
Agoric Internal
Hackathon 2023

DC, MM, BT, PC

GiMiX:
AMiX with GitHub

AMIX
The American Information
Exchange (AMIX) was a platform
for the buying and selling of
information, goods and services
as well as the exchange of
information, ideas, and certain
kinds of intellectual work
product, created ... in the
1980s ... -- Wikipedia

https://en.wikipedia.org/wiki/American_Information_Exchange

User Stories
- As an open source maintainer, I want to incentivize

specific contributions to a project I maintain
- “I'm putting up a $10k bounty for any project written in Rust that

passes > 95% of the prettier JavaScript tests.” – @Vjeux 3:50 PM · Nov 9, 2023

- As an open source maintainer, I want to be able to charge
for feature requests to my project.
- “BigCorp wants a backport of feature X”

- As a developer, I want to be paid for my contributions to
an open source project.

https://twitter.com/Vjeux
https://twitter.com/Vjeux/status/1722733472522142022

User Stories
- As an open source maintainer, I want to incentivize

specific contributions to a project I maintain
- “I'm putting up a $10k bounty for any project written in Rust that

passes > 95% of the prettier JavaScript tests.” – @Vjeux 3:50 PM · Nov 9, 2023

- As an open source maintainer, I want to be able to charge
for feature requests to my project.
- “BigCorp wants a backport of feature X”

- As a developer, I want to be paid for my contributions to
an open source project.

https://twitter.com/Vjeux
https://twitter.com/Vjeux/status/1722733472522142022

Demo
Gods

Smiling?

User Flow - Alice (Proposer), Bob (Dev)
1. Alice calls `makeWorkAgreement(), supplying payment for all 3

phases
a. (reply)--> (issueUrl: string, terms: { agreement: Amount,

delivery: Amount, acceptance: Amount })` {give:
3PhasesPayments})

2. …. [agreement, negotiation phase)
3. Bob calls `makeSubmitDelivery(issueUrl: string, prUrl:

string)`, `want: { Delivery: [Payment] }`
a. FE does 1) submits on-chain transaction 2) calls BE(oracle) which will

verify then call the contract to confirm.
4. Contract has a “GH Oracle”, that confirms `prUrl` is `approved

+ `merged`, and `prUrl` closes `issueUrl`.
5. Contract releases payment to Bob, alice calls `getPayouts()`.

Initial Design
Brainstorming

Contract Design (DEPRECATED)
- Public Facet

- makeWorkAgreement
- {want: { brand: oracleBrand, value: issueUrl }, give: {Acceptance: PMT }, exit:

{afterDeadline: … } }
- handleMakeWorkAggreement => seat.getOfferResult

- Publish job# to vstorage
- offerResult is a ~~`jobId` (string)~~ jobObject (invitation makers)

- makeAcceptInvitation
- makeChallengeInvitation

- offerResult = sequenceNumber
- Sign + put in gist

- makeDeliverInvitation
- Contract needs to publish list of Jobs (jobIds)
- {want: { Acceptance: PMT }}
- offerArgs: prUrl

- handleVerifyDelivery()
-

- Terms
- githubOracleAddress

Initial Design
Brainstorming

Contract Design v3
- Startup (CoreEval)

- Makes an oracle Invitation, sends to `githubOracleAddress`
- namesByAddress is a term (privateArg)

- Creator Facet
- makeOracleInvitation

- Offer result: { makeJobReportInvitation }
- Gets called during startup

- Public Facet
- makeWorkAgreement

- {want: { brand: oracleBrand, value: issueUrl }, give: {Acceptance: PMT }, exit: {afterDeadline: … } }
- handleMakeWorkAggreement => seat.getOfferResult

- offerResult is a job # (stored in Alice’s vstorage)
- Alice goes to GitHub, invites Bob to do work (@bob, you’re hired!)

- Bob goes to “oracle-enabled BE”, i’m bob here’s my agoric1masf…
- I’m Bob, here’s my address, here’s the job #, and my PR.
- GH verification. Checks GH to see that Bob has been nominated, PR approved,
- Oracle calls `makeJobReportInvitation` to send an invitation to Bob, (includes Bob’s address)

- Handler: looks up Bob’s address, finds deposit facet + sends him a DeliveryInvitation.
E(namesByAddress).lookup(addr, ‘depositFacet’)

- Bob makes an offer using makeDelivery invitation from the oracle
- {want: { Acceptance: PMT }, offerArgs: PR }}

Spec Adequate that
you can write the

contract?

gimix.js

Yes!

import {

 DeliverProposalShape,

 JobReportProposalShape,

 OracleInvitationProposalShape,

 makeWorkAgreementProposalShape,

 ReportShape,

 JobsReportContinuingIKit,

 GimixContractFacetsIKit,

 makeStampAmount,

} from './typeGuards.js';

const { details: X, Fail, quote: q } = assert;

/**

* @typedef {object} GiMiXTerms

* @property {import('@agoric/vats').NameHub} namesByAddress

* @property {import('@agoric/time/src/types').TimerService} timer

*/

/**

* @param {ZCF<GiMiXTerms>} zcf

* @param {unknown} _privateArgs

* @param {import('@agoric/vat-data').Baggage} baggage

*/

export const prepare = async (zcf, _privateArgs, baggage) => {

 const { namesByAddress } = zcf.getTerms();

 const workByJob = provideDurableMapStore(

commit 8751cddc03ceb985e736096947f8ada785f1f685
Author: Mark S. Miller <erights@gmail.com>
Date: Tue Nov 14 22:45:36 2023 -0800

 fix: feature complete I think

Test connects Contract<->UI
commit 8751cddc03ceb985e736096947f8ada785f1f685
Author: Mark S. Miller <erights@gmail.com>
Date: Tue Nov 14 22:45:36 2023 -0800

 fix: feature complete I think

DX Notes

● Short-cut: used agoric-sdk repo for test / lint tooling
○ contract is in agoric-sdk · Issue #6 · agoric-labs/gimix

● Debugging support just barely tolerable
○ Contract bundle requires debugger statements

commit 8751cddc03ceb985e736096947f8ada785f1f685
Author: Mark S. Miller <erights@gmail.com>
Date: Tue Nov 14 22:45:36 2023 -0800

 fix: feature complete I think

https://github.com/agoric-labs/gimix/issues/6

Release: permit, script, 1 bundle
agoric-sdk/packages/zoe$ ORACLE_ADDRESS=agoric1rzl67k9zqpgg8s9w64d58erq809fvpg52433dn \
 SCRIPT=start-gimix.js \
 PERMIT=start-gimix-permit.json \
 yarn test test/unitTests/contracts/gimix/test-gimix-proposal.js
yarn run v1.22.19
$ ava --verbose test/unitTests/contracts/gimix/test-gimix-proposal.js

[bundleTool] bundles/ bundle-gimix.js valid: 119 files bundled at 2023-11-16T18:25:30.617Z
with size 998697
 ✔ module to script: redact imports; omit export keywords
 ✔ check / save gimix permit
 ℹ write permit to start-gimix-permit.json
 ✔ check / render gimix proposal
 ℹ write script to start-gimix.js
 ─

 3 tests passed

agoric-sdk/packages/zoe$ yarn bundle-source --cache-json bundles/ \

 src/contracts/gimix/gimix.js gimix

https://github.com/agoric-labs/gimix/releases/tag/v0.1.1-alpha2

Install Bundle

CoreEval Proposal

cosgov
rocks!

Install Bundle

gimix$ yarn docker:make mint4k
$ docker-compose exec agd make -C /workspace mint4k
make: Entering directory '/workspace'
agd tx bank send validator agoric1a3z…z3xwq 1000000000ibc/BA313C4…342FA \
 --keyring-backend=test --chain-id=agoriclocal --gas=auto
--gas-adjustment=1.2 --yes -b block
…

yarn --silent agops vaults open --wantMinted 4000 --giveCollateral 1000

CoreEval Proposal

cosgov
rocks!

gimix$ yarn docker:make gov-q
$ docker-compose exec agd make -C /workspace gov-q
agd query gov proposals --output json | \
 jq -c '.proposals[] | [.proposal_id,.voting_end_time,.status]'
…
["7","2023-11-14T18:22:18.099591606Z","PROPOSAL_STATUS_PASSED"]
["8","2023-11-17T03:12:35.720816716Z","PROPOSAL_STATUS_VOTING_PERIOD"]

gimix$ yarn docker:make vote PROPOSAL=8

Requestor: { give: Acceptance; want: Stamp }

Requestor: { give: Acceptance; want: Stamp }

{ "status": { "id": 1700192566298,
 "invitationSpec": {...},
 "proposal": {
 "exit": { "afterDeadline": {...} },
 "give": { "Acceptance": { "brand": {}, "value": "15000000" } },
 "want": { "Stamp": { "brand": {}, "value": { "payload": [
 ["Fixed https://github.com/dckc/awesome-ocap/issues/38",
 "1"]] } } } },
 "result": "1"
 }, "updated": "offerStatus" }

Negotiation: Assignment (off-chain)

Delivery

 const ok =

 pull.author === issue.assignee &&

 pull.status === 'merged' &&

 issue.status === 'closed';

Issues
● contract is in agoric-sdk · Issue #6 (DX)
● Oracle fee · Issue #13 (WIP)
● Oracle sends JobReport offer (TODO) · Issue #15 (WIP)
● Responder collects bounty (TODO) · Issue #16 (TODO)
● Contract instance not found - reported only to console · Issue #9 (low risk)
● timerService: hard-coded boardId (boardAux?) · Issue #4 (agoric-sdk #5799)
● claim an NFT rather than Delivery invitation? · Issue #12 (alternative design - simpler?)

https://github.com/agoric-labs/gimix/issues/6
https://github.com/agoric-labs/gimix/issues/13
https://github.com/agoric-labs/gimix/issues/15
https://github.com/agoric-labs/gimix/issues/16
https://github.com/agoric-labs/gimix/issues/9
https://github.com/agoric-labs/gimix/issues/4
https://github.com/Agoric/agoric-sdk/issues/5799
https://github.com/agoric-labs/gimix/issues/12

Risks / Threat Modeling
● Alice can edit the issue
● Bob is dependent on

arbiter of the repository
● Bob's damage very little

○ bob can write buggy code

● Oracle
○ can siphon rewards to any party
○ can't steal more than everyone

offers
● 5. Unhappy Path, No Malice
● - Joe can frontrun Bob's PR.

Q&A?
https://github.com/agoric-labs/gimix

https://github.com/agoric-labs/gimix

GH Oracle Requirements
- Delivery

- GH Issue being closed
- GH PR closing a specific Issue
- GET PR/approvers

- Vjeux approved the PR
- GET PR/merged

- Alice is not impersonated
- Want to prevent: Bob calls `submitClaim`, with alice’s GH account +

his wallet address

Nov 13 - Nov 14 Goals/Gameplan
- 10am PT meeting

- Mark has other meeting at 12pm PT

- Goals
- MM: try implement to implement contract. Have understanding of where

i’m confused and what aspects are missing.
- PC: try to implement all of the oracle requirements. Come to meeting

with an understanding of gaps on oracle be / web app side
- GitHub App - bot
- Web App (anything where an offer needs to be signed)

Contract Design v2 (DEPRECATED)
- Public Facet

- makeWorkAgreement
- {want: { brand: oracleBrand, value: issueUrl }, give: {Acceptance: PMT },

exit: {afterDeadline: … } }
- handleMakeWorkAggreement => seat.getOfferResult

- Publish job# to vstorage
- offerResult is a jobObject (invitation makers)

- makeAcceptInvitation (for alice’s use)
- makeApplyInvitation (invitation where bob can apply for the job)

- makeRequestApplyInvitation
- Bob gives deposit-only facet to Alice
- Alice has to deposit applyInvitation to Bob’s deposit-only facet

- Bob uses apply Invitation
- {want: { Acceptance: PMT } }

- Terms
- githubOracleAddress

Vjeux’s Want = [GH issue to be completed | PR that closes issueX]
- Inherits PR approval process from GitHub repository rules

[Impersonation, establish correspondence between GH contributor’s handle, and on-chain presence of
contributor/wallet] = agreement
Submitting PR = delivery
Merging PR = acceptance

Acceptance => done via GitHub
Escrow/Payment => happens on chain

Weds: Next Steps
● DC: promote test coreEval to real core eval script
● DC: file a want {} bug; assign to MM
● MM: non-happy-path testing
● MM: add oracle fee
● PC: “claim” endpoint - verifying claims, reporting on

jobs
○ Set up stargate signer on server

■ Mnemonic as env var
■ Stretch goal: bot writing github comments

○ Start work agreement form

Meet again 10amPT Thu

