Foundations/Univalence.agda b/Cubical/Foundations/Univalence.agda index 9b8e497017..8c90429b69 100644 --- a/Cubical/Foundations/Univalence.agda +++ b/Cubical/Foundations/Univalence.agda @@ -172,15 +172,15 @@ EquivJ P r e = subst (λ x → P (x .fst) (x .snd)) (contrSinglEquiv e) r -- Assuming that we have an inverse to ua we can easily prove univalence module Univalence (au : ∀ {ℓ} {A B : Type ℓ} → A ≡ B → A ≃ B) - (aurefl : ∀ {ℓ} {A B : Type ℓ} → au refl ≡ idEquiv A) where + (aurefl : ∀ {ℓ} {A : Type ℓ} → au refl ≡ idEquiv A) where ua-au : {A B : Type ℓ} (p : A ≡ B) → ua (au p) ≡ p ua-au {B = B} = J (λ _ p → ua (au p) ≡ p) - (cong ua (aurefl {B = B}) ∙ uaIdEquiv) + (cong ua aurefl ∙ uaIdEquiv) au-ua : {A B : Type ℓ} (e : A ≃ B) → au (ua e) ≡ e au-ua {B = B} = EquivJ (λ _ f → au (ua f) ≡ f) - (subst (λ r → au r ≡ idEquiv _) (sym uaIdEquiv) (aurefl {B = B})) + (subst (λ r → au r ≡ idEquiv _) (sym uaIdEquiv) aurefl) isoThm : ∀ {ℓ} {A B : Type ℓ} → Iso (A ≡ B) (A ≃ B) isoThm .Iso.fun = au