
Frozen

March 28, 2020

1 Determine whether one needs to worry about frozen in ionization in
a Python model

In [75]: import os

os.getcwd()

Out[75]: '/Users/long/Projects/Python/bug407_frozen'

In [76]: from astropy.io import ascii

import numpy as np

import matplotlib.pyplot as plt

Note: One needs to run windsave2table on a model first, so one has access to the heating and
cooloing

In [77]: root='cv_1e7'

x=ascii.read(root+'.0.heat.txt')

In [78]: x.info()

<Table length=900>

name dtype

---------------- -------

x float64

z float64

i int64

j int64

inwind int64

converge int64

v_x float64

v_y float64

v_z float64

vol float64

rho float64

ne float64

t_e float64

t_r float64

w float64

1



heat_tot float64

heat_comp float64

heat_lines float64

heat_ff float64

heat_photo float64

heat_auger float64

cool_tot float64

cool_comp float64

lum_lines float64

cool_dr float64

lum_ff float64

cool_rr float64

cool_adiab float64

heat_shock float64

heat_lines_macro float64

heat_photo_macro float64

The idea here is that the ionization/recombination time scale is about

tc =
3/2(ne + nion)kTeVolume

Cooltot

while the flow time scale is roughly

t f low =
δr
vr

where δr is a characteric distance and vr is the radial distance through the cell. A really gross
way to do this would be simply to calculate δr from the center.

In [79]: k=1.38e-16

nion=x['rho']/(1.26*1.67e-24)

e=1.5*(x['ne']+nion)*k*x['t_e']*x['vol']

e=np.array(e)

i=0

while i <len(e):

if e[i]>0:

e[i]/=x['cool_tot'][i]

i+=1

x['Cool_time']=e

In [80]: x['v_r']=v_r=np.array(np.sqrt(x['v_x']*x['v_x']+x['v_z']*x['v_z']))

n=0

while n<len(x):

if x['j'][n]==0:

2



x['v_r'][n]=v_r[n]=v_r[n+1]

n+=1

Take δr to be the geometric mean of the size of the cell in the x z directon, that is of the x-
sectional area of a grid cell. This can be calculated from the volume of the cell divided by the
circumference.x

In [81]: delta_r=np.array(x['vol']/(2*3.14*x['x']))

delta_r=np.sqrt(delta_r)

In [82]: x['Flow_time']=delta_r/v_r

In [83]: x['Ratio']=x['Flow_time']/x['Cool_time']

/Users/long/anaconda3/envs/astroconda/lib/python3.7/site-packages/ipykernel_launcher.py:1: RuntimeWarning: invalid value encountered in true_divide

"""Entry point for launching an IPython kernel.

In [84]: x.info()

<Table length=900>

name dtype n_bad

---------------- ------- -----

x float64 0

z float64 0

i int64 0

j int64 0

inwind int64 0

converge int64 0

v_x float64 0

v_y float64 0

v_z float64 0

vol float64 0

rho float64 0

ne float64 0

t_e float64 0

t_r float64 0

w float64 0

heat_tot float64 0

heat_comp float64 0

heat_lines float64 0

heat_ff float64 0

heat_photo float64 0

heat_auger float64 0

cool_tot float64 0

cool_comp float64 0

lum_lines float64 0

cool_dr float64 0

lum_ff float64 0

3



cool_rr float64 0

cool_adiab float64 0

heat_shock float64 0

heat_lines_macro float64 0

heat_photo_macro float64 0

Cool_time float64 0

v_r float64 0

Flow_time float64 0

Ratio float64 661

In [85]: for one in x:

if one['vol']==0:

one['Flow_time']=0

one['Ratio'] = 0

x.write('test.txt',format='ascii.fixed_width_two_line')

WARNING: AstropyDeprecationWarning: test.txt already exists. Automatically overwriting ASCII files is deprecated. Use the argument 'overwrite=True' in the future. [astropy.io.ascii.ui]

Now see if I can plot this for this model.
Note: plot_wind is in py_progs, and so should work if one has py_progs in one’s path

In [86]: import plot_wind

In [87]: plot_wind.doit('test.txt',var='Cool_time')

Out[87]: 'test_Cool_time.png'

4



In [88]: plot_wind.doit('test.txt',var='Flow_time')

Out[88]: 'test_Flow_time.png'

5



The next plot is the ratio of the cooling time to the flow time (through a cell). A large ratio
should imply that the ionization fractions (in the absence of radiation) would change more rapidly
in the cell than it would take for the atoms to traverse the cell. Since heating and cooling have to be
the same in a converged model, a large value indicates that advected ionization is not a problem.

For the model below, which is a standard CV model, we see that at the base of the wind we are
in good shape, but beyond once we get away from this region we have a problem.

Note that the way this criterion is written, the finer the model grid, the larger the region where
there would be an issue. One would get a grid-independent answer if one took the distance to the
central object.

In [89]: plot_wind.doit('test.txt',var='Ratio')

Out[89]: 'test_log_Ratio.png'

6



7


	Determine whether one needs to worry about frozen in ionization in a Python model

