Skip to content
Branch: master
Go to file
Code

Latest commit

Files

Permalink
Failed to load latest commit information.
Type
Name
Latest commit message
Commit time
 
 
 
 
 
 

README.md

Single-cell RNA-seq pseudotime estimation algorithms

Build Status DOI

Single cells, many algorithms. The goal of this page is to catalog the many algorithms that estimate pseudotimes for cells based on their gene expression levels. This problem is also referred to as single-cell trajectory inference or ordering. Ultimately, it will contain method names, software links, manuscript links, and brief comments on the particular strengths of each method. Initially, it seeks simply to list as many methods as possible. Some related methods not specifically designed for RNA-seq (e.g. mass cytometry) are included as well. The list also includes methods that are specifically designed to take pseudotemporal data as input.

The initial list was created by Anthony Gitter, but pull requests are very welcome. Thank you to the other contributors.

Citation

Anthony Gitter. Single-cell RNA-seq pseudotime estimation algorithms. 2018. doi:10.5281/zenodo.1297422 https://github.com/agitter/single-cell-pseudotime

Problem overview

Informally, the pseudotime estimation problem can be stated as:

  • Given: single-cell gene expression measurements for a heterogeneous collection of cells that is transitioning from biological state A to state B
  • Return: a quantitative value for each cell that represents its progress in the A to B transition

There are many ways to approach this problem, and major algorithmic steps that are common to most (but not all) methods are:

  • Reduce the dimension of the dataset
  • Find a smooth progression through the low dimensional data, assuming that cells that are nearby one another in the low dimensional space have similar expression levels because they are at similar points in to A to B process

Dimension reduction sometimes relies on knowledge of important marker genes and sometimes uses the full gene expression matrix. The trajectory through the low dimensional space can be identified using graph algorithms (e.g., minimum spanning tree or shortest path), principal curves, or probabilistic models (e.g., Gaussian process).

Bacher and Kendziorski 2016, Trapnell 2015, Tanay and Regev 2017, Moon et al. 2017, and Tritschler et al. 2019 provide a more comprehensive overview of single-cell RNA-seq and the pseudotime estimation problem. Cannoodt et al. 2016 reviews pseudotime inference algorithms. Pablo Cordero's blog post discusses why it is hard to recover the correct dynamics of a system from single-cell data. For more general lists of methods for single-cell RNA-seq see OMICtools, seandavi/awesome-single-cell, and scRNA-tools. The Hemberg lab single-cell RNA-seq course has an overview of five pseudotime algorithms with usage examples.

Single-cell expression data have also inspired new methods for gene regulatory network reconstruction, as reviewed by Fiers et al. 2018 and Todorov et al. 2018. Several of these, such as SINGE, treat pseudotime annotations as time points and extend traditional time series network inference algorithms for single-cell data. BEELINE and SERGIO benchmark many of these specialized network inference methods.

Choosing a method

Some of the distinguishing factors among algorithms include:

  • Use of prior knowledge such as capture times (DeLorean) or switch-like marker genes (Ouija)
  • Modeling specific types of biological processes such as branching processes in differentiation (multiple methods) or cyclic processes (Oscope)
  • Return a single pseudotime or a posterior distribution over pseudotimes for each cell
  • Perform additional analyses after inferring pseudotimes such as regulatory network inference or identifying differentially expressed genes over pseudotime

Saelens et al. 2019 performed a comprehensive evaluation of 29 different single-cell trajectory inference methods and discuss the different types of algorithms in more detail. They benchmark both quantitative performance and assess software quality. See their website and GitHub repository as well. Tian et al. 2018 also include trajectory inference algorithms in their single-cell RNA-seq benchmarking study.

Algorithms

Temporal Reconstruction Algorithm

Manuscript: Reconstructing the temporal ordering of biological samples using microarray data

Monocle / Monocle 2 / Monocle 3/ Census

Software: https://bioconductor.org/packages/release/bioc/html/monocle.html

Monocle manuscript: The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells

Census manuscript: Single-cell mRNA quantification and differential analysis with Census

Monocle 2 manuscript: Reversed graph embedding resolves complex single-cell trajectories

Monocle 3 manuscript: The single-cell transcriptional landscape of mammalian organogenesis

Wanderlust / Cycler / Wishbone

Wanderlust software: http://www.c2b2.columbia.edu/danapeerlab/html/wanderlust.html

Wanderlust manuscript: Single-Cell Trajectory Detection Uncovers Progression and Regulatory Coordination in Human B Cell Development

Cycler manuscript: Trajectories of cell-cycle progression from fixed cell populations

Wishbone software: http://www.c2b2.columbia.edu/danapeerlab/html/wishbone.html

Wishbone manuscript: Wishbone identifies bifurcating developmental trajectories from single-cell data

SCUBA

Software: https://github.com/gcyuan/SCUBA

Manuscript: Bifurcation analysis of single-cell gene expression data reveals epigenetic landscape

Oscope

Software: https://www.biostat.wisc.edu/~kendzior/OSCOPE/

Manuscript: Oscope identifies oscillatory genes in unsynchronized single-cell RNA-seq experiments

Diffusion maps / destiny

destiny software: http://bioconductor.org/packages/release/bioc/html/destiny.html

Diffusion maps manuscript (a): Decoding the regulatory network of early blood development from single-cell gene expression measurements

Diffusion maps manuscript (b): Diffusion maps for high-dimensional single-cell analysis of differentiation data

destiny manuscript: destiny: diffusion maps for large-scale single-cell data in R

DeLorean

Software: https://github.com/JohnReid/DeLorean

Manuscript: Pseudotime estimation: deconfounding single cell time series

Waterfall

Manuscript: Single-Cell RNA-Seq with Waterfall Reveals Molecular Cascades underlying Adult Neurogenesis

Embeddr

Software: https://github.com/kieranrcampbell/embeddr

Manuscript: Laplacian eigenmaps and principal curves for high resolution pseudotemporal ordering of single-cell RNA-seq profiles

GP-LVM and pseudogp

GP-LVM software: https://github.com/kieranrcampbell/gpseudotime

GP-LVM manuscript: Bayesian Gaussian Process Latent Variable Models for pseudotime inference in single-cell RNA-seq data

pseudogp software: https://github.com/kieranrcampbell/pseudogp

pseudogp manuscript: Order Under Uncertainty: Robust Differential Expression Analysis Using Probabilistic Models for Pseudotime Inference

GP-LVM

Analysis code: https://github.com/Teichlab/spectrum-of-differentiation-supplements

Manuscript: Single-Cell RNA-Sequencing Reveals a Continuous Spectrum of Differentiation in Hematopoietic Cells

SLICER

Software: https://github.com/jw156605/SLICER

Manuscript: SLICER: inferring branched, nonlinear cellular trajectories from single cell RNA-seq data

TSCAN

Software: https://github.com/zji90/TSCAN

Manuscript: TSCAN: Pseudo-time reconstruction and evaluation in single-cell RNA-seq analysis

SCOUP

Software: https://github.com/hmatsu1226/SCOUP

Manuscript: SCOUP: a probabilistic model based on the Ornstein–Uhlenbeck process to analyze single-cell expression data during differentiation

Topslam

Software: https://github.com/mzwiessele/topslam

Manuscript: Topslam: Waddington Landscape Recovery for Single Cell Experiments

Ouija

Software: https://github.com/kieranrcampbell/ouija and http://www.github.com/kieranrcampbell/ouijaflow

Manuscript: A descriptive marker gene approach to single-cell pseudotime inference

CellTrails

Sofware: https://bioconductor.org/packages/release/bioc/html/CellTrails.html

Manuscript: Transcriptional dynamics of hair-bundle morphogenesis revealed with CellTrails

Slingshot

Software: https://github.com/kstreet13/slingshot

Extended vignette: https://github.com/drisso/bioc2016singlecell/tree/master/vignettes

Manuscript: Slingshot: Cell lineage and pseudotime inference for single-cell transcriptomics

Workflow manuscript: Bioconductor workflow for single-cell RNA sequencing: Normalization, dimensionality reduction, clustering, and lineage inference

GPfates

Software: https://github.com/Teichlab/GPfates

Manuscript: Temporal mixture modelling of single-cell RNA-seq data resolves a CD4+ T cell fate bifurcation

SCIMITAR

Software: https://github.com/dimenwarper/scimitar

Manuscript: Tracing co-regulatory network dynamics in noisy, single-cell transcriptome trajectories

WaveCrest

Software: https://github.com/lengning/WaveCrest

Manuscript: Single-cell RNA-seq reveals novel regulators of human embryonic stem cell differentiation to definitive endoderm

LEAP

Software: https://cran.r-project.org/web/packages/LEAP/index.html

CellTree

Software: http://bioconductor.org/packages/release/bioc/html/cellTree.html

Manuscript: CellTree: an R/bioconductor package to infer the hierarchical structure of cell populations from single-cell RNA-seq data

Bayesian hierarchical mixture of factor analysers (MFA)

Software: http://www.github.com/kieranrcampbell/mfa

Manuscript: Probabilistic modeling of bifurcations in single-cell gene expression data using a Bayesian mixture of factor analyzers

Mpath

Software: https://github.com/JinmiaoChenLab/Mpath

Manuscript: Mpath maps multi-branching single-cell trajectories revealing progenitor cell progression during development

SCORPIUS

Software: https://github.com/rcannood/SCORPIUS

Manuscript: SCORPIUS improves trajectory inference and identifies novel modules in dendritic cell development

SCODE

Software: https://github.com/hmatsu1226/SCODE

Manuscript: SCODE: an efficient regulatory network inference algorithm from single-cell RNA-Seq during differentiation

switchde

Software: https://bioconductor.org/packages/release/bioc/html/switchde.html

Manuscript: switchde: inference of switch-like differential expression along single-cell trajectories

MAGIC

Software: https://github.com/pkathail/magic/

Manuscript: MAGIC: A diffusion-based imputation method reveals gene-gene interactions in single-cell RNA-sequencing data

PHATE

Software: https://github.com/KrishnaswamyLab/PHATE

Manuscript: Visualizing Transitions and Structure for High Dimensional Data Exploration

SOMSC

Manuscript: SOMSC: Self-Organization-Map for High-Dimensional Single-Cell Data of Cellular States and Their Transitions

TASIC

Software: https://www.andrew.cmu.edu/user/sabrinar/TASIC

Manuscript: TASIC: determining branching models from time series single cell data

FORKS

Software: https://github.com/macsharma/FORKS

Manuscript: FORKS: Finding Orderings Robustly using K-means and Steiner trees

UNCURL

Software: https://github.com/yjzhang/uncurl_python and https://github.com/mukhes3/UNCURL_release

Manuscript: Scalable preprocessing for sparse scRNA-seq data exploiting prior knowledge

reCAT

Software: https://github.com/tinglab/reCAT

Manuscript: Reconstructing cell cycle pseudo time-series via single-cell transcriptome data

PhenoPath

Software: Bioconductor package and https://github.com/kieranrcampbell/phenopath

Manuscript: Uncovering pseudotemporal trajectories with covariates from single cell and bulk expression data

Branched Gaussian processes

Software: https://github.com/ManchesterBioinference/BranchedGP

Manuscript: BGP: identifying gene-specific branching dynamics from single-cell data with a branching Gaussian process

Branch-recombinant Gaussian Processes

Software: https://github.com/cap76/BranchingGPs

Manuscript: Nonparametric Bayesian inference of transcriptional branching and recombination identifies regulators of early human germ cell development

MATCHER

Software: https://github.com/jw156605/MATCHER and https://pypi.python.org/pypi/pymatcher

Manuscript: MATCHER: manifold alignment reveals correspondence between single cell transcriptome and epigenome dynamics

SoptSC

Software: https://github.com/WangShuxiong/SoptSC

Manuscript: Low-rank Similarity Matrix Optimization Identifies Subpopulation Structure and Orders Single Cells in Pseudotime

Di-SNE

Manuscript: Assessment of clonal kinetics reveals multiple trajectories of dendritic cell development

Population Balance Analysis

Software: https://github.com/AllonKleinLab/PBA

Manuscript: Fundamental limits on dynamic inference from single cell snapshots

Scanpy

Software: https://github.com/theislab/scanpy and https://pypi.python.org/pypi/scanpy

Manuscript: Scanpy for analysis of large-scale single-cell gene expression data

TIDES

Software: https://github.com/roshan9128/tides

Manuscript: Learning Edge Rewiring in EMT from Single Cell Data

WADDINGTON-OT

Software: https://pypi.org/project/wot/

Manuscript: Reconstruction of developmental landscapes by optimal-transport analysis of single-cell gene expression sheds light on cellular reprogramming

pseudodynamics

Software: https://github.com/theislab/pseudodynamics

Manuscript: Inferring population dynamics from single-cell RNA-sequencing time series data

Partition-based graph abstraction

Software: https://github.com/theislab/paga

Manuscript: PAGA: graph abstraction reconciles clustering with trajectory inference through a topology preserving map of single cells

GPseudoRank

Software: https://github.com/magStra/GPseudoRank

Manuscript: GPseudoRank: MCMC for sampling from posterior distributions of pseudo-orderings using Gaussian processes

FateID

Software: https://github.com/dgrun/FateID

Manuscript: FateID infers cell fate bias in multipotent progenitors from single-cell RNA-seq data

cycleX

Manuscript: cycleX: multi-dimensional pseudotime reveals cell cycle and differentiation relationship of dendritic cell progenitors

GrandPrix

Software: https://github.com/ManchesterBioinference/GrandPrix

Manuscript: GrandPrix: Scaling up the Bayesian GPLVM for single-cell data

Partial differential equations

Manuscript: Modeling acute myeloid leukemia in a continuum of differentiation states

scdiff

Software: https://github.com/phoenixding/scdiff and https://pypi.python.org/pypi/scdiff/

Manuscript: Reconstructing differentiation networks and their regulation from time series single cell expression data

Topographer

Manuscript: Topographer Reveals Stochastic Dynamics of Cell Fate Decisions from Single-Cell RNA-Seq Data

Markov-Chain Entropy

Manuscript: Quantifying Waddington's epigenetic landscape: a comparison of single-cell potency measures

Microstates

Manuscript: Machine learning methods to reverse engineer dynamic gene regulatory networks governing cell state transitions

DensityPath

Software: https://github.com/ucasdp/DensityPath

Manuscript: DensityPath: a level-set algorithm to visualize and reconstruct cell developmental trajectories for large-scale single-cell RNAseq data

STREAM

Software: https://github.com/pinellolab/stream

Manuscript: STREAM: Single-cell Trajectories Reconstruction, Exploration And Mapping of omics data

Website: http://stream.pinellolab.partners.org/

HopLand

Software: https://github.com/NetLand-NTU/HopLand

Manuscript: HopLand: single-cell pseudotime recovery using continuous Hopfield network-based modeling of Waddington's epigenetic landscape

Dynamic Distribution Decomposition

Manuscript: Dynamic Distribution Decomposition for Single-Cell Snapshot Time Series Identifies Subpopulations and Trajectories during iPSC Reprogramming

Continuous state HMMs

Software: https://github.com/jessica1338/CSHMM-for-time-series-scRNA-Seq

Manuscript: Continuous State HMMs for Modeling Time Series Single Cell RNA-Seq Data

Palantir

Software: https://github.com/dpeerlab/Palantir/

Manuscript: Palantir characterizes cell fate continuities in human hematopoiesis

Trajectory inference Based on SNP information

Software: https://github.com/phoenixding/tbsp

Manuscript: Cell lineage inference from SNP and scRNA-Seq data

t-Distributed Gaussian Process Latent Variable Model

Software: https://github.com/architverma1/tGPLVM

Manuscript: A robust nonlinear low-dimensional manifold for single cell RNA-seq data

Sinova

Software: https://github.com/bionova/sinova

Manuscript: Systematic Reconstruction of Molecular Cascades Regulating GP Development Using Single-Cell RNA-Seq

Lineage tracing on transcriptional landscapes

Software: Multiple repositories

Manuscript: Lineage tracing on transcriptional landscapes links state to fate during differentiation

CALISTA

Software: https://github.com/CABSEL/CALISTA

Manuscript: CALISTA: Clustering And Lineage Inference in Single-Cell Transcriptional Analysis

TRACER

Manuscript: Mapping Lung Cancer Epithelial-Mesenchymal Transition States and Trajectories with Single-Cell Resolution

psupertime

Software: https://github.com/wmacnair/psupertime

Manuscript: psupertime: supervised pseudotime inference for single cell RNA-seq data with sequential labels

OscoNet

Software: https://github.com/alexisboukouvalas/OscoNet

Manuscript: OscoNet: Inferring oscillatory gene networks

Cyclum

Software: https://github.com/KChen-lab/cyclum

Manuscript: Latent periodic process inference from single-cell RNA-seq data

MERLoT

Software: https://github.com/soedinglab/merlot

Manuscript: Reconstructing complex lineage trees from scRNA-seq data using MERLoT

scVelo

Software: https://scvelo.org

Manuscript: Generalizing RNA velocity to transient cell states through dynamical modeling

Tempora

Software: https://github.com/BaderLab/Tempora

Manuscript: Tempora: cell trajectory inference using time-series single-cell RNA sequencing data

CellCycleTRACER

Software: https://ibm.biz/cellcycletracer-aas

Manuscript: CellCycleTRACER accounts for cell cycle and volume in mass cytometry data

TrajectoryNet

Software: https://github.com/krishnaswamylab/TrajectoryNet

Manuscript: TrajectoryNet: A Dynamic Optimal Transport Network for Modeling Cellular Dynamics

redPATH

Software: https://github.com/tinglab/redPATH

Manuscript: redPATH: Reconstructing the Pseudo Development Time of Cell Lineages in Single-Cell RNA-Seq Data and Applications in Cancer

GraphDR and StructDR

Software: https://github.com/jzthree/quasildr

Manuscript: An analytical framework for interpretable and generalizable 'quasilinear' single-cell data analysis

Pseudocell Tracer

Software: https://github.com/akds/pseudocell

Manuscript: Inferring cellular trajectories from scRNA-seq using Pseudocell Tracer

Related topics

Cicero

Manuscript: Chromatin accessibility dynamics of myogenesis at single cell resolution

Effects of imputation on cell ordering

Manuscript: Comparison of computational methods for imputing single-cell RNA-sequencing data

PROSSTT

Software: https://github.com/soedinglab/prosstt

Manuscript: PROSSTT: probabilistic simulation of single-cell RNA-seq data for complex differentiation processes

CellAlign

Software: https://github.com/shenorrLab/cellAlign

Manuscript: Alignment of single-cell trajectories to compare cellular expression dynamics

CONFESS

Software: http://bioconductor.org/packages/release/bioc/html/CONFESS.html

Manuscript: CONFESS: Fluorescence-based single-cell ordering in R

Trajectory alignment

Software: https://www.cell.com/cms/10.1016/j.cels.2018.07.006/attachment/2b57ebff-a502-4819-b8ed-8a87d17a4ae7/mmc4.zip

Manuscript: Aligning Single-Cell Developmental and Reprogramming Trajectories Identifies Molecular Determinants of Myogenic Reprogramming Outcome

ImageAEOT

Manuscript: Autoencoder and Optimal Transport to Infer Single-Cell Trajectories of Biological Processes

RNA velocity

Software: http://velocyto.org/

Manuscript: RNA velocity of single cells

devMap

Manuscript: High Resolution Comparison of Cancer-Related Developmental Processes Using Trajectory Alignment

Trajan

Software: https://github.com/canzarlab/Trajan

Manuscript: Dynamic pseudo-time warping of complex single-cell trajectories

SINGE

Software: https://github.com/gitter-lab/SINGE

Manuscript: Network Inference with Granger Causality Ensembles on Single-Cell Transcriptomic Data

GPseudoClust

Software: https://github.com/magStra/GPseudoClust

Manuscript: GPseudoClust: deconvolution of shared pseudo-trajectories at single-cell resolution

tradeSeq

Software: http://www.bioconductor.org/packages/release/bioc/html/tradeSeq.html

Manuscript: Trajectory-based differential expression analysis for single-cell sequencing data

CORGI

Software: https://github.com/YutongWangUMich/corgi

Manuscript: A gene filter for comparative analysis of single-cell RNA-sequencing trajectory datasets

BEELINE

Software: https://github.com/murali-group/Beeline

Manuscript: Benchmarking algorithms for gene regulatory network inference from single-cell transcriptomic data

Dynamo

Software: https://github.com/aristoteleo/dynamo-release

Manuscript: Mapping Vector Field of Single Cells

SERGIO

Software: https://github.com/PayamDiba/SERGIO

Manuscript: A single-cell expression simulator guided by gene regulatory networks

GeneSwitches

Software: https://geneswitches.ddnetbio.com/

Manuscript: GeneSwitches : Ordering gene-expression and functional events in single-cell experiments

CAPITAL

Software: https://github.com/ykat0/capital

Manuscript: Alignment of time-course single-cell RNA-seq data with CAPITAL

Transcriptional uncertainty landscapes

Manuscript: Universality of cell differentiation trajectories revealed by a reconstruction of transcriptional uncertainty landscapes from single-cell transcriptomic data

Pseudo-Location

Manuscript: Pseudo-Location: A novel predictor for predicting pseudo-temporal gene expression patterns using spatial functional regression

fishpond

Software: http://bioconductor.org/packages/devel/bioc/html/fishpond.html and https://github.com/skvanburen/scUncertaintyPaperCode

Manuscript: Compression of quantification uncertainty for scRNA-seq counts

scHOT

Software: https://bioconductor.org/packages/scHOT

Manuscript: Investigating higher-order interactions in single-cell data with scHOT

About

An overview of algorithms for estimating pseudotime in single-cell RNA-seq data

Topics

Resources

License

You can’t perform that action at this time.