
WHAT IS AVR MICROCONTROLLER?

An AVR microcontroller is a type of device manufactured by Atmel, which has particular

benefits over other common chips, but first what is a microcontroller?

The easiest way of thinking about it is to compare a microcontroller with your PC, which

has a motherboard in it. On that motherboard is a microprocessor (Intel, AMD chips)

that provides the intelligence, RAM and EEPROM memories and interfaces to rest of

system, like serial ports (mostly USB ports now), disk drives and display interfaces.

A microcontroller has all or most of these features built-in to a single chip, so it doesn’t

need a motherboard and many components, LEDs for example, can be connected

directly to the AVR. If you tried this with a microprocessor, bang!

AVR microntrollers come in different packages,some designed for through-hole

mounting and some surface mount. AVRs are available with 8-pins to 100-pins,

although anything 64-pin or over is surface mount only. Most people start with a DIL

(Dual In Line) 28-pin chip like the ATmega328 or the 40-pin ATmega16 or ATmega32.

PC microprocessors are always at least 32-bit and commonly now 64-bit. This means

that they can process data in 32-bit or 64-bit chunks as they are connected to data

buses this wide. The AVR is much simpler and deals with data in 8-bit chunks as its data

bus is 8-bit wide, although there is now an AVR32 with 32-bit bus and an ATxmega

family with a 16-bit data bus.

A PC has an operating system (Windows or Linux) and this runs programs, such as Word

or Internet Explorer or Chrome that do specific things. An 8-bit microcontroller like the

AVR doesn’t usually have an operating system, although it could run a simple one if

required, and instead it just runs a single program.

Just as your PC would be useless if you didn’t install any programs, an AVR must have a

program installed to be any use. This program is stored in memory built-in to the AVR,

not on an external disk drive like a PC. Loading this program into the AVR is done with

an AVR programmer, usually when the AVR is in a circuit or system, hence AVR ISP or

AVR In System Programmer.

AVR ISP for AVR Microcontroller Programming

So what is a program? A program is a series of instructions, each very simple, that fetch

and manipulate data. In most applications where you would use an AVR, such as a

washing machine controller for example, this means reading inputs, checking their state

and switching on outputs accordingly. Sometimes you may need to modify or

manipulate the data, or transmit it to another device, such as an LCD or serial port.

A series of simple binary instructions are used to do these basic tasks and each one has

an equivalent assembly language instruction that humans can understand. The most

basic way of writing a program for an AVR is to use assembly language (although you

could write binary numbers if you want to be pedantic).

Using assembly language allows you to understand far more about the operation of the

AVR and how it is put together. It is also produces very small and fast code. The

disadvantage is that you as the programmer have to do everything, including memory

management and program structure, which can get very tedious.

To avoid this, high level languages are increasingly being used to write programs for the

AVR, C in particular but also Basic and Java derivatives. High level means that each line

of C (or Basic or Java) code can translate into many lines of assembly language.

https://www.kanda.com/avrprogrammer.html
https://www.kanda.com/avrprogrammer.html
https://www.kanda.com/avrprogrammer.html
https://www.kanda.com/avrprogrammer.html

The compiler also deals with the program structure and memory management so it is

much easier. Commonly used routines, such as delays or maths, can also be stored in

libraries and reused very easily. The C compiler also deals with larger numbers that take

up more than a byte (8-bits).

In my opinion, writing AVR programs in C is like driving a car. Yes you can do it very

easily but if something goes wrong you haven’t got a clue how to fix it and you can’t

deal with tricky situations like icy roads. Starting with assembly language and writing

some simple programs lets you understand what is going on “under the hood” so you

know how it works and can get the most out of it. Then swap to C by all means but at

least you know how the AVR microcontroller fits together and its limitations.

Advantages of using AVR

• You’ll get deep understanding how microprocessors work and it’s an important

gateway to the world of computer engineering

• You’ll learn how to code with C
• The major advantages AVR has over Arduino that you can write a program for

any other AVR microcontroller. You just need the datasheet of the particular

microcontroller. For example, I can write the program for Atmega 16, Atmega 32,

Atmega 8, Atmega 328. I may or may not need the development board to

program the particular microcontroller. With the little bit of experience, I can

develop my own board. With Arduino, I can only write the program for the

microcontroller it’s using as an MCU.

• AVR’s resources is easy to get for purpose of learning !

Time spent to get things done

• 1 – 3 months

Courses could be taken

• https://www.youtube.com/playlist?list=PLD7F7ED1F3505D8D5

• https://www.youtube.com/channel/UCbZ7PLd5LAnje1hpyoiRW0

A/playlists

• mazidi's avr microcontroller and embedded systems

• Youtupe it using filter “playlist”

What is Arduino?

https://www.youtube.com/playlist?list=PLD7F7ED1F3505D8D5
https://www.youtube.com/channel/UCbZ7PLd5LAnje1hpyoiRW0A/playlists
https://www.youtube.com/channel/UCbZ7PLd5LAnje1hpyoiRW0A/playlists

Arduino is an open-source electronics platform based on easy-to-use hardware and

software. Arduino boards are able to read inputs - light on a sensor, a finger on a

button, or a Twitter message - and turn it into an output - activating a motor, turning on

an LED, publishing something online. You can tell your board what to do by sending a

set of instructions to the microcontroller on the board. To do so you use the Arduino

programming language (based on Wiring), and the Arduino Software (IDE), based

on Processing.

Over the years Arduino has been the brain of thousands of projects, from everyday

objects to complex scientific instruments. A worldwide community of makers - students,

hobbyists, artists, programmers, and professionals - has gathered around this open-

source platform, their contributions have added up to an incredible amount

of accessible knowledge that can be of great help to novices and experts alike.

Arduino was born at the Ivrea Interaction Design Institute as an easy tool for fast

prototyping, aimed at students without a background in electronics and programming.

As soon as it reached a wider community, the Arduino board started changing to adapt

to new needs and challenges, differentiating its offer from simple 8-bit boards to

products for IoT applications, wearable, 3D printing, and embedded environments. All

Arduino boards are completely open-source, empowering users to build them

independently and eventually adapt them to their particular needs. The software, too, is

open-source, and it is growing through the contributions of users worldwide.

Why Arduino?

Thanks to its simple and accessible user experience, Arduino has been used in

thousands of different projects and applications. The Arduino software is easy-to-use for

beginners, yet flexible enough for advanced users. It runs on Mac, Windows, and Linux.

Teachers and students use it to build low cost scientific instruments, to prove chemistry

and physics principles, or to get started with programming and robotics. Designers and

architects build interactive prototypes, musicians and artists use it for installations and

to experiment with new musical instruments. Makers, of course, use it to build many of

the projects exhibited at the Maker Faire, for example. Arduino is a key tool to learn new

things. Anyone - children, hobbyists, artists, programmers - can start tinkering just

following the step by step instructions of a kit, or sharing ideas online with other

members of the Arduino community.

There are many other microcontrollers and microcontroller platforms available for

physical computing. Parallax Basic Stamp, Netmedia's BX-24, Phidgets, MIT's

https://www.arduino.cc/en/Main/Products
https://www.arduino.cc/en/Reference/HomePage
https://www.arduino.cc/en/Reference/HomePage
http://wiring.org.co/
https://www.arduino.cc/en/Main/Software
https://processing.org/
http://forum.arduino.cc/
https://www.arduino.cc/en/Main/Software

Handyboard, and many others offer similar functionality. All of these tools take the

messy details of microcontroller programming and wrap it up in an easy-to-use

package. Arduino also simplifies the process of working with microcontrollers, but it

offers some advantage for teachers, students, and interested amateurs over other

systems:

• Inexpensive - Arduino boards are relatively inexpensive compared to other

microcontroller platforms. The least expensive version of the Arduino module can be

assembled by hand, and even the pre-assembled Arduino modules cost less than $50

• Cross-platform - The Arduino Software (IDE) runs on Windows, Macintosh OSX, and

Linux operating systems. Most microcontroller systems are limited to Windows.

• Simple, clear programming environment - The Arduino Software (IDE) is easy-to-use for

beginners, yet flexible enough for advanced users to take advantage of as well. For

teachers, it's conveniently based on the Processing programming environment, so

students learning to program in that environment will be familiar with how the Arduino

IDE works.

• Open source and extensible software - The Arduino software is published as open

source tools, available for extension by experienced programmers. The language can be

expanded through C++ libraries, and people wanting to understand the technical details can make

the leap from Arduino to the AVR C programming language on which it's based. Similarly, you can add AVR-C

code directly into your Arduino programs if you want to.

• Open source and extensible hardware - The plans of the Arduino boards are published under a Creative Commons

license, so experienced circuit designers can make their own version of the module, extending it and improving it.

Even relatively inexperienced users can build the breadboard version of the module in order to understand how it

works and save money.

Pros and Cons of Using Arduino

Pros :

• Ready to use

• Examples of code

• Effortless functions

• Large community

Cons :

https://www.arduino.cc/en/Main/Standalone

• Structure : Yes, the structure of Arduino is its disadvantage as well. During

building a project you have to make its size as small as possible. But with the big

structures ofArduino we have to stick with big sized PCB’s. If you are working on a small

micro-controller like ATmega8 you can easily make your PCB as small as possible.

• Cost

• Easy to use “you will not a lot of new things”

Time spent :

Maximum one week

Courses :

• Simple Arduino PDF book

• Jeremy blum channel on youtupe

• Micropedia channel on youtupe

Tiva-c

The Tiva-C (a.k.a. TM4C) LaunchPads[1] are inexpensive self-

contained, single-board microcontrollers, about the size of a credit

card, featuring an ARM Cortex-M4F 32-bit CPU operating at 80 to

120 MHz, manufactured by Texas Instruments.[2] The TM4C Series

TM4C123G LaunchPad[3]is an upgrade from TI's Stellaris LaunchPad

adding support options for motion control PWMs and USB Host

functionality. The more recently released TM4C1294 Connected

LaunchPad[4] is the first cloud-connected offering in TI's LaunchPad

ecosystem and provides a solid foundation for beginning and

evaluating embedded IoT designs.

There are many I/O pins (40 to 80 depending upon version) that have

multi-personality. This means that they can be easily configured as

http://engineerexperiences.com/arduino-matlab-installation.html
http://engineerexperiences.com/arduino.html
https://en.wikipedia.org/wiki/Tiva-C_LaunchPad#cite_note-1
https://en.wikipedia.org/wiki/Single-board_microcontroller
https://en.wikipedia.org/wiki/ARM_Cortex-M4F
https://en.wikipedia.org/wiki/CPU
https://en.wikipedia.org/wiki/Texas_Instruments
https://en.wikipedia.org/wiki/Tiva-C_LaunchPad#cite_note-2
https://en.wikipedia.org/wiki/Tiva-C_LaunchPad#cite_note-3
https://en.wikipedia.org/wiki/Tiva-C_LaunchPad#cite_note-4

digital inputs or outputs, analog inputs and outputs or other functions,

allowing a great variety of applications, are just the multiple serial

ports have the ability to interface with more items such as test cards or

other communication modules, etc. Among those pins there are

included the GND and POWER (3.3 V) pins.

The clock is 80 or 120 MHz (vers based), which makes them 5 to over 7

times faster than the Arduino Uno's 16 MHz ATmega328P

microcontroller. As with any Cortex M4, the CPU has some DSP (digital

signal processor) instructions, with some limitations. One can do signal

processing, for example, sampling a human voice with a good quality,

able to be processed in MATLAB.[citation needed] The CPU contains the

optional floating-point unit with single-precision floating point

operations supported.

They have an additional USB port which can act as USB host, allowing

the connection of multiple devices and the "Connected" one has an

integrated 10/100 Ethernet MAC+PHY for Internet connectivity. They

also have a temperature sensor and on-board LED(s) and RGB LED(s),

which allows you to generate various colors by combining the three

basic colors (red, blue and green) of the additive color synthesis.

The Tiva/TM4C LaunchPads come preloaded with software to

demonstrate many of the capabilities of the ARM microcontroller and

with a quickstart application to get up and running within minutes.

To summarize why we don’t need to work with it that it

takes much time to learn and it’s required to have a

background on how microprocessors work and It costs

400 L.E

https://en.wikipedia.org/wiki/Arduino_Uno
https://en.wikipedia.org/wiki/CPU
https://en.wikipedia.org/wiki/Wikipedia:Citation_needed
https://en.wikipedia.org/wiki/Floating-point_unit

To sum up : AVR is the optimum solution in my opinion

but the difficulty and the challenge will be in doing it on

pcb and 1 mistake could throw out most of our efforts

So the plan B in this case that we will be divided as some

do the work using Arduino and the others will do it using

AVR

