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Abstract
Starting from first principles, this tutorial describes the development of the adiabatic-nuclei
convergent close-coupling (CCC) method and its application to electron and (single-centre)
positron scattering from diatomic molecules. We give full details of the single-centre expansion
CCC method, namely the formulation of the molecular target structure; solving the momentum-
space coupled-channel Lippmann–Schwinger equation; deriving adiabatic-nuclei cross sections
and calculating V-matrix elements. Selected results are presented for electron and positron
scattering from molecular hydrogen H2 and electron scattering from the vibrationally excited
molecular hydrogen ion H2

+ and its isotopologues (D2
+, T2

+, HD+, HT+ and TD+). Convergence
in both the close-coupling (target state) and projectile partial-wave expansions of fixed-nuclei
electron– and positron–molecule scattering calculations is demonstrated over a broad energy-
range and discussed in detail. In general, the CCC results are in good agreement with
experiments.

Keywords: electron scattering, positron scattering, excitation, ionisation, molecular hydrogen

(Some figures may appear in colour only in the online journal)

1. Introduction

Chemical reactions are the underlying processes that govern
medicine, industry, nature and life. The very foundation of
chemistry is the individual collisions between photons, electrons,
ions, atoms and molecules. By studying particular scattering
processes, resulting collision data can be used to determine the
collective many body-effects of a media. Calculations of ion
stage abundance, energy deposition/transport and reactivity are
just some of the properties that are required to advance science
and technology. Examples that rely on electron or positron
collision data include electric lighting, fusion technology [1–4],
materials research [5], climate science [6], astrophysics [7–9],

lasers, radiotherapy [10–16] and positron emission tomography
scans to detect cancers and mental diseases [16, 17].

Although collision physics is of technological and sci-
entific interest, there are currently no accurate, efficient, and
comprehensive scattering models readily available. Theor-
etical models, however, are seen as the most likely route to
providing the detailed and comprehensive collision data sets
required, while experiments provide sensitive tests of theory.

1.1. Molecular scattering processes

Theoretical formulations of electron and positron collisions with
molecules are often based on techniques developed for elec-
tron–atom scattering. Molecules, however, have the complexity
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of multi-centre potentials which leads to absence of spherical
symmetry. In addition the rotational and vibrational degrees of
freedom add to the complexity of scattering processes. Ab initio
theoretical treatments of positron scattering are even more dif-
ficult than electron scattering. This is due to the strong electron–
positron correlations and the additional channel of positronium
(Ps) formation. In approximate order of lowest threshold
energy, some of the important electron/positron–molecule/
molecular–ion scattering processes include:

n v J n v J

elastic scattering

e AB , , e AB , , , 1+  + ( ) ( ) ( )

dissociative recombination (of molecular ions)

n v Je AB , , AB A B, 2**+   +- +( ) ( )

rotational excitation

n v J n v Je AB , , e AB , , , 3+  + ¢ ( ) ( ) ( )

vibrational excitation

n v J n v Je AB , , e AB , , , 4+  + ¢ ¢ ( ) ( ) ( )

resonant dissociative excitation (DE) (of molecular ions)

n v Je AB , , AB e A B,
5

**+   + +- + - +( )
( )

e A B , 6 + +- + ( )

dissociative attachment

n v Je AB , , A B, 7+  +- -( ) ( )
A B , 8 + - ( )

positronium (Ps) formation

n v Je AB , , Ps AB , 9+  ++ +( ) ( )

electronic excitation

n v J n v Je AB , , e AB , , , 10+  + ¢ ¢ ¢ ( ) ( ) ( )

dissociation (usually by electronic excitation)

11
n v Je AB , , e AB e A B,*+  +  + +  

( )
( )

DE (of molecular ions)

n v Je AB , , e AB e A B,
12

*+  +  + + +  +  +( )
( )

e A B , 13 + + + ( )

single-ionisation

n v Je AB , , e e AB , 14+  + +  - +( ) ( )

dissociative ionisation (DI) (of neutral and ionic molecules)

n v Je AB , , e e A B, 15+  + + +  - +( ) ( )
e e A B , 16 + + + - + ( )

n v Je AB , , e e A B , 17+  + + + +  - + +( ) ( )

Here n v J, , are the molecule’s electronic, vibrational and
rotational state respectively, and v¢ and J ¢ in (4) and (10)
indicate that these processes can also lead to simultaneous
rotational and vibrational excitation. AB* indicates an excited
state of AB and AB** is either a doubly excited or autoionising

Rydberg state of AB with the respective dissociative asymptotic
conditions. In some cases resonances drive rotational excita-
tions (3), vibrational excitations (4), rearrangement processes
(2), (7) and (8) and dissociation processes (5), (6) and (11)
[18–20].

1.2. Overview of theoretical methods

Theoretical methods for electron and positron scattering from
atoms and molecules can be classified into two categories:
perturbative and non-perturbative. Perturbative methods are
generally only accurate in the high-energy region (impact-
energy higher than ten times ionisation threshold). Some of
the most actively used quantum mechanical perturbative
methods include the distorted-wave Born approximation
[21, 22] and the independent-atom model screening-corrected
additivity rule [23–25]. General scaling laws of the first-order
plane-wave Born results for neutral atoms and molecules
remarkably produces accurate dipole-allowed excitation and
ionisation cross sections from a few eV above threshold to
high energies [26–28]. For ions a similar scaling law has been
applied to the Coulomb Born cross sections with equivalent
success [28–30]. Here however, we are only interested in non-
perturbative methods, which in principle are applicable for all
transitions and at all energies.

Non-perturbative methods are based on solving the
Schrödinger equation using either grid based techniques or a
close-coupling expansion. In principle non-perturbative meth-
ods can calculate accurate results across the entire energy
region. The low-energy region (from 0 eV to ionisation
threshold) for molecules is the most difficult to describe, where
coupling projectile, electronic, and nuclei motion can be
important in order to describe the rotational, vibrational, elec-
tronic, dissociative and rearrangement scattering processes. To
date completely ab initio electronic-rovibrational close-coupling
calculations have not been performed. This method would be
complicated to implement and calculations would require
immense computing resources. Rotational [31], vibrational [32]
and rovibrational [33] close-coupling methods have been
applied to a range of molecules by utilising phenomenological
potentials. These methods solve the nuclei close-coupling pro-
blem and can only calculate accurate results for nuclei excita-
tions (not rearrangement or electronic excitations) in the low-
energy region. The different types of scattering formulations to
treat projectile, electronic, and nuclei motion are summarised in
[31, 34, 35] and references therein. The multi-channel quantum
defect theory [36] is the only ab initio method (utilising several
approximations) that describes and can extract results of all
processes (including rearrangement) in the low-energy region.
This method however is limited to molecular ions and utilises
several scattering formulations (that depend on the projectile
and nuclei scattering region).

Here we limit ourselves to the discussion of the adiabatic-
nuclei formulation (also known as the adiabatic-nuclei vibration
approximation), which in principle can be utilised to calculate a
comprehensive set of cross sections (elastic scattering, rotational,
vibrational, and electronic excitations, ionisation, resonance and
dissociative processes) [32, 35, 37, 38]. This formulation relies
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on the Born–Oppenheimer approximation of the total scattering
wave function and is based on the body-frame fixed-nuclei
formulation, which fixes the internuclear separation R and
orientation of the molecule R̂ throughout the collision. It is
currently the most actively utilised electron– and positron–
molecule scattering formulation. Non-perturbative methods that
rely on the adiabatic-nuclei formulation include the Schwinger
multichannel (SMC) [39], Kohn variational [40], R-matrix (RM)
[20], molecular RM with pseudostates (RMPS) [20], time-
dependent close-coupling (TDCC) [41] and molecular con-
vergent close-coupling (CCC) [42] methods. With this for-
mulation these methods essentially solve the fixed-nuclei
(electronic motion) Schrödinger equation as opposed to the
nuclei close-coupling methods mentioned above. The adiabatic-
nuclei (and fixed-nuclei) approximation greatly reduce the
complexity and computational resources required to solve the
scattering problem and will be discussed further in section 2.
The SMC, Kohn variational, RM, RMPS and molecular CCC
methods utilise a fixed-nuclei close-coupling expansion to solve
the scattering equations, while the TDCC method solves the
fixed-nuclei time-dependent Schrödinger equation using a grid
based technique. In principle these methods should all yield the
same results if a convergent scattering and target model is uti-
lised in the calculations. In the low-energy region these methods
have had considerable success calculating elastic scattering
within the fixed-nuclei approximation. However, only in some
cases the rotational, vibrational, and electronic excitation cross
sections have been accurately calculated.

The situation is very different in the intermediate-energy
region (from ionisation threshold to ten times ionisation
threshold), where elastic scattering, electronic excitation, and
ionisation processes are dominant. The close-coupling
approximation was originally developed as a low-energy
approximation, which expanded the total scattering wave
function over the set of bound target states. In the past few
decades the target continuum has been included in the
expansion via the use of positive energy pseudostates
(obtained from diagonalisation of the target), which provide a
discretised representation of the target continuum. This
technique allowed the close-coupling method to be general-
ised to describe the entire projectile energy range. In these
calculations total ionisation cross sections (TICSs) are cal-
culated by summing discrete excitation cross sections of
positive energy pseudostates.

Our experience from electron–atom scattering shows us
that inter-channel coupling between the discrete spectrum and
continuum is essential in order to obtain converged elastic,
excitation and ionisation cross sections [43, 44]. Within the
close-coupling approach these can be achieved by using a
near-complete expansion of both the discrete and continuum
spectrum of the target. In addition to treating the scattering
dynamics accurately, one must have sufficiently accurate
target states in order to obtain accurate cross sections. For
example the complete account of polarisation effects in the
scattering calculations predetermines the accuracy of the
elastic scattering cross section, while the optical oscillator
strength of a dipole-allowed transition predetermines its high

energy cross section. The accuracy of the target states can be
checked by calculating the target state energy, and optical
oscillator strengths in both the length and velocity gauges.
However, convergence in the scattering cross sections can be
obtained with inaccurate target states. Hence performing
scattering calculations with different target models allows one
to estimate the underlying uncertainty in the cross sections
with respect to the accuracy of the target states [45].

Even in the fixed-nuclei approximation, accurate close-
coupling calculations are very large and computationally
expensive. This is primarily due to the lack of spherical
symmetry in the scattering system, where scattering equations
need to couple all partial waves of orbital angular momentum
(however, for homonuclear diatomic molecules total parity is
conserved). This has limited the progress of non-perturbative
methods. To date the SMC method has not calculated ionis-
ation cross sections but it has been capable of calculating
electronic excitation cross sections in the intermediate-energy
region by utilising the projection operator approach [46, 47].
However our studies of electron– and positron–H2 scattering
[48–50] indicate that these calculations are not convergent
with respect to the number of target states included in the
calculations. The RMPS method has calculated TICSs just
above threshold for several targets [51–53], however in some
cases (electron scattering from H2 and H3

+) these calculations
were severely affected by pseudoresonances [53]. For elec-
tron–H2 scattering, our calculations [48] indicate that the
RMPS and RM excitation cross sections exhibit pseudor-
esonance behaviour due to a lack of convergence. The CCC
and TDCC methods are currently the only non-perturbative
methods suited for accurately calculating TICSs across the
entire intermediate-energy region. However, the TDCC
method (a one-electron target model) has not calculated
excitation cross sections for molecular targets thus far, as
calculations are computationally too expensive.

The molecular CCC method is based on the atomic CCC
method, which for the interested reader was extensively
reviewed in [43, 44, 54, 55]. The present tutorial is organised
as follows: section 2 describes the fundamental concepts of
electron–molecule scattering, the connection between body-
and laboratory-frames of reference and the Born–Oppenhei-
mer and adiabatic-nuclei approximations. Section 3 details the
formulation of the molecular target states for H2

+ and H2

within the Born–Oppenheimer approximation. Sections 4 and
5 describe in detail the molecular CCC method and the
orientationally averaged analytic Born subtraction (ABS)
method, respectively. In section 6 convergence studies are
discussed and convergence is demonstrated for the CCC
fixed-nuclei calculations of electron–H2

+ scattering. Sections 7
and 8 present the application of the adiabatic-nuclei CCC
method to electron scattering from vibrationally excited H2

+

and its isotopologues (D2
+, T2

+, HD+, HT+ and DT+), and
positron scattering from vibrationally excited H2. In section 9
the fixed-nuclei CCC results are presented for electron scat-
tering from H2, and finally in section 10, the tutorial and
results of the molecular CCC method’s application to electron
and positron scattering from H2, H2

+ and its isotopologues are
summarised, and the future research directions of this project
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is also outlined. In the appendices, the orientationally aver-
aged differential and integrated cross sections are derived,
analytic properties of the Laguerre basis functions are given,
and V-matrix elements of electron/positron scattering from
H2

+ and electron/positron scattering from H2 are presented.

2. General theory

In this tutorial a non-relativistic scattering approach is used to
derive the adiabatic-nuclei molecular CCC method. The for-
mulation here is time-independent and assumes an electron or
positron projectile. We do not describe rearrangement pro-
cesses e.g. resonant DE (of molecular ions), dissociative
attachment, recombination and explicit Ps formation. All
equations are in atomic units and for the brevity of notation
we have dropped the dependence of the nuclei spin, unless
explicitly stated otherwise.

The objective of scattering theory is to calculate scattering
observables (i.e. cross sections). The spin-resolved differential
cross section (DCS) for a transition i f has the form

q q
q

q
F

d

d
, , 18

f i f

i
f i f i

,
,

2


s

W
= ∣ ( )∣ ( )

where  is the total electronic spin of the system, q is the
projectile linear momentum vector, q qF ,f i

S
f i, ( ) is the scattering

amplitude, which has the general form

q q q

q q

F V

T

, 2

2 , 19

f i f i f f i

f f i i

,
2

2

 



p

p

=- á F Y ñ

=- á F F ñ

- +

- +

( ) ( ) ¯ ∣ ∣ ¯

( ) ¯ ∣ ∣ ¯ ( )

( ) ( )

( ) ( )

and q ñ∣ ( ) represents the momentum space normalised projectile
plane-wave (for a neutral target) or Coulomb-wave (for an ionic
target). Here the incoming and outgoing spherical-wave
boundary conditions are denoted by superscripts -( ) and +( )

respectively and V is the sum of all interaction potentials
between the projectile and the target. Rx x, ,i 0

Y +¯ ( )( ) is the
total scattering wave function and Rx,nF̄ ( ) are the molecular
states, where x0 and x represent the spatial and spin coordinates
of the projectile and all target electrons respectively, and the
vector R represents the spatial coordinates of the nuclei. We use
the ‘bar’ notation to indicate variables which combine nuclear
and electronic motion. It will be removed when they are
decoupled. The (electronic) spin-averaged DCS (and similarly
for the integrated cross section) is given by

s

d

d

2 1

2 2 1

d

d
, 20

f i

i

f i, ,





å
s s

W
=

+
+ W( )

( )

where si is the initial spin of the electronic target state.
The goal of theory is to solve for q qF ,f i f i,

 ( ) and

Rx x, ,i 0
Y +¯ ( )( ) . Different theoretical methods reflect differ-

ent approaches used to solve the scattering system Schrö-
dinger equation

E H 0, 21i
- Y ñ =+ +( )∣ ¯ ( )( ) ( )

where E and H are the total energy and Hamiltonian of the
scattering system. For a projectile with charge z0 (z 10 = - for

the charge of an electron or z 10 = for the charge of a posi-
tron), the non-relativistic Hamiltonian H is defined as

r R r r

R R

H
z Z z z

M

Z Z

1

2

1

2
, 22

i

N

i
i

N

j

N
i j

i j j i

N
i j

i j

i

N

i
i

j i

N
i j

i j

0

2

0 1 0

1

2

1

e e n e

n n

å åå å

å å

=-  +
-

+
-

-  +
-

= = = > =

= > =

∣ ∣ ∣ ∣

∣ ∣
( )

where the target molecule has Ne electrons (with charge
z 1i = - , for i 1 ), Nn nuclei with charge Z and mass M. The
vector r represents the spatial coordinates of the projectile/
target electrons. Further details of the molecular Hamiltonian
and its transformations are given in [56, 57].

The total scattering wave function with the correct out-
going boundary conditions can be expressed via a close-
coupling expansion, which expands Rx x, ,i 0

Y +¯ ( )( ) in terms
of all asymptotic channels. For electron scattering the close-
coupling expansion has the form

R Rfx x x x, , , , 23i
n

n i n0 , 0 Y = F+ +¯ ( ) ⨋ ( ) ¯ ( ) ( )( ) ( )

where  is the antisymmetrisation operator

P1 , 24
i

N

i
1

0

e

 å= -
=

( )

P0i is the space and spin exchange operator, f xn i, 0
 + ( )( ) is the

multichannel function and for positron scattering  is not
required, i.e. 1 = in equation (23).

As mentioned above in section 1.2, even for the simplest
diatomic molecule H2

+ a complete electronic-rovibrational
close-coupling calculation (23) is currently computationally
unfeasible. This is primarily due to the large number of ener-
getically finely spaced rotational and vibrational states, and an
inability to treat very large scattering calculations in an efficient
and numerically stable way. As summarised in [31, 34, 35],
several methods have been applied to reduce the computational
resources required to solve the electron–molecule scattering
problem. One commonly used approach to reduce the size of
the computation is to apply the Born–Oppenheimer approx-
imation to the total scattering wave function [34, 35]. This
approach is utilised by electronic close-coupling methods.

2.1. Born–Oppenheimer approximation

In the non-relativistic approximation molecular states
R Rx x, ,n nvJmJF º F¯ ( ) ¯ ( ) used in the close-coupling expan-

sion (23) are characterised by their electronic state n, vibra-
tional quantum number v, rotational quantum number J and
rotational angular projection mJ.

The Born–Oppenheimer approximation (ansatz)

R R Rx x, ; , 25nvJm n nvJmJ JF » F X¯ ( ) ( ) ( ) ( )

separates the electronic r and nuclear R coordinates so that
the electronic wave functions Rx;nF ( ) depends para-
metrically on R. The nuclear wave function RnvJmJX ( ) can
also be written as a product of the vibrational RnvJn ( ) and
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rotational RRnJmJ ( ˆ ) wave functions

R RR R . 26nvJm nvJ nJmJ JnX =( ) ( ) ( ˆ ) ( )

In the Born–Oppenheimer approximation the electronic
and nuclei motion are not coupled. The Born–Oppenheimer
approximation (25) relies on the property that in a molecule
the electrons are very light compared to the heavy nuclei and
are moving much more rapidly, hence the nuclei respond to
the average distribution of the electron density. See [56] for
the details of including the electron–nuclei coupling (non-
adiabatic method) and approximating the electron–nuclei
coupling (adiabatic approximation).

2.2. Adiabatic-nuclei approximation

From a classical point of view if the collision time tc is much
less than the molecule’s vibrational period vt 10 14» -( s) and
rotational period Rt 10 12>» -( s) [35], the total scattering
wave function should be well represented within the Born–
Oppenheimer approximation

R R Rx x x x, , , ; . 27i i iv J m0 0 i i Ji

 Y » Y X+ +¯ ( ) ( ) ( ) ( )( ) ( )

In this approximation the projectile and target electrons do not
couple with the nuclei motion and hence the nuclei are fixed at
a chosen distance R and orientation R̂ throughout the collision.

Substituting Born–Oppenheimer molecular states (25)
and Rx x, ,i 0

Y +¯ ( )( ) equation (27) into the scattering ampl-
itude (19), we obtain the adiabatic-nuclei scattering amplitude
for a transition iv J m fv J mi i J f f Ji f

q q

q

q q R

F

V

R T R

,

2

2 , ; , 28

fv J m iv J m f i

f fv J m f i iv J m

fv J fJ m f i f i iJ m iv J

,

2

2
,

f f Jf i i Ji

f f Jf i i Ji

f f f Jf i Ji i i







p

p n n

= - á X F Y X ñ

= - á ñ

- +

( )

( ) ∣ ∣

( ) ∣ ( )∣ ( )

( ) ( )

where the fixed-nuclei T-matrix q q RT , ;f i f i,
 ( )

q q R q q qT V T, ; .

29

f i f i f f i f f i i,
  = á F Y ñ º á F F ñ- + - +( ) ∣ ∣ ∣ ∣

( )

( ) ( ) ( ) ( )

Similarly to the close-coupling expansion of Rx x, ,i 0
Y +¯ ( )( )

in equation (23), the fixed-nuclei total scattering wave func-
tion Rx x, ;i 0

Y + ( )( ) can be expressed as an expansion over
the electronic target states only

R R Rfx x x x, ; ; ; , 30i
n

n i n0 , 0 Y = F+ +( ) ⨋ ( ) ( ) ( )( ) ( )

where it is important to note that in this approach only elec-
tronic states (and motion) are coupled and for positron scat-
tering  is not required, i.e. 1 = in equation (30).

Non-rigid (vibrating) linear molecules behave like sym-
metric-top molecules [56]. However, the rotational wave
function takes a different form depending on the Hund’s
coupling case chosen, which is an idealised situation of
describing the total molecular wave function [56]. In these
cases the rotational wave function is usually taken as a linear

combination of normalised symmetric-top functions

R RR
J

D
2 1

8
, 31nJm

n
m m
J

2 ,J J n
*

p
=

+( ˆ ) ( ) ( ˆ ) ( )

where mJ is the angular momentum projection of J and mn is
the orbital angular momentum projection of the electronic state.

In the rigid (non-vibrating) rotor approximation the
rotational wave function is given by

R RR Y , 32nJm JmJ J=( ˆ ) ( ˆ ) ( )

which is spherically symmetric for J=0. Some studies uti-
lise the rigid rotor approximation to formulate the
DCS [31, 58].

Substituting an appropriate rotational wave function (for
the molecular target) into the scattering amplitude (28), the
integration over R̂ (in the laboratory frame of reference) can
be carried out analytically for a partial-wave form of the T-
matrix. Then the DCS (18) resolved for the transition
iv J m fv J mi i J f f Ji f can be formulated [35].

2.3. Body- and laboratory-frame formulation and
transformation

The adiabatic-nuclei scattering amplitude (28) looks like it
requires data of the T-matrix for many orientations R̂ of the
molecule. However analytic integration over R̂ can be carried
out by utilising the rotation matrices. This method requires the
three-dimensional T-matrix q q RT , ;f i f i,

 ( ) to be expressed in
partial-wave form and to be calculated for a single arbitrary
orientation of the molecule. The frame of reference and single
orientation of the molecule are chosen as the most convenient.
This frame of reference is known as the body-frame and
equations formulated in this frame are labelled by superscript
b( ) (i.e. in the body-frame q qT R, ;f i f i,

b b ( )( ) ( ) ).
For homonuclear diatomic molecules the body-frame of

reference is conveniently chosen to have the origin set half-
way between the nuclei and to align the internuclear axis with
the z-axis. Physically, however, the molecule is oriented in
the laboratory (lab)-frame of reference (denoted by super-
script lab( )) R labˆ ( )

and the projectile-particle’s initial momen-
tum vector qî is aligned along the lab-frame z-axis (i.e.
q zi

lab lab=ˆ ˆ( ) ( )). Note that the rotational wave functions (31)
and (32) are formulated in the lab-frame of reference.

To carry out the integration over R labˆ ( ) analytically in
equation (28), and to save on computational resources in the
calculation of the three-dimensional body-frame fixed-nuclei
T-matrix q qT R, ;f i f i,

b b ( )( ) ( ) , the projectile partial-wave
expansion is utilised. This allows us to express

q qT R, ;f i f i,
b b ( )( ) ( ) in partial-wave form, which for convenience

can be written as

q q

q q

T R A R

Y Y

2 , ;

, 33

f i f i
L L
M M

fL M iL M

L M f L M i

2
,

b b

,
,

,
b

b b

f i

f i

f f i i

f f i i
*

 åp- =

´

( ) ( ) ( )

( ˆ ) ( ˆ ) ( )

( ) ( ) ( )

( ) ( )
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where L and M are the projectile orbital angular momentum
and orbital angular projection respectively, and A fL M iL M,

b
f f i i

( )

contains the body-frame partial-wave fixed-nuclei T-matrix
elements and is defined below in equation (96). Following the
definition of equation (19), the left-hand side of equation (33)
can be defined as the fixed-nuclei body-frame scattering
amplitude for the transition i f , where q qF R, ;f i f i,

b b º( )( ) ( )

q qT R2 , ;f i f i
2

,
b bp-( ) ( )( ) ( ) .

To transform q qT R, ;f i f i,
b b ( )( ) ( ) to the lab-frame of refer-

ence, we rotate the lab-frame coordinate system (space-fixed
frame) so as to align z labˆ( ) to the body-frame z-axis z bˆ( ), noting
that z bˆ( ) is aligned along the lab-frame internuclear axis R labˆ ( ).
Hence by utilising the Wigner-D rotation matrices D M

L
, bk ( )

defined in [59], a rotation by angles R ,R R
lab q fºˆ ( )( )

ˆ ˆ will

align z labˆ( ) with the R labˆ ( ) and bring q qT R, ;f i f i,
b b ( )( ) ( ) into the

lab-frame (i.e. q qT R, ;f i f i,
lab lab ( )( ) ( ) ), with a connection to the

body-frame. For our application we have the following defi-
nition

q R qY D Y , 34LM M
L

L
b

,
lab labå=

k
k k( ˆ ) ( ˆ ) ( ˆ ) ( )( ) ( ) ( )

where the Euler angles b are chosen such that b =
R, , 0R R

labf q =( ) ˆˆ ˆ
( ) [34, 56]. Utilising this definition and

noting that the lab-frame incident projectile-momentum is
aligned along the z-axis, the lab-frame T-matrix can be
expressed such that

q q

R R q

T R A R

L
D D Y

2 , ;

4
, 35

f i f i
L L
M M

fL M iL M

i
M

L
M

L
L f

2
,

lab lab

,
,

,
b

,
lab

0,
lab lab

f i

f i

f f i i

f

f

i
i

f
*

 å

å

p

p

- =

´
k

k k

( ) ( ) ( )

ˆ
( ˆ ) ( ˆ ) ( ˆ ) ( )

( ) ( ) ( )

( ) ( ) ( )

and the scattering amplitude of equation (28) can be expres-
sed as

q q

q

F

L
A

R D D R Y

,

4

, 36
R

fv J m iv J m f i

L L
M M

i
fv J fL M iL M iv J R

fJ m M
L

M
L

iJ m L f

,
lab lab

,
,

,
b

, 0,
lab

f f Jf i i Ji

f i

f i

f f f f i i i i

f Jf f

f

i
i

i Ji f
lab*



å

å

p
n n= á ñ

´ á ñ
k

k k

( )

ˆ
∣ ∣

∣ ∣ ( ˆ ) ( )

( ) ( )

( )

ˆ
( )( )

where L L2 1= +ˆ ( ) .

2.4. Orientation averaging and cross sections

In the classical orientation averaging procedure the target
diatomic molecule has equal probability of being oriented in
an arbitrary direction and scattering cross sections are calcu-
lated by averaging over all orientations of the molecule
[47, 60–62]. Referring to appendix A, the classical orientation
averaging formula of the cross sections can be obtained by

substituting the rigid rotor rotational wave functions (32) into
lab-frame scattering amplitude (36) and summing transitions
over all final rotational states Jf, for a molecule initially in the
ground rotational state Ji = 0. Hence in the classical orien-
tation averaging procedure the DCS is resolved for the
transition iv fvi f , where the molecule is in the Ji = 0 state
and transitions are summed over Jf analytically. In this pro-
cedure (referring to equation (36)) the lab-frame scattering
amplitude is usually expressed as

q q R

R

R q

F
L

A D

D Y

, ,
4

. 37

fv iv f i
L L
M M

i

fv fL M iL M iv R M
L

M
L

L f

,
lab lab lab

,
,

,
b

,
lab

0,
lab lab

f i
f i

f i

f f f i i i f

f

i
i

f
*





å

å

p

n n

=

´ á ñ

´
k

k

k

( ˆ )
ˆ

∣ ∣ ( ˆ )

( ˆ ) ( ˆ ) ( )

( ) ( ) ( )

( ) ( )

( ) ( )

We note that vibrational wave functions Rnv Jn n
n ( ) have a very

minor dependence on J and we assume that they are inde-
pendent of J and write them as nvnn . To obtain orientationally

averaged DCS, q q RF , ,fv iv f i,
lab lab lab

f i

 ( ˆ )( ) ( ) ( ) is substituted into
the DCS equation (18) and averaged over all orientations of
the molecule

q q R
q

q
F

d

d

1

4
, , d .

38

fv iv f

i
fv iv f i R

,

lab ,
lab lab lab 2f i

f i
lab


ò

s

pW
= W∣ ( ˆ )∣

( )

( )
( ) ( ) ( )

( )

The orientationally averaged DCS (38) is evaluated in
appendix A and the final form is

q

q
L L L L

A A

j C C C

C P

d

d

1

4
1

2 1

cos , 39

fv iv f

i L L
M M

L L

M M

M M
i i f f

fv fL M iL M iv R fv fL M iL M iv R

j
L L
j

L M L M
jM M

L M L M

jM M

L L
j

j M M M M

,

lab 2
,
,

,

,

,
b

,
b

1
0, 0

0
, ,

0, 0
0 lab

,

f i

f i

f i

f i

f i

i f

f f f i i i f f f i i i

i i i i i i

i i

f f f f

f f

f f i i f f

* * *



 

å å

å

s

p

n n n n

q d

W
= - ¢ ¢

´ á ñ á ñ

´ +

´

¢ ¢

¢ ¢

¢+ ¢

¢ ¢ ¢ ¢ ¢

-
¢ - ¢ ¢

¢-
¢- ¢

- ¢

¢ - ¢ - ¢

( )
( ) ˆ ˆ ˆ ˆ

∣ ∣ ∣ ∣

( )

( ( )) ( )

( )

( ) ( )

( )

where Cl m l m
lm

,1 1 2 2
and Pj denote Clebsch–Gordan coefficients

and Legendre polynomials, respecitvely.
The integrated cross sections are calculated by integrat-

ing the DCS in equation (39) over all final angles. Orienta-
tionally averaged integrated cross sections have the final form

q

q
A

1

4
. 40fv iv

f

i L L
M M

fv fL M iL M iv R,
,
,

,
b 2

f i
f i

f i

f f f i i i
 ås

p
n n= á ñ∣ ∣ ∣ ∣ ( )( )

Some experiments measure cross sections that are sum-
med over all final vibrational levels and are resolved for the
transition iv fi  . The closure property of the vibrational
wave functions

R R
R

R R
1

, 41

v

fv fv 2

f

f f
*n n d¢ =

¢
- ¢⨋ ( ) ( ) ( ) ( )
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can be utilised to sum integrated cross sections in
equation (40) over all final vibrational states

q

q
A

1

4
. 42

f iv

v

fv iv

f

i L L
M M

iv fL M iL M iv R

, ,

,
,

,
b 2

i

f

f i

f i

f i

i f f i i i

 

å

s s

p
n n

=

= á ñ

⨋

∣∣ ∣ ∣ ( )( )

For convenience the integrated cross section in equation (42)
can be expressed in the alternative form

, 43f iv iv f i iv R, ,i i i
 s n s n= á ñ∣ ∣ ( )

where Rf i,
s ( ) is the fixed-nuclei integrated cross section at

the internuclear distance R

R
q

q
A R

1

4
. 44f i

f

i L L
M M

fL M iL M,
,
,

,
b 2

f i

f i

f f i i

 ås
p

=( ) ∣ ( )∣ ( )( )

Scattering calculations performed in the ‘fixed-nuclei’
approximation generally refer to calculations being performed
at one internuclear distance R. Because the probability density
function of the vibrational ground state (v = 0) is approxi-
mately a Gaussian function, a common approximation is to
replace the integration in equation (43) with a fixed-nuclei
cross section (44) chosen at an appropriate value of R Rc= .
This value Rc is generally chosen as the equilibrium distance
R R0= , which is localised at the position near the peak of the
vibrational ground state wave function and hence is seen as a
good approximation of scattering from the vibrational ground
state. In this approximation equation (43) becomes

R
q

q
A R

1

4
. 45f iv f i

f

i L L
M M

fL M iL M, 0 , 0
,
,

,
b

0
2

i
f i

f i

f f i i

  ås s
p

» == ( ) ∣ ( )∣ ( )( )

As shown in previous publications [63, 64] and explicitly
in section 8 and [49], by choosing Rc to be the mean inter-
nuclear distance Rm of the ground vibrational wave function,
the fixed-nuclei approximation more accurately approximates
equation (42), compared to choosing Rc as the equilibrium
distance R0.

3. Molecular target structure

In the molecular CCC method target states are constructed
utilising the Born–Oppenheimer approximation and electro-
nic target states are formulated within the body-frame, where
the origin is set at the geometrical centre of the nuclei (as
described above in section 2.3).

3.1. H2
+ electronic target states

The H2
+ target electronic Hamiltonian HT

Elec in the Born–
Oppenheimer approximation describes an electron in the
Coulomb potential of two protons that are fixed at a distance
R and is defined as

H H R1 , 46T
Elec

1
Elec= + ( )

where R1 is the internuclear Coulomb repulsion term. The
one-electron (or positron) electronic Hamiltonian Hi

Elec for
homonuclear diatomic molecules is

r RH K r V ; , 47i i i i i
Elec = +( ) ( ) ( )

where

K r
r

l l

r

1

2

d

d

1

2
, 48i i

i i

2

2 2
= - +

+( ) ( ) ( )

r R
r r

V
z z

; . 49
R Ri i

i

i

i

i2 2

=
+

+
-

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟( ) ( )

The electron–nuclei (or positron–nuclei) potential (49) in the
Born–Oppenheimer approximation is expanded in partial
waves

r R r

r

V z v r R Y

z

v r R Y

; 2
4

2 1
, 2

1 1
4

2 1

, 2 , 50

i i i i i

i

i i

0,2,4, ..
0

0

0

å

å

p
l

p
l

=
+

= + -
+

´

l
l l

l

l

l l

=

¥

=

¥

( )
( )

( ) (ˆ )

( ( ) )
( )

( ) (ˆ ) ( )

where

v r r
r

r
, , 51i j 1

=l

l

l
<

>
+( ) ( )

r r rmin ,i j=< ( ) and r r rmax ,i j=> ( ).
The electronic target states of H2

+ are characterised by the
projection of orbital angular momentum m, parity π and spin
s, with s 1 2= . For each combination of m s, ,p( ) the gen-
eralised eigenvalue problem (for either an orthogonal or non-
orthogonal basis if{ })

H R C 0, 52
j

N

i j i j j
1

T
Elec Elecå f f e f fá ñ - á ñ =

=

( ∣ ∣ ( ) ∣ ) ( )

is solved via diagonalisation of the target electronic Hamil-
tonian (46) to obtain energies RElece ( ) (eigenvalues) and
expansion coefficients Cj (eigenvectors). Once these are
obtained, electronic target states are constructed

Cx x , 53n
m

j

N

j
n

j
m

1
1

1å fF =p p

=

( ) ( ) ( )( )

where N is the number of one-electron orbitals xj
mf p ( ).

For H2
+, one-electron orbitals are represented by

r
r

r Yx
1

, 54j
m

k l l m mj j j j sj
f j c s=p ( ) ( ) (ˆ) ( ) ( )

with m mj = , 1 lj p- =( ) and msj
c s( ) is the spin-1

2
eigen-

function with angular projection msj
. The radial functions

rk lj j
j ( ) are the Laguerre functions

r
k

k l k l
r

r L r

1

2
2

exp 2 , 55

kl
l

l
l

l k
l

l

1

1
2 1

j
a

a

a a

=
-

+ +

´ -

+

-
+

( ) ( )!
( )( )!

( )

( ) ( ) ( )

where la is the exponential fall-off parameter, Lk
l

1
2 1
-
+ are the

associated Laguerre polynomials of order l2 1+ and k ranges
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from 1 to Nl. Nl is the number of Laguerre basis function per
orbital angular momentum l, where the largest value of l is
lmax . Analytic properties of Laguerre basis functions of order

l2 1+ [65] have extensively been used in the J-matrix
method [66] to evaluate matrix elements of the target
Hamiltonian (46). These matrix elements are given in
appendix B. Note that each Laguerre basis function constructs
l2 1+ one-electron orbitals and electronic target states.

The choice of the exponential fall-off parameters la can
result in more (or less) accurate electronic pseudostates, and
controls the pseudostates energy distribution. For example
the ground state of the H2 molecule (similar to atomic He) is
very tightly bound compared to the excited states. In our
models [48, 49, 67], we chose short-ranged (large la )
Laguerre functions for the first few low-lying functions to
account for the electron correlations in the short-ranged
electronic ground state wave function. Long-ranged (small

la ) functions were utilised for the rest of the basis, which
primarily construct the relatively long-ranged electronic
excited states. The long-ranged functions la is then opti-
mised to adjust the resulting pseudostates energy distribu-
tion in order to accurately distinguish the scattering flux
captured by the continuum and discrete spectrum. We gen-
erally aim to have the negative-energy pseudostates as far as
possible from the ionisation threshold, and the first positive
energy pseudostates close to the ionisation threshold. This
allows us to accurately model the inter-channel coupling to
low-energy ionisation processes.

3.2. Molecular orbital basis functions

The multi-centre nature of the H2
+ and H2 molecules leads to a

slow convergence rate of the calculated wave functions with
respect to the orbital angular momentum l of the one-electron
orbitals. This is only an issue for the ground and few lowest-
lying excited states; other states are usually hydrogenic
and are well represented in a single-centre Laguerre basis
formulation.

Specifically for H2
+ we find a slow convergence rate of

the s1 gs ground state and p2 us excited state. For H2 only the
ground state X u

1S+ and first excited triplet state b u
3S+ conv-

erge slowly. To improve accuracy and save on computational
resources, structure calculations are performed in two steps.
Firstly, a large Laguerre basis is used to diagonalise the H2

+

target Hamiltonian (46) and generate accurate s1 gs and p2 us
states of H2

+. Secondly, a new Laguerre basis is produced with
smaller values of l and Nl.

For H2
+ the s1 gs and p2 us orbitals of this new (smaller)

basis are replaced with the accurate s1 gs and p2 us states
(molecular orbitals) calculated at the first step. For H2 the s1 gs
orbital of this new basis is replaced with the accurate s1 gs
molecular orbital calculated at the first step. This new basis is
then used to diagonalise the respective target Hamiltonian and
generate electronic states that are used in the scattering
calculations.

3.3. H2 electronic target states

The H2 target electronic Hamiltonian HT
Elec in the Born–

Oppenheimer approximation describes two electrons in the
Coulomb potential of two protons that are fixed at a distance
R and is defined as

H H H V R1 , 56T
Elec

1
Elec

2
Elec

12= + + + ( )

where V12 is the electron–electron (or positron–electron)
potential expanded in partial waves

r r

r r

V
z z

z z

v r r Y Y

1
4

2 1

, , 57

i j
i j

i j
i j

i j i j

, å p
l

=
-

= -
+

´
lm

m

l l m lm

¥

-

∣ ∣
( )

( )
( ) (ˆ ) (ˆ ) ( )

and v r r,i jl ( ) is defined in equation (51).
Electronic target states of H2 are constructed using a

similar method to that described above in section 3.1 for H2
+.

The target Hamiltonian (56) is diagonalised in a set of anti-
symmetrised two-electron configurations and then target
states are constructed. The electronic target states of H2 are
characterised by their orbital angular momentum projection
m, parity π and spin s. The two-electron configurations

x x,m s
, 1 2fg d
p ( ) of H2 are constructed from antisymmetric com-

binations of one-electron orbitals xf ( ) (54)

m smx x x x,
1

2 1
: ,

58

m s
s, 1 2

,
1 2f

d
f f p=

+
ñg d

p

g d
g d( )

( )
∣ ( ) ( )

( )

where the antisymmetrisation operator is P1 12 = - .
Diagonalising the H2 target Hamiltonian (56), eigenvec-

torsC n
,g d

( ) and eigenvalues are obtained. H2 target states are then
constructed and are represented by ordered configurations

r r

C m sm

r r
C r r

Y Y X

x x x x, :

1

, 59

n
m s n

s

n

l m l m m
s

1 2 , 1 2

1 2
, 1 2

1 2 s

å

å

f f p

j j

F = ñ

=

´

p

gd
g d g d

gd
g d g d

g g d d

( ) ∣ ( ) ( )

( ) ( )

(ˆ ) (ˆ ) ( )

( )

( )

where, to account for the antisymmetry of the two-electron
wave functions (59), the CI coefficients satisfy
C C1n s n= -gd dg( )( ) ( ), and the spin function is

X C . 60m
s

m m
m m

sm
m m, 1

2
1 2s

s s
s s

s
s s1

2
å c s c s=
g d

g d
g d
( ) ( ) ( )

3.4. Nuclear wave functions

For a diatomic molecule in the n electronic state, the total
non-relativistic Born–Oppenheimer Hamiltonian is given by

H
R

J J m

R
R

1

2

d

d

1

2
, 61n

n
n

BO
2

2

2

2
Elec

m m
e= - +

+ -
+

( ) ( ) ( )

where the reduced mass is M M M M1 2 1 2m = +( ) and Mi is
the mass of the individual nuclei;Mi = 1836.152 for a proton,
Mi = 3670.483 for a deuteron and Mi = 5496.922 for a triton.

8

J. Phys. B: At. Mol. Opt. Phys. 50 (2017) 123001 Tutorial



By performing structure calculations over the range of R and
interpolating, the Born–Oppenheimer potential energy curves

Rn
Elece ( ) are obtained (as defined in [57]). Here, however, for
the electronic ground state (m = 0) we utilise the accurate
Born–Oppenheimer potential energy curve of Wolniewicz
and Poll [68] for H2

+ and for H2 we use the potential energy
curve of Koloset al [69].

Nuclear wave functions RnvJmJX ( ) of the electronic
ground state are calculated via diagonalisation of the total
Hamiltonian (61) for each rotational angular momentum J
using a set of nuclear orbitals

R R
R

R Y
1

. 62j k J J mj j j jx j=( ) ( ) ( ˆ ) ( )

Here Rk Jj j
j ( ) are Laguerre basis functions (55). We diag-

onalise the total m=0 Born–Oppenheimer Hamiltonian (61)
with a large set of J=0 nuclear orbitals that was taken to
convergence. The resulting molecular state energies [42, 49]
were found to be in good agreement with the calculations of
Wünderlich and Fantz [70] for H2

+, D2
+ and T2

+, and of
Wünderlich and Fantz [71] for H2.

4. The CCC method

Following from the adiabatic-nuclei approximation intro-
duced in section 2.2, the scattering system Schrödinger
equation is formulated in the body-frame for a fixed inter-
nuclear distance R (and orientation) of the diatomic molecule

E H 0. 63i
- Y ñ =+ +( )∣ ( )( ) ( )

Here the scattering Hamiltonian H is a sum of the single-
particle Hamiltonian for the projectile H0

Elec (47), the pro-
jectile-target electron interaction potential terms V0j (57) and
the target Hamiltonian HT

Elec given in equation (46) for H2
+

and equation (56) for H2

H H H V . 64
j

N

jT
Elec

0
Elec

1
0

e

å= + +
=

( )

A general form of the scattering system asymptotic Hamil-
tonian Hasy is chosen such that

H H K
z Z

r
U , 65asy T

Elec
0
Elec 0 Ion

0
0= + + + ( )

where z0 is the charge of the projectile. This form of Hasy

allows for scattering from ionic targets with asymptotic
charge ZIon (for H2

+ Z 1Ion = ). The method described here is
also suitable for asymptotically neutral targets by taking
Z 0Ion = (as is the case for H2). An optional short-ranged
distorting potential U0 (detailed later in section 4.4) is used
purely for numerical stability of the solution and does not
change final CCC results. For this choice of the asymptotic
Hamiltonian Hasy (65), kn

NF ñ+∣ ( ) satisfy

k kI E H E0 ,

66

N
n
N

k n
N

n
N

asy e e= - F ñ = - - F ñ+ + + +( )∣ ( )∣
( )

( ) ( ) ( ) ( )

where IN is the projection operator (75) in the target space and
k ñ∣ ( ) denotes a distorted-wave normalised in momentum

space, which is a solution of the equation

kK z Z r U 0. 67k 0 0 Ion 0 0e - - - ñ = ( )∣ ( )( ) ( )

Following from equation (30) the CCC method utilises a
multichannel expansion for this choice of Hasy (65), which is
explicitly antisymmetrised in the case of electron-scattering.
The fixed-nuclei total scattering wave function Rx x, ;i 0

Y + ( )( )

is expanded over a (near) complete set of N positive- and
negative-energy pseudostates Rx;n

NF ( ) of the target (for-
mulated in section 3)

R R f R

R

x x x x

x x

, ; ; ;

, ; , 68

i
N

n

N

n
N

ni
N

i
N

0
1

0

0
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y

Y = F

=

+

=

+

+

( ) ( ) ( )

( ) ( )

( ) ( )

( )

where the positive-energy pseudostates provide a discretised
representation of the target continuum. The CCC method relies
on the completeness of the Laguerre basis and hence pseu-
dostates Rx;n

NF ( ) such that

R Rx x x xlim , ; , ; . 69
N

i
N

i0 0
 Y = Y

¥

+ +( ) ( ) ( )( ) ( )

The single-centre positron scattering approach is discussed in
section 8.1, and note that for positron scattering  is not
required in equation (68).

4.1. Non-uniqueness in electron scattering

The antisymmetric total wave function Rx x, ;i
N

0
Y + ( )( ) in

equation (68) is unique, however Rx x, ;i
N

0
y + ( )( ) is not

unique since the antisymmetrisation operator can transform
two different functions into one single function. Hence
expression (68) is too general and leads to non-unique solu-
tions [54, 55, 72, 73]. For example, suppose functions
g Rx ;n

N
0

 ( ) are of the form

R g Rx x0 ; ; , 70
n

N

n
N

n
N

1
0 å= F

=

( ) ( ) ( )

then there are solutions

R R

f R Bg R

x x x

x x

, ; ;

; ; , 71

i
N

n

N

n
N

ni
N

n
N

0
1

0 0



 

åY = F

´ +

+

=
+

( ) ( )

( ( ) ( )) ( )

( )

( )

for any constant B.
In practice this non-unique expansion leads to the non-

unique half-on-shell K- and T-matrices and consequently
can lead to numerical instabilities in the calculation of the
on-shell K- and T-matrices. Non-uniqueness becomes evi-
dent when a small variation in the momentum quadrature
points in the Green’s function (81) (k-grid) leads to a large
variation in the on-shell T-matrix results. This is a purely
numerical problem that has been addressed for atomic and
ionic targets [54, 55, 73], and a similar technique is applied
to molecules. The non-uniqueness problem is solved by
forcing g Rx ; 0n

N
0

 =( ) .
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For electron scattering from H2
+ forcing g Rx ; 0n

N
0

 =( )
is accomplished by making Rx x, ;i

N
0 1

y + ( )( ) antisymmetric
like Rx x, ;i

N
0 1

Y + ( )( ) , hence

r r r rR P R, ; 1 , ; . 72r ri
N

i
N

0 1 , 0 10 1
  y y= -+ +( ) ( ) ( ) ( )( ) ( )

By having r r R, ;i
N

0 1
y + ( )( ) antisymmetric (72), the following

condition is true

f f1 , 73j
N

ni
N

n
N

ji
N  áF ñ = - áF ñ+ +∣ ( ) ∣ ( )( ) ( )

which leads to the property

k kP I1 , 74r rf f
N

i
N

f f
N N

i
N

, 00 1
  y y- á F ñ = á F ñ- + - +( ) ∣ ∣ ∣ ∣ ( )( ) ( ) ( ) ( )

where the projection operator IN0 is in the projectile space 0
and is expressed as an expansion over all electronic target
states of H2

+

I . 75N

n

N

n
N

n
N

0
1

å= F ñáF
=

∣ ∣ ( )

Utilising equation (74), the antisymmetrisation property of
r r R, ;i

N
0 1

y + ( )( ) is implemented within the energy term of the
V-matrix elements

k

k

k

k

E P

E P

E P

E I

1

1 1

1 1

76

r r

r r

r r

f f
N

i
N

f f
N

i
N

f f
N

i
N

f f
N N

i
N

,

,

,

0

0 1

0 1

0 1

 

 

 



y

q q y

q y

q y

- á F ñ

= - - + á F ñ

= - - á F ñ

+ á F ñ

- +

- +

- +

- +

( ) ∣ ∣

( ) ( ) ∣ ∣

( ) ( ) ∣ ∣

∣ ∣ ( )

( ) ( )

( ) ( )

( ) ( )

( ) ( )

Hence the antisymmetrisation property of r r R, ;i
N

0 1
y + ( )( )

(72) is enforced within the energy term of the V-matrix ele-
ments for non-zero θ. For electron scattering from H2 and
other quasi two-electron atoms, a similar approach is taken in
the CCC method to eliminate non-unique solutions [55].
Details of the method are given in appendix C. The numerical
stability of a calculation can be checked by varying θ, and the
final CCC results are checked to be independent of the choice
of non-zero θ.

4.2. Momentum-space coupled-channel Lippmann–Schwinger
equation

The CCC method utilises the close-coupling expansion (68)
and transforms the Schrödinger equation (63) into the
momentum-space coupled-channel Lippmann–Schwinger
equation. Here the dependence on R is suppressed for the
brevity of notation.

Substituting Rx x, ;i
N

0
Y + ( )( ) (68), the scattering

Hamiltonian H (64) into the Schrödinger equation (63), and
rearranging to have the asymptotic Hamiltonian Hasy (65) on

the left-hand side

E H K

V V E H P . 77

i
N

j

N

j
j

N

j i
N

T 0
Elec

0
1

0
1

0

e e



å å

y

y

- - ñ

= + + - ñ

+ +

= =

+
⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

( )∣

( ) ∣ ( )

( ) ( )

( )

Subtracting the asymptotic target ion potential z Z

r
0 Ion

0
and short-

ranged distorting potential U0 on both sides

E H V , 78i
N

U i
N

asy
 y y- ñ = ñ+ + +( )∣ ∣ ( )( ) ( ) ( )

where

V V V
z Z

r
U E H P . 79U

j

N

j
j

N

j0
1

0
0 Ion

0
0

1
0

e e

å å= + - - + -
= =

( ) ( )

Note that in single-centre positron scattering the exchange
interaction (last term of equation (79)) is not present. To solve
non-uniqueness for electron scattering, the interaction
potential VU (79) will have terms that are dependent on  , N
and θ [referring to equation (76)]. For generality, here we use
the notation VU

N q( ) for the interaction potential.
For the asymptotic Hamiltonian Hasy (65) the Green’s

function approach is utilised to transform the Schrödinger
equation (63) to the momentum-space Lippmann–Schwinger
equation


Premultiplying equation (80) by k Vf f
N

U
N qá F- ∣ ( )( ) , the

coupled Lippmann–Schwinger equation for the distorted-
wave T-matrix is obtained

k k k k

k k k k

T V

k
V T

E i
d

0
,

81

f f
N

U
N

i
N

i f f
N

U
N

i
N

i

n

N

k

f f
N

U
N

n
N

n
N

U
N

i
N

i

k n
N

1

3

 

 

å

q

q

e e

á F F ñ = á F F ñ

+
á F F ñá F F ñ

- - +

- + - +

=

- - - +

+

∣ ∣ ∣ ( )∣

⨋
∣ ( )∣ ∣ ∣

( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( )

where f denotes the final state of the system and

k k kT V . 82f f
N

U
N

i
N

i f f
N

U
N

i
N  q yá F F ñ º á F ñ- + - +∣ ∣ ∣ ( )∣ ( )( ) ( ) ( ) ( )

The short-ranged distorting potential U0 in equations (66) and
(67) can lead to a number of projectile bound states. For ionic
targets there are an infinite number of projectile bound states,
while for neutral targets U0 can support a finite number of pro-
jectile bound states. Projectile bound states are included into the
Green’s function until convergence is reached. Referring to
equation (82) the distorted-wave T-matrix k kTf f

N
U

N
i
N

i
á F F ñ- +∣ ∣( ) ( )

is defined for the potential V V UU
N N

0
 q q= -( ) ( ) . The

k
k k

k
V

E i
d

0
. 80i

N
i
N

i
n

N

k

n
N

n
N

U
N

i
N

k n
N

1

3
 

åy
q y

e e
ñ = F ñ +

F ñá F ñ

- - +
+ +

=

- - +

+
∣ ∣ ⨋

∣ ∣ ( )∣
( )( ) ( )

( ) ( ) ( )

( )
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physical T-matrix T N is extracted via the relation [73]

q q q

k k k q

T V

T U , 83

f f
N N

i
N

i f f
N N

i
N

f f
N

U
N

i
N

i f i f i, 0

  



y

d

á F F ñ º á F ñ

= á F F ñ + á ñ

- + - +

- + - +

∣ ∣ ∣ ∣

∣ ∣ ∣ ∣ ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

where q ñ∣ ( ) refers to a Coulomb wave function for an ionic
target or a plane-wave for a neutral target. The resulting on-shell
T-matrix elements are physical and are used to calculate body-
frame scattering amplitudes. Note that although V-matrix ele-
ments in equation (81) have a dependence on an arbitrary θ, the
resultant on-shell T-matrix elements do not.

4.3. Solving the coupled Lippmann–Schwinger equation

A partial-wave expansion of the projectile wave function allows
the three-dimensional Lippmann–Schwinger equation (81) to be
solved in effectively one-dimension. The distorted-wave partial-
wave expansion is

where k is the linear momentum vector and Ls and Ld are the
Coulomb and distorting phase shifts respectively. Angular
terms in the matrix elements of the Lippmann–Schwinger
equation can now be evaluated analytically. This allows us to
perform accurate, large-scale multichannel calculations and
minimises computational resources required.

Utilising the partial-wave expansion of the projectile
wave function (84) and analysing the V-matrix elements
k kVf f

N
U

N
i
N

i
 qá F F ñ- ∣ ( )∣( ) ( ) in the Lippmann–Schwinger

equation (81), it can be shown that symmetric linear mole-
cules and their isotopologues conserve the scattering system
total electronic orbital angular momentum projection ,
parity Π and spin  , where

m M m M

s s

,

1 1 ,

1 2 1 2 ,

i i f f

i
L

f
L

i f

i f




p p

= + = +

P= ´ - = ´ -
=  = 

( ) ( )
∣ ∣ ∣ ∣

and m, π and s denote the electronic target state orbital angular
momentum projection, parity and spin respectively. In practice
the sum in the partial-wave expansion of the projectile (84) is
taken to a maximum orbital angular momentum Lmax and
projection Mmax . CCC scattering calculations include all pos-
sible channels of total spin  , (odd and even) parity Π up to the

maximum total orbital angular momentum projection max ,
where max max   - . The same method is also
applicable to scattering from heterogeneous linear molecules,
however the T- and V-matrix elements will not have con-
servation in the total parity Π.

The partial-wave expansion of the V- (or T-) matrix for an
incident electron with orbital angular momentum Li and
orbital angular projection Mi has the form

k k

k k

V k k

i

V k k Y Y

e

, , 85

f f
N

U
N

i
N

i f i

L L
M M

L M
L L

fL M iL M f i L M f L M i

1

,
,

,
i

,
b b

f i

f i

i f Lf Lf Li Li

f f i i f f i i

max max

*



 

å

qá F F ñ =

´

´

s d s d

-  -

- +  

P

∣ ( )∣ ( )

( ) ( ˆ ) ( ˆ ) ( )

( ) ( )

( )

( ) ( )

or alternatively as

k k k k

k k

V k k k k i

Y Y

V

, e

d d

, 86

fL M iL M f i f i
L L

f i L M f L M i

f f
N

U
N

i
N

i

,
i

b b

f f i i
f i Lf Lf Li Li

f f i i
*

 



ò ò
q

=

´

´ á F F ñ

s d s dP - - +  

- 

( ) ( )

ˆ ˆ ( ˆ ) ( ˆ )

∣ ( )∣ ( )

( )

( ) ( )

( ) ( )

where V k k,fL M iL M f i,f f i i

 P ( ) are the real V-matrix elements eval-

uated in appendix C, and k
bˆ( )
refers to the electron momentum

vector in the body-frame. Substituting equation (85) into the
Lippmann–Schwinger equation (81), complex phases
i eL L ii f Lf Lf Li Lis d s d- +  ( ), constants k kf i

1-( ) and angular func-

tions k kY YL M f L M i
b b

f f i i
*( ˆ ) ( ˆ )( ) ( )

can be factored out. Performing the

integration over kd ˆ in the Lippmann–Schwinger equation (81),
the partial-wave Lippmann–Schwinger equation for the dis-
torted-wave T-matrix can be written as

The Lippmann–Schwinger equation (87) has been efficiently
solved for scattering from atomic and ionic targets
[54, 73, 74], and here the same standard techniques are
utilised. The loss of total angular momentum conservation in
equation (87) is the major difference between solving
equation (87) for molecules and atoms.

k r k
kr

i u r k Z Y Y
2 1

e ; ; , 84
L M

L
L LM LM m

,

i
IonL L

s
*åp

c sñ = s d
¥

 +∣ ( ) (ˆ) ( ˆ) ( ) ( )( ) ( )

T k k V k k k
V k k T k k

E i
, , d

, ,

0
. 87fL M iL M f i fL M iL M f i

n

N

L M

L M

k

fL M nL M f nL M iL M i

k n
N, ,

1 ,

, , ,

f f i i f f i i

f f i i
max max

   
   

å å
e e

= +
- - +

P P
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¢ ¢
P

¢ ¢
P

+
( ) ( ) ⨋

( ) ( )
( )

( )
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Evaluating the singularity in equation (87) analytically, it
becomes

T k k V k k

k
V k k T k k

E

k V k k T k k

, ,

d
, ,

i , , ,

88

fL M iL M f i fL M iL M f i

n
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n
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, , ,
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,
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f f i i f f i i

f f i i

f f i i

max max

0 max max



   

   

   

å å

å å

e e

p
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-
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P
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P

+
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-
¢ ¢

P
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P

( ) ( )

⨋
( ) ( )

( ) ( )
( )

( )

where  indicates the integral is of principal value type, the
total energy is E i k f ki fe e e e= + = + , and the on-shell

momentum k E2n ne= -( ) is always real. N0 is the num-
ber of open states; a state is open if En e . To obtain a
symmetric, unitary T-matrix and to save on computational
resources, the K-matrix formulation is introduced to solve
(88) using real arithmetic

K k k T k k

k K k k

, ,

i , . 89

nLM iL M n i
n
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L M

L M

nLM n L M n n
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0 max max
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Summing over all initial channels in (88), performing some
algebra and substituting (89), one obtains

K k k V k k

k
V k k K k k

E
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d
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Letting the indices i and f refer to channels n m s k L M,i i i i i i ip( )
and n m s k L M,f f f f f f fp( ), respectively, the coupled integral
equations are solved by replacing the integrand with a
quadrature rule

K V w V K , 91fi fi
n

n fn ni
1

       å= +P P

=

P P ( )

where, wn contain the Gaussian type weights divided by the
Green’s function denominator (energy terms) and n now runs
over all combinations of off-shell momentum quadrature (k-
grid) points and channels nm s kL M,p ¢ ¢( ) for a particular
partial-wave. Given that the integrand contains a singularity at
different energies for open channels, the zero-to-infinity
integration interval is typically broken into regions such that
the singularity can be managed using an even number of
Gaussian quadrature points arranged symmetrically around
the singularity. The remaining finite intervals are then man-
aged by other Gaussian quadratures, with the final interval to
infinity managed via a power transformation law. In addition,
the bound states of the projectile are included as extra
quadrature points with weight wn = 1 in equation (91), for
more details see [73]. Equation (91) is rearranged to form a
linear system of equations Ax = b by letting channels f run
over the same range as n. This is indicated by replacing index
f with n¢. Equation (91) is now rearranged in the form

w V K V . 92
n

n n n n n ni n i
1

,
     å d - =

=
¢ ¢

P P
¢
P( ) ( )

Equation (92) is solved for the half-on-shell K-matrix ele-
ments Kni

 P using a standardised linear equation solver, such
as SCALAPACK. Substitution of Kni

 P into equation (91)
allows for the on-shell solution Kfi

 P . The real on-shell
K-matrix elements are then used to solve the linear system of
equations for the complex distorted-wave T-matrix elements
via equation (89)

k K T Ki , 93
n

N

n i n ni fn fi
1

,

0
     å d p+ =

=

P P P( ) ( )

here n is the on-shell channels nm s k L M, np ¢ ¢( ) and N0 is the
total number of open on-shell channels. Incidentally, an
alternative to this numerical treatment of the Green’s function
has been developed using an analytical approach for atoms
[75, 76] and ions [77]. It will be extended to molecular targets
in due course.

From equation (83) the distorted-wave T-matrix elements
are used to obtain physical (U 00 = ) T-matrix elements
T q q,fL M iL M f i,f f i i

 P ( ), which in the partial-wave form is given by

T q q T k k

q

, , e

e sin , 94

fL M iL M f i fL M iL M f i
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d

P P +

-

( ) ( )

( ) ( )

( )

where q is the linear momentum of the projectile and indicates
the physical T-matrix elements. The physical T-matrix can
then be expressed as

q q

q q

T q q i

T q q Y Y
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, .
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This physical body-frame T-matrix is used to obtain the
laboratory-frame scattering amplitudes defined in equations
(35)–(37). For electronically homogeneous diatomic mole-
cules the partial-wave term A RfL M iL M,

b
f f i i

 ( )( ) utilised in

equations (33), (35)–(37) is more appropriately replaced by

A R q q i

T q q R

2

e , ; , 96

fL M iL M f i
L L

fL M iL M f i

,
b 2 1

i
,
b

f f i i
i f

Li Lf
f f i i
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´ s s

P - -

+ P

( ) ( ) ( )
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( ) ( )

where T q q R T q q, ; ,fL M iL M f i fL M iL M f i,
b

,f f i i f f i i

   ºP P( ) ( )( ) in equations

(94) and (95).

4.4. Choice of the short-ranged distorting potential U0

Projectile wave functions with large values of momentum k are
highly oscillatory and hence can lead to a loss of accuracy in the
calculation of the V-matrix elements k kVf f

N
U

N
i
N

i
 qá F F ñ- ∣ ( )∣( ) ( ) .

As Z increases, the projectile-nuclei term V0 in equation (79) is
responsible for making V-matrix elements with larger values of
k to become more important. To effectively deal with this
numerical issue, a short-ranged distorting potential U0 is chosen
such that it cancels the spherical part of the V0 potential. Using
the antisymmetrisation property of the target states, the
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distorting potential can be written as

r

U z Zv r R
z Z

r

z N r v r r

2 , 2

d , , 97n

0 0 0 0
0 Ion

0

0 e
3 2

0 0 1ò

= -

- F

( )

∣ ( )∣ ( ) ( )

where r is collectively all target electronic spatial coordinates, n
is typically the electronic ground state and v r r,0 0 1( ) is defined
in equation (51). This form of U0 is spherically symmetric,
short-ranged and ensures the shortest-range V-matrix elements
by removing the projectile-nuclei term V0 for the 0l = partial-
wave (referring to equation (50)). The use of a distorting
potential is a purely numerical technique which saves on
computational resources when solving the integral in
equation (81). Results of T N from equation (83) must be
independent of U0.

5. ABS (top-up) technique

The direct-potential V-matrix can be calculated without the
infinite series partial-wave expansion of the projectile (84) by
applying the Bethe-formula [78], which allows analytic
integration over the projectile coordinate space. Here the
plane-wave ABS technique is applied to both charged and
neutral targets for inelastic-scattering only, hence by ortho-
gonality of the target states the matrix elements of the non-
spherical potential V0 and asymptotic potential z Z

r
0 Ion

0
are zero.

The ABS technique is not used for elastic scattering because
in a close-coupling calculation the elastic cross section con-
verges quickly with respect to the partial-wave expansion.
Also to describe elastic scattering the effect of dipole polar-
isation must be included [79], which comes in at the second-
order Born approximation.

Note that in the present formulation the target states are
defined in the body-frame of reference. Therefore we have
chosen to evaluate the Born matrix elements in the body-
frame. The analytic Born body-frame scattering amplitude is
formulated and then transformed to the lab-frame.

Writing out the direct-potential V-matrix for inelastic-
scattering and substituting plane waves normalised in
momentum space (with the normalisation constant 2 3 2p -( ) )
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where r represents all target electrons spatial coordinates
collectively and Q q qi f= - . Utilising the Bethe-formula
[78]
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and the multipole expansion, equation (98) becomes
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To carry out analytic integration over the angular terms in
equation (100) the exponential term e Q ri 1· is expanded in
partial-wave form

Q ri j Qr Y Ye 4 . 101Q ri
1 11 *åp=
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l
l lm lm

¥
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Substituting (101) into equation (100), the analytic Born
matrix elements (labelled by superscript AB( )) are con-
veniently expressed as
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For H2
+ the analytic Born matrix elements V QAB
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Noting the Clebsch–Gordan coefficient triangle rules and the
one-electron orbital overlaps (B.8) (i.e. m m,d b d), V QAB

f i,
lm

( )( ) in

equations (103) and (104) must have m mf im = - so that
V QAB

f i,
lm

( )( ) is non-zero.

5.1. Analytic Born orientation averaged DCS

In the above section the analytic Born matrix elements (100)
were evaluated in the body-frame. Following from the
definition of the body-frame scattering amplitude in
equation (33), and noting the definition of the first-Born
approximation

q q q qT V , 105f f i i f f i iá F F ñ = á F F ñ- +∣ ∣ ∣ ˜∣ ( )( ) ( )
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the analytic Born body-frame scattering amplitude for the
transition iv fvi f is conveniently expressed as

QF A Q Y , 106fv iv fv f i iv R,
AB b

,
AB b b

f i f i
*å n nW = á ñ

lm lm
lm( ) ∣ ( )∣ ( ˆ ) ( )( ) ( ) ( ) ( ) ( )

where Ṽ denotes the direct potential between the projectile
and the target

V V V
z Z

r
, 107

j

N

j0
1

0
0 Ion

0

e

å= + -
=

˜ ( )

superscript b( ) indicates the body-frame of reference,

A Q R i V Q R; 2 ; 108f i f i,
AB b 2

,
AB bp= -

lm

l

lm

( ) ( ) ( ) ( )( ) ( ) ( ) ( )

and V Q R;AB b
f i,
lm

( )( ) ( ) is the body-frame fixed-nuclei analytic

Born matrix elements defined in equations (103) and (104).
Note that due to the orthogonality of the target states, the first
and last term of the interaction potential (107) do not
contribute to inelastic transitions.

To transform the analytic Born body-frame scattering
amplitude Ffv iv,

AB b
f i

W( )( ) ( ) to the lab-frame, qi
labˆ( ) is rotated so that

qi
labˆ( ) is aligned with the body-frame z-axis. The definition in

equation (34) is again utilised such that

Q R QY D Y , 109
b

,
lab lab* * *å=lm

r
r m
l

lr( ˆ ) ( ˆ ) ( ˆ ) ( )( ) ( ) ( )

where in the lab-frame of reference the angle Q
labˆ ( )

with
respect to the lab-frame z-axis (or qi

labˆ( )) is

q q Qarccos cos 110Q qi f
lab lab lab

f
q q= -(( ( )) ) ( )( )

ˆ
( ) ( )

and q
lab
f

q ˆ
( ) is the angle between the qi

labˆ( ) and qf
labˆ( ), as well as

the angle between qi
bˆ( ) and qf

bˆ( ). Q∣ ∣ has the same form in both

the body- and lab-frames of reference

Q q q

q q

Q Q Q

q q 2 , 111

i f

i f i f
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2 2

= = = = -
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where vectors qi and qf are in the same frame as Q. The
analytic Born lab-frame scattering amplitude is now defined
as

R
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The analytic Born DCS is obtained by substituting
RF ,fv iv,

AB lab lab

f i
W( ˆ )( ) ( ) ( ) into the orientation averaged DCS

equation (38). The final form of the analytic Born DCS is

q
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For a full derivation of the analytic Born DCS orientation
averaging procedure see appendix A. The orientation aver-
aged integrated cross sections are calculated by numerically
integrating over q

lab
f

q ˆ
( ), noting that Q b( ) is dependent upon q

lab
f

q ˆ
( )

(refer to equation (111) and preceding discussion).

5.2. ABS method

The ABS method is generally used to top-up partial-wave
differential and integrated cross sections. Here the ABS
method is used for integrated cross sections. In our recent e−–
H2 scattering paper [48] we describe the ABS technique uti-
lised for topping-up DCS.

Utilising the Born subtraction method, orientationally
averaged fixed-nuclei inelastic integrated cross sections are
calculated via

, 114f i f i f i f i, , , ,
AB

max





  ås s s s= - +

P

P P( ˜ ) ( )( )

where the orientationally averaged fixed-nuclei partial-wave
(close-coupling) integrated cross section f i,

 s P is calculated
with equations (44) and (96). The orientationally averaged par-
tial-wave Born integrated cross section f i,

s P˜ is calculated with

equations (44) and (96) but with e T q q,i
fL M iL M f i,

Li Lf
f f i i

 s s+ P ( )( )

replaced by V q q,fL M iL M f i,f f i i

P˜ ( ) (refer to equations (95), (105)
and (107)). Orientationally averaged analytic Born integrated
cross sections f i,

ABs( ) are calculated from the analytic Born DCS

(113) via numerical integration over q
lab
f

q ˆ
( ).

6. Convergence studies

In [80] we gave a detailed discussion of convergence studies
within the (atomic and molecular) CCC method and demon-
strated convergence (accurate to within numerical accuracy;
approximately better than 5%) of the major positron–H2

Figure 1. Total ionisation cross section (TICS) of electron scattering
from the He+ ground state. The molecular CCC calculations for the
united atom limit (R = 0 a0) of H2

+ are compared with the atomic
CCC code calculations [81] and the measurements of
Peartet al [82].
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scattering cross sections. The reader is referred to [80] for the
full details of checking convergence in CCC calculations and
[45] for discussion on uncertainty estimates in atomic and
molecular data.

Here we demonstrate convergence of the electron–H2
+

cross sections within the fixed-nuclei approximation. How-
ever, first we demonstrate the accuracy of the molecular CCC
code by performing calculations in the unified atom limit
(R = 0 a0) of H2

+, which by omitting the internuclear Cou-
lomb repulsion term R1 in equation (46) is equivalent to
modelling He+.

6.1. Unified atom limit test for e−–He+

The accuracy of the molecular CCC calculations is demon-
strated by comparing R=0 a0 results with the atomic CCC
code results for electron–He+ scattering [81]. The difference
between the two codes is that the atomic CCC calculations
conserve total orbital angular momentum  , total orbital
angular momentum projection, parity Π and spin  , while
molecular calculations conserve total orbital angular momen-
tum projection , parity Π and spin  . Consequently the
formulation of the atomic and electronic molecular target
states, V-matrix elements and the set of coupled equations are
very different. Here the atomic and molecular CCC calcula-
tions both use the same size Laguerre basis with N l15l = - ,
l 4max = and Laguerre functions with exponential fall-offs

1.4la = . The atomic code diagonalisation generated 65 states,
while the molecular code produced 305 states. Atomic CCC
calculations were performed up to 15 = for both singlet and
triplet spin  . The molecular CCC calculations were performed
with a projectile partial-wave expansion with maximum orbital
angular momentum L 8max = . The singlet and triplet spin  ,
odd and even parity Π and maximum total orbital angular
projection 8max = channels were included. Both codes use
the ABS method to top-up the partial-wave expansion. TICSs
of electron scattering from the ground-state of He+ are pre-
sented in figure 1. The atomic and molecular CCC code results
are compared with the experimental measurements of
Peartet al [82] and are in excellent agreement with each other
and experiment across the entire energy range.

6.2. Convergence of e−–H2
+ cross sections with the number of

states

For electron scattering from H2
+ and its isotopologues the

major scattering processes (above 10 eV) are DE (12) and
(13), and DI (17). In experiment the proton production (PP)
cross section is measured as 2PP DE DIs s s= + . Almost all
electronically exited states of H2

+ are repulsive and excitation
from the ground state to the electronically excited states leads
to dissociation of the molecule (within the adiabatic-nuclei
approximation). We have assumed that the DE cross section
measured by experiment is the sum of all electronic excitation
cross sections. This is a generally accepted approximation
[83–85] for collision energies (above 10 eV), where the direct
DE cross section is dominant compared to the resonant DE
cross section [86].

For e−–H2
+ scattering molecular CCC calculations were

conducted over the energy range from 10 to 1000 eV and
performed with a projectile partial-wave expansion up to
orbital angular momentum L 9max = . All total orbital angular
momentum projection, odd and even parity Π and singlet
and triplet spin  channels were included in the calculation up
to 9max = . The orientationally averaged ABS method
(described in section 5) was used to top-up the partial-wave
expansion.

Convergence studies of the close-coupling (target state)
expansion are investigated for electron scattering from H2

+ at
the equilibrium distance R0 = 2.0 a0. A 351-state CCC
calculation is compared with a 289-state and 227-state CCC
calculation. Note that these scattering calculations omitted the
highest energy pseudostates from the structure models
described below. The highest-energy pseudostates in a CCC
calculation can usually be omitted without changing the final
results as they have a large energy and are normally closed in
the scattering calculations. This ensures that high-energy
highly oscillatory pseudostates do not result in inaccurate V-
matrix elements.

The 351-, 289- and 227-state structure models utilise the
molecular orbital method (described in section 3.2) for the
s1 gs and p2 us orbitals, which were produced with a large
basis that had N l60l = - functions with l 9max = and

1.4la = . These molecular orbitals replace the s1 gs and p2 us
Laguerre basis orbitals in the following models. The 351
states used in the scattering calculation were generated with a
second Laguerre basis that had N l17l = - , l 4max =

Figure 2. Convergence studies of electron scattering from H2
+ at the

equilibrium distance R0 = 2.0 a0. 351-, 289- and 227-state CCC
calculations are presented for the proton production (PP) and
dissociative ionisation (DI) cross section. Target states are calculated
with Nl Laguerre basis functions for each orbital angular momentum
l up to lmax .
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Laguerre basis functions with exponential fall-offs 1.4la = .
This Laguerre basis was also used in the 227-state model,
however basis functions were restricted up to l 3max = . The
289-state model was constructed from a Laguerre basis that
had N l15l = - , l 4max = and 1.4la = .

351-, 289- and 227-state molecular CCC calculations are
presented in figure 2 for R0 = 2.0 a0 PP and DI cross sections.
These calculations yield practically the same results and are
therefore convergent in Nl and lmax . The PP cross section
feature at 20 eV is from the newly opened p2 up states
contribution to the cross section.

6.3. Convergence of e−–H2
+ scattering with the projectile

partial-wave expansion

Here convergence of the R0 = 2.0 a0 CCC calculations is
investigated with respect to the size of the projectile-electron
partial-wave expansion and the use of different top-up
procedures.

For the DI cross section, TDCC calculations have been
performed for R0 = 2.0 a0 with a partial-wave expansion up
to L 5max = and included up to 2max = channels [87].
They utilised a distorted-wave top-up for the higher terms up
to L 16max max= = . Here we investigate the plane-wave
ABS and unitarised Coulomb Born approximation (UCBA)
top-up procedures. The UCBA approximates equation (90) as

K k k V k k, , , 115fL M iL M f i fL M iL M f i, ,f f i i f f i i

  =P P( ) ˜ ( ) ( )

where k indicates a distorted Coulomb wave and Ṽ indicates
the direct part of the interaction potential (107) V-matrix
elements.

To test the current top-up procedure, the 351-state CCC
results are calculated with different sized partial-wave
expansions that utilise the UCBA to top-up results up to
L 16max max= = and the orientationally averaged ABS
technique to top-up results for the higher terms ( 16max > ).
These results are compared in figure 3 with the TDCC results
[87] and 351-state CCC results that utilise just the orienta-
tionally averaged ABS method to top-up results. Firstly
convergence is achieved for the L 7max max= = and
L 9max max= = calculations using either the UCBA or
ABS top-up procedures. The L 5max = 2max = CCC
results that utilise the UCBA top-up procedure are in excel-
lent agreement with the corresponding TDCC results, how-
ever, the TDCC results are approximately 20% larger than the
converged CCC results at the cross section peak. For these
top-up procedures (ABS and UCBA) there is only a very
minor difference in the converged results (L 7max max= =
and L 9max max= = ). Therefore the orientationally aver-
aged plane-wave ABS method is sufficiently accurate for
close-coupling calculations with a converged partial-wave
expansion, as is the case here.

7. Electron scattering from H+
2 and its isotopologues

Experimentally H2
+ is produced by electron-impact ionisation

of H2 which leaves H2
+ in a range of vibrationally excited

states. Due to the lack of dipole moment of homonuclear-
diatomic molecules, relaxation of these states via dipole
transitions is forbidden and they have long lifetimes. Hence
measurements of the electron–H2

+ collision system are gen-
erally taken with H2

+ populated in various vibrationally
excited states [88]. To compare with experiment, cross
sections are weighted according to the vibrational population
of the beam

p p , 116f i
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where pvi
are the Franck–Condon [42, 70] (FC) or von Busch

and Dunn [88] (BD) vibrational distribution weights, Nv is the
last vibrational state of the population and f iv, i

s is calculated
using equation (43). In the adiabatic-nuclei approximation, cal-
culations of f iv, i

s are performed as a post processing of fixed-
nuclei scattering results and requires scattering calculations to be
conducted at a (large) number of internuclear distances. In the
Born–Oppenheimer approximation the results for electron scat-
tering from H2

+ and its isotopologues can be obtained by using
the same fixed-nuclei scattering results in equation (43) with the
appropriate vibrational wave functions of the target.

Preliminary CCC results of electron–H2
+ scattering were

published in [89]. The reader is referred to [42] for a detailed
literature review and presentation of CCC results for these
systems (electron scattering from H2

+ and its isotopologues).
Here we present selected results of these systems: the H2

+

vibrationally weighted PP and DI cross sections, and the HD+

vibrationally resolved DE and DI cross sections. These results
have also been made available on the LXCat website [90].

Figure 3. The dissociative ionisation (DI) cross section of electron
scattering from H2

+ at the equilibrium distance R0 = 2.0 a0. CCC
results are calculated with a partial-wave expansion up to orbital
angular momentum Lmax and maximum total orbital angular
projection max channels are included. CCC results utilise the
orientationally averaged analytic Born subtraction (ABS) method to
top-up results or the unitarised Coulomb Born approximation
(UCBA) method to top-up results to L 16max max= = and then
the ABS method for the higher terms. CCC results are compared
with the time-dependent close-coupling (TDCC) results of
Pindzolaet al [87], which used a L 5max = , 2max = model with a
distorted-wave top-up to L 16max max= = .
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7.1. Scattering calculation details

The fixed-nuclei CCC e−–H2
+ calculation details were given

above in section 6.2. For the 351-state R 2.00 = a0 model,
convergence was demonstrated for the size of the partial-wave
expansion (Lmax and max ), number of Laguerre basis
functions per l (Nl) and the maximum orbital angular
momentum of the basis lmax . The 351-state model’s first few
low-lying target state energies, oscillator strengths and ground
static dipole polarisability are presented in [42] as a function
of R.

For internuclear separations R 5.5> a0, the accuracy of
the 351-state CCC (single-centre) structure model deteriorates
and is likely to produce unreliable cross sections [42].
However the 351-state model is sufficiently accurate for
scattering calculations in the range R0 5.5  a0. 351-state
CCC scattering calculations were conducted over a 23 point R
grid within the interval R1.2 5.5  a0. Cross sections in
this interval for DI and DE cross sections were found to be
smooth away from the major excitation thresholds. Cross
sections were interpolated and extrapolated across the grid

R1.0 18.0  a0, which is the span of the highest excited
vibrational levels. Extrapolation outside the interval

R1.2 5.5  a0 introduces uncertainty in the vibrationally
resolved and weighted cross sections. The procedure used to
check the extrapolation method was detailed in [42].

By performing convergence studies, the CCC fixed-
nuclei cross sections are estimated to be accurate to within
5%. Vibrationally weighted cross sections are estimated to be
accurate within 5% for DI and 10% for PP. PP cross sections
have a larger uncertainty estimate due to their higher sensi-
tivity to extrapolation to large R. Note that the vibrational
population weighting pvi

also has an associated uncertainty,
however, this is dependent on the experiment or application.

7.2. Results

Adiabatic-nuclei CCC results of vibrationally weighted PP
cross sections (116) are presented in figure 4 for electron
scattering from H2

+. Adiabatic-nuclei CCC results have been
vibrationally weighted according to the BD and FC dis-
tributions, and are compared with the CCC R0 = 2.0 a0 fixed-
nuclei calculations, vibrationally weighted total inelastic (TI)
Born cross sections of Peek [85], the TI measurements of
Peart and Dolder [91] and the PP measurements of El Ghazaly
et al [92], Dunn et al [84, 93] and Danceet al [83]. Noting
that the DI cross sections are an order of magnitude lower
than the PP cross sections [91, 94, 95], the TI cross sections

TI DE DIs s s= + and PP cross sections can be compared with
each other. Firstly comparing the BD and FC vibrationally
weighted results, a large difference of approximately 20% is
seen in the low-energy region (10–20 eV), which indicates an
extremely large dependence on the vibrational state popula-
tion of the molecule. FC weighting leads to a larger cross
section due to their slightly heavier weighting on the highly
excited vibrational states. In the low-energy region the present
vibrationally weighted PP results have the maximum assigned
uncertainty. This is because the uncertainty associated with
the extrapolation of fixed-nuclei results to large R directly
affects the cross section contribution of the high-lying
vibrational levels, which is very sensitive in the low-energy
region. In the intermediate-energy region (20–100 eV) the
vibrationally weighted results are within 10% of each other
and in the high-energy region (above 100 eV) vibrationally
weighted results are practically the same. Comparing fixed-
nuclei and vibrationally weighted cross sections, the latter are
around four times larger in the low-energy region. A sig-
nificant difference is also seen in the intermediate- and high-
energy regions. This again indicates the importance of
accounting for the vibrational distribution of H2

+. Further
investigations found that including the complete vibrational

Figure 4. Adiabatic-nuclei CCC calculations of electron scattering
from the electronic ground, vibrationally excited states of H2

+.
Franck–Condon (FC) and von Busch and Dunn [88] (BD)
vibrationally weighted proton production (PP) cross sections are
compared with the CCC R0 = 2.0 a0 calculations, vibrationally
weighted total inelastic (TI) Born calculations of Peek [85], the TI
measurements of Peart and Dolder [91] and the PP experiments of El
Ghazaly et al [92], Dunn et al [84, 93] and Danceet al [83].

Figure 5. Adiabatic-nuclei CCC calculations of electron scattering
from the electronic ground, vibrationally excited states of H2

+.
Franck–Condon (FC) and von Busch and Dunn [88] (BD)
vibrationally weighted dissociative ionisation (DI) cross sections are
compared with the CCC R0 = 2.0 a0 results, and the measurements
of Peart and Dolder [96] and El Ghazalyet al [92].
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population (even the high-lying vibrational levels) was very
important [89].

The measurements of Peart and Dolder [91], El Ghazaly
et al [92], Dunn et al [84, 93] and Dance et al [83] have a
large variation in the low-energy region. Peart and Dolder
[91] have outlined some possible reasons for this large var-
iation, which is likely due to the different vibrational popu-
lations of H2

+ produced in experiment and the sensitivity of
the DE cross sections with respect to the initial vibrational
state of H2

+. In the experiment of El Ghazaly et al [92]
measurements of the vibrational population of H2

+ indicated
that H2

+ ions were not produced in the v 14 states, while the
experiments of Peart and Dolder [91] and Dunn et al [84, 93]
were designed to produce H2

+ ions in a vibrational population
given by the FC factors. Comparing the vibrationally
weighted PP cross sections with experimental data, BD and
FC CCC results are within the experimental error bars of the
Dance et al [83], Dunn et al [84, 93] and Peart and Dolder
[91] measurements in the low- and intermediate-energy
regions. In the high-energy region, both vibrationally
weighted PP cross sections are in good agreement with all
experiments and the vibrationally weighted Born cross
sections of Peek [85]. The Born results of Peek [85] are
approximately 35% larger than the respective CCC results in
the low- and intermediate-energy regions. This is the expected
low-energy behaviour of cross sections calculated with a first-
order method.

DI cross sections are presented in figure 5 for electron
scattering from vibrationally excited H2

+. The FC and BD
vibrationally weighted CCC results are compared with the
R0 = 2.0 a0 results and the measurements of Peart and Dolder
[96] and El Ghazaly et al [92]. Vibrationally weighted CCC
results are approximately 20% larger than the fixed-nuclei
results. The difference between these results and the FC and
BD weighted CCC results suggests that the DI cross sections
are relatively insensitive to the vibrational distribution com-
pared to the PP cross section. Comparing CCC results with
experiment, the FC and BD weighted DI results disagree with
the measurements of El Ghazaly et al [92] in the high-energy
region. Noting that the DI cross sections are relatively
insensitive to the vibrational distribution, this disagreement is
not likely due to the different vibrational populations
(assumed here and produced in experiment). The experiment
of El Ghazaly et al [92] measured the kinetic energy release
of H+ ions after electron-impact dissociation of H2

+. To dif-
ferentiate protons resulting from DI or DE, it was assumed
that the DI cross sections are not dependent upon R, i.e.

RDIs ( ) is constant. The DI cross section can then be extracted
from the tail of the measured kinetic energy release spectrum
by extrapolating the tail signal [97]. This procedure was
expected to produce inaccurate DI cross sections only near
threshold [92], however there is still disagreement with CCC
results in the high-energy region. Our calculations indicate
that the DI cross section has a linear dependence on R. This
dependence on R is not surprising considering that the single-
photon ionisation cross sections of H2

+ have a significant
dependence on R [98]. The FC and BD vibrationally weighted

CCC results are in excellent agreement with the measure-
ments of Peart and Dolder [96].

Unlike homonuclear diatomic molecules, the hetero-
geneous isotopologues all have a permanent electric dipole-
moment and internally cool via rotational-vibrational radia-
tive transitions [42]. This allows experiments to prepare the
HD+, HT+ and DT+ molecules in the ground vibrational
state [99].

Here the vibrationally resolved cross sections are pre-
sented for initial vibrational states vi which have a probability
density function that is spanned within the range

R1.0 5.5  a0. Therefore vibrationally resolved cross
sections presented here do not utilise the extrapolation pro-
cedure to large R and hence do not have the associated
uncertainty. For HD+ the vibrational state v=11 spans over
the range R1.0 5.5  a0.

In figure 6 the HD+ vi = 0 DE cross section is compared
with the experiment of Andersenet al [99]. Above 13 eV the
adiabatic-nuclei CCC results are in good agreement with
experiment, while surprisingly the fixed-nuclei CCC results
are in better agreement with experiment than the adiabatic-
nuclei CCC results. The poor agreement with experiment
below 13 eV comes from the indirect resonant electron
attachment processes neglected in the current formalism. For
HD+ in the vi = 0 state the direct DE mechanism (excitation
to the p2 us ) starts to contribute to the DE cross section at
approximately 9 eV, while the indirect mechanism contrib-
ution starts to diminish at 9 eV and practically goes to zero at
approximately 13 eV [100]. The reasonably good agreement
between the adiabatic-nuclei CCC results and experiment
indicates the dominance of the direct-scattering process above
10 eV, which is consistent with findings of Duca and Fifirig
[100] and Fifirig and Stroe [86].

In figure 7 the HD+ DE and DI cross sections are pre-
sented as a function of the initial vibrational state vi of the
molecule. The DE and DI cross sections of all the iso-
topologues have a major dependence on vi in the low- and

Figure 6. Adiabatic-nuclei CCC calculations of the dissociative
excitation (DE) cross section for electron scattering from the ground
state of HD+. Adiabatic-nuclei vibrational ground state results
(vi = 0) are compared with the CCC R0 = 2.0 a0 results and the
measurements of Andersenet al [99].
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intermediate-energy regions, as vi increases the cross sections
monotonically increase across the entire energy range. The
major difference between the isotopologues vibrationally
resolved cross sections is the density and spacing of the
vibrational state cross sections, which comes from the number
of bound vibrational states in the same range of R [42].

8. Positron scattering from H2

Adiabatic-nuclei single-centre CCC calculations of positron
scattering from the initial vi = 0 and vi = 1 vibrational states
of H2 have been conducted up to 1000 eV and cross sections
were calculated with equation (43) [49]. Here we present
selected results: the grand total cross section (GTCS), elec-
tronic X Bg u

1 1S  S+ + excitation cross section and total (sin-
gle-electron) ionisation cross section (TICS), which is the
sum of Ps formation (9) and direct ionisation cross sections.
In addition we explicitly show that calculations performed
with a fixed internuclear distance chosen as the mean inter-
nuclear distance of the vibrational ground state (Rm = 1.448
a0) approximates scattering from the vibrational ground state
more accurately than the equilibrium distance (R0 = 1.4 a0)
[64]. Preliminary results have been published in [50]. Conv-
ergence studies of the present model have been presented in
[80], where we estimated the major cross sections to be
accurate to within 5% in the fixed-nuclei approximation. For
the full details of these calculations and results the reader is
referred to [49], which present results for the elastic scattering
DCS and the 0 1 vibrational excitation cross section. In

addition the scattering length, elastic scattering integrated
cross section, GTCS and TICS are presented for positron
scattering from the vi = 0 and vi = 1 vibrational states.
Results will be made available on the LXCat website [90].

8.1. Single- and two-centre close-coupling approaches to
positron scattering

For a complete description of positron scattering the two-
centre close-coupling method is the most consistent approach
to account for Ps formation and the long-range positron–
electron correlations. It requires a two centre expansion,
where the first expansion is over the target states and the
second expansion is over the Ps states. This method, however,
is computationally demanding and relatively complicated to
implement, and has also been known to suffer from ill con-
ditioning [101, 102]. Pioneering work was conducted by
Hewittet al [103, 104], Higgins and Burke [105], Mitroy
[106], and Walterset al [107], who demonstrated the success
of using two-centre expansions for atomic targets. The two-
centre approach has also been utilised within the CCC method
formalism for positron–atom scattering [101, 102, 108] and
recently for positron–H2 scattering [109]. For a recent review
see [110]. To date the only other two-centre coupled-channel
positron–molecule (H2) calculations were conducted by
Biswaset al [111], which only included the ground states of
H2 and Ps.

In the single-centre approach the total scattering wave
function is expanded just over the target states. This close-
coupling expansion includes Ps formation implicitly by
including configurations that have an electron and positron in
the continuum, which corresponds to both the direct ionis-
ation and Ps formation channels. Hence the single-centre
expansion includes these channels indirectly and results of the
TICS (sum of the direct ionisation and Ps formation cross
sections) can be calculated by summing over individual
excitation cross sections to positive energy states. This
method is significantly simpler to implement than the two-
centre approach and is found to be computationally very
stable. In the single-centre expansion the strong positron–
electron correlations are modelled via a close-coupling
expansion that include targets states constructed from a one
electron basis that extends to large values of orbital angular
momentum. These states orbitals with large values of orbital
angular momentum construct the relatively large partial-
waves of the positron–electron potential that describe the
long-ranged correlations. Convergence can often only be
achieved with relatively large close-coupling expansions
when compared to the two-centre approach.

However there are a couple of drawbacks of the single-
centre approach, the first of which is that the Ps formation and
direct ionisation channels are indistinguishable. In addition,
incorrect cross sections are calculated in the energy-region
(usually referred to as the extended Ore gap) between the Ps
formation threshold (6.8 eV below the direct ionisation
threshold) and the direct ionisation threshold [112]. This is
because an electron can be in the continuum below the direct
ionisation threshold via Ps formation, which causes a

Figure 7. Dissociative excitation (DE) and dissociative ionisation
(DI) cross sections for electron scattering from HD+ in the electronic
ground, vibrational state vi. DE results of HD+ in the vibrational
ground state are compared with the experiment of
Andersenet al [99].
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mismatch of boundary conditions with the single-centre
expansion. Performing single-centre calculations with target
state orbitals that have small values of orbital angular
momentum, provides an estimate of the cross sections in this
energy-region. This is because the Ps formation and breakup
processes are effectively taken into account by states that
have orbitals with large orbital angular momentum.

8.2. Scattering calculation details

The CCC results have been calculated using a projectile
partial-wave expansion with maximum orbital angular
momentum L 8max = and the orientationally averaged ABS
method (described in section 5) was used to top-up the partial-
wave expansion. The total spin 1 2 = , odd and even parity
Π and maximum total orbital angular momentum projection

8max = channels were included in the close-coupling
calculations. In this section the dashed–dotted vertical lines at
8.6 and 15.4 eV in the figures respectively indicate the Ps-
formation and ionisation thresholds of H2 in the ground state.
Note that with the present Rm = 1.448 a0 fixed-nuclei struc-
ture model, the Ps-formation and ionisation thresholds are at
9.34 and 16.14 eV respectively.

The present H2 structure model allows for an expansion
over the set of antisymmetric two-electron configurations
(nlm n l m, ¢ ¢ ¢) (58). One-electron orbitals in the two-electron
configurations (58) were constructed from a Laguerre basis that
had l 8max = , N l17l = - functions for l 7 and N 10l 8 ==
with exponential fall-offs 1.2la = for l 4 and 1.0la = for
l 5 . Here the ‘inner’ and ‘outer’ electrons were expanded by
all n n, 3¢ one-electron orbitals constructed from short-ran-
ged Laguerre functions with exponential-fall offs of 1.9la = .
In addition, the s1 gs orbital (n n 1= ¢ = ) was represented by a
converged (at an internuclear distance of Rm = 1.448 a0)
molecular-orbital of H2

+ that was constructed from a Laguerre
basis that had N l60l = - , 1.7la = functions up to l 8max = .
The frozen-core model (1 s n l m,s ¢ ¢ ¢) was utilised for two-
electron configurations with m 2T ∣ ∣ , where m m mT = + ¢.
For the purpose of scattering calculations this structure model is
sufficiently accurate to describe H2 in the vi = 0 and vi = 1
states, where the v=1 vibrational wave function approxi-
mately spans the range R0.8 2.2  a0.

Diagonalising the target Hamiltonian with two-electron
configurations built from the above model generated N=1013
target states. At the equilibrium distance of R0 = 1.4 a0, the
static dipole polarisability of this model is a6.375 0

3a = and

a4.635 0
3a =^ for the ground state, which compares very well

with the accurate calculations of Kolos and Wolniewicz [113]
( a6.380 0

3a = and a4.578 0
3a =^ ). The low-lying electronic

excited states energies are within 1.5% of the accurate values
[69, 114–119] and the dominant oscillator strengths are also
well represented in the present model [49].

This 1013-state model is used in the scattering calculations
of positron collisions with H2 in the vi = 0 and vi = 1 vibra-
tional states. Calculations were conducted at eight internuclear
distance points within the interval R0.8 2.2  a0. Fixed-
nuclei cross sections were found to be smooth as a function of R

and were interpolated in this interval of R. Cross sections were
calculated within the adiabatic-nuclei approximation (43).

8.3. Results

The 1013-state adiabatic-nuclei and fixed-nuclei GTCS are
presented in figure 8 for positron scattering from the vi = 0 and
vi = 1 states of H2. In the low-energy region (1–10 eV) the
adiabatic-nuclei vi = 0 results are 5%–15% larger than the
equilibrium fixed-nuclei R0 = 1.4 a0 results, while the mean
internuclear distance results of the vibrational ground state
Rm = 1.448 a0, have at most a difference of 3%. This indicates
that choosing the mean internuclear distance in a scattering
calculation is a better approximation of scattering from the
vi = 0 state rather than choosing the commonly used equilibrium
internuclear distance. The mean internuclear distance results of
the first vibrational state Rm = 1.545 a0 (taken from the fixed-
nuclei cross sections interpolated values) are compared with the
vi = 1 adiabatic-nuclei results. At low energies Rm = 1.545 a0
results are about 10% larger than the vi = 1 adiabatic-nuclei
results. Above the ionisation threshold, both mean fixed-nuclei
results are a good approximation of the respective adiabatic-
nuclei results, where cross sections at high energies have less of
a dependence on R than low-energy cross sections.

Comparing the adiabatic-nuclei results in the low-energy
region, the vi = 1 results are between 20%–30% larger than
the vi = 0 results. Above the ionisation threshold the vi = 1

Figure 8. The grand total cross section (GTCS) for positron
scattering from the vi = 0 and vi = 1 vibrational states of H2.
Adiabatic-nuclei CCC results are compared with the fixed-nuclei
CCC calculations at the mean internuclear distances of the vi = 0
state (Rm = 1.448 a0), vi = 1 state (Rm = 1.545 a0) and the
equilibrium (R0 = 1.4 a0) distance. The dashed–dotted vertical lines
at 8.6 and 15.4 eV indicate the positronium-formation and ionisation
thresholds of H2 in the ground state.
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results are at most 10% larger than the vi = 0 results. At high
energies (above 100 eV) the vi = 0 and vi = 1 cross sections
converge and by 250 eV the results are practically the same.

In figure 9 the CCC GTCS is compared with experiments
for positron scattering from the ground state of H2. The fixed-
nuclei Rm = 1.448 a0 CCC results are compared with the
measurements of Machaceket al [120], Karwaszet al [121],
Zeccaet al [122], Hoffmanet al [123], Charltonet al [124],
Zhouet al [125], and Deuringet al [126]. Machaceket al
[120] and Zeccaet al [49, 122] have also corrected their low-
energy measurements to account for scattering to forward
angles. It is important to note that the large variation in
experimental results at low energies is likely due to different
experimental resolution of scattering to forward angles
[120, 122], where the resolution of Zeccaet al [122],
Karwaszet al [121], and Machaceket al [120] experiments
are superior [122, 127]. In the low-energy region CCC results
are in the best agreement with the measurements of
Zeccaet al [122] and Karwaszet al [121]. Below 2 eV the
agreement with the measurements of Zeccaet al [122]
improved when the missed scattering to forward angles was
accounted for [49].

Above the ionisation threshold (lower panel of figure 9)
the single-centre CCC results are in good agreement with all
experiments [120, 122–126]. The good agreement with
experiment at the cross section maximum (25 eV) suggests

that the single-centre CCC calculations are sufficiently large
to (indirectly) model Ps-formation. Comparing the single- and
two-centre CCC results, above 30 eV the two calculations are
within reasonable agreement with each other and converge at
higher energies. The two-centre CCC method [109] utilised
an approximation in the rearrangement matrix elements,
which approximated the positron–nuclei potential (49) as
isotropic. This approximation is expected to break down in
the low- and intermediate-energy range, hence testing internal
consistency between the single- and two-centre CCC

Figure 9. CCC results of the grand total cross section (GTCS) for
positron scattering from the ground state of H2. The mean internuclear
distance Rm = 1.448 a0 fixed-nuclei single-centre CCC results (present)
are compared with the R0 = 1.4 a0 two-centre CCC calculations [109]
and the measurements of Machaceket al [120], Karwaszet al [121],
Zeccaet al [49, 122], Hoffmanet al [123], Charltonet al [124],
Zhouet al [125], and Deuringet al [126]. The dashed–dotted vertical
lines at 8.6 and 15.4 eV indicate the positronium-formation and
ionisation thresholds of H2 in the ground state.

Figure 10. CCC results of the total (single) ionisation cross section
(TICS) for positron scattering from the ground state of H2. The mean
internuclear distance Rm = 1.448 a0 single-centre CCC (present)
TICS are compared with the R0 = 1.4 a0 two-centre CCC TICS
[109], the measurements of Frommeet al [128] and Moxomet al
[129], and the direct ionisation cross section (DICS) measured by
Jacobsenet al [130] and Knudsenet al [131]. The dashed–dotted
vertical line at 15.4 eV indicates the ionisation threshold of H2 in the
ground state.

Figure 11. Positron scattering from the ground state of H2 for the
electronic X Bg u

1 1S  S+ + excitation cross section (summed over all
vibrational and rotational excitations). The mean internuclear
distance Rm = 1.448 a0 fixed-nuclei CCC results are compared with
the R0 = 1.4 a0 fixed-nuclei Schwinger multichannel (SMC)
calculations of Linoet al [134] and Arretche and Lima [135], and
the measurements of Sullivan et al [132, 133]. The dashed–dotted
vertical line at 15.4 eV indicates the ionisation threshold of H2 in the
ground state.
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calculations is not feasible in the low- and intermediate-
energy regions.

In figure 10 the Rm = 1.448 a0 CCC TICS of the H2 ground
state are compared with the measurements of Frommeet al [128]
and Moxomet al [129] and the R0 = 1.4 a0 two-centre CCC
TICS [109]. Just above the ionisation threshold the single-centre
CCC TICS increases rapidly as more positive energy pseudos-
tates become energetically open, which is the expected behaviour
of a single-centre method. At the cross section maximum (30
eV), the good agreement between the single-centre CCC TICS
and the TICS measurements of Frommeet al [128] and
Moxomet al [129] is encouraging and further indicates that we
have (indirectly) modelled Ps-formation accurately. As the pro-
jectile energy increases the Ps-formation cross section diminishes
and becomes negligible by approximately 130 eV [120]. Above
130 eV the single-centre CCC results can be compared with the
direct ionisation cross section (DICS) measurements of
Jacobsenet al [130] and Knudsenet al [131] and are found to be
in good agreement with both experiments. Comparing the single-
and two-centre CCC results, results vary significantly in the
intermediate energy-range (10–100 eV) while at higher energies
there is good agreement between the two calculations. This dif-
ference is likely due to the two-centre CCC calculations
approximating the positron–nuclei potential as isotropic.

For the ground state X Bg u
1 1S  S+ + electronic excitation

cross section of H2, the fixed-nuclei Rm = 1.448 a0 CCC
results are compared with the measurements of Sullivan et al
[132, 133] and the fixed-nuclei R0 = 1.4 a0 SMC calculations
of Linoet al [134] and Arretche and Lima [135] in figure 11.
The calculations of Linoet al [134] used Hartree–Fock target
state wave functions, while the scattering calculation was just
a two-state approximation. This type of calculation is not
expected to yield physically accurate results but was simply
used as a first attempt at a multichannel calculation. Arretche
and Lima [135] have performed a 5-state SMC calculation,
which is expected to be more accurate than the calculations of
Linoet al [134]. The 1013-state CCC results are in good

agreement with experiment below 25 eV, however above
25 eV CCC results do not follow the shape of the exper-
imental measurements or the 2-state SMC results. Experiment
shows a cross section peak at approximately 20 eV, while
both the CCC and 5-state SMC [135] results show a cross
section peak above 20 eV.

Referring to figure 11, CCC results show a cross section
peak at approximately 30 eV. Although not shown in [80], the
fixed-nuclei CCC results for this cross section have achieved
convergence (and will be presented elsewhere). The good
agreement with experiment for the GTCS, TICS and elastic
cross section (refer [120]) in this energy region suggests that
by the unitarity of the formalism CCC results for other pro-
cesses should be sufficiently accurate, given the accuracy of
our target states.

9. Electron scattering from H2

Recently the CCC method was applied to electron scattering
from H2 within the fixed-nuclei approximation [48, 67]. In [67]
the GTCS, TICS, elastic integrated cross section and 17.5 eV
elastic and electronic excitation DCS were presented. In [48] we
presented integrated and DCSs for excitation to the b u

3S+,
a g

3S+, c u
3P , B u

1S+, E F, g
1S+, C u

1P , e u
3S+, h g

3S+, d u
3P ,

B u
1¢ S+, D u

1P , B u
1 S+, D u

1¢ P states and provide a detailed
discussion of the CCC scattering calculations, results and
explicitly demonstrate convergence of the total, ionisation,
elastic scattering and electronic excitation integrated and DCSs.
Though the scattering calculations demonstrated convergence in
the scattering model to better than 5%, we believe that the
structure model utilised contributes an additional uncertainty to
the cross section of less than 10%. The total uncertainty in the
fixed-nuclei elastic scattering integrated cross section, TICS,
and GTCS is estimated to be better than 5%, and 11% for the
electronic excitation cross sections. A recommended set of CCC
data will be made available on the LXCat website [90]. Results
presented in [67] have already been made available on the
LXCat website [90].

The results presented here are based on the calculations
performed in [48, 67]. Here we present selected fixed-nuclei
results of electron scattering from the H2 ground state: the
GTCS, TICS, electronic X Bg u

1 1S  S+ + excitation cross
section, and the elastic scattering integrated and DCSs.

9.1. Scattering calculation details

Briefly, the electron–H2 fixed-nuclei CCC calculations have
been conducted from 0.1 to 300 eV, and were performed with
a projectile partial-wave expansion up to the orbital angular
momentum L 8max = and the orientationally averaged ABS
method was utilised (as described in section 5). All total
orbital angular momentum projection, odd and even parity
Π and total spin 1 2 = channels were included in the
close-coupling calculations up to the maximum total orbital
angular momentum projection 8max = . Calculations were
performed within fixed-nuclei approximation at the mean

Figure 12. Grand total cross section (GTCS) of electron scattering
from H2. CCC results are compared with the measurements of Ferch
et al [137], van Wingerden et al [138], Hoffman et al [123], Deuring
et al [126], Jones [139], Subramanian and Kumar [140, Nickel et al
[141], and Zhou et al [125].
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internuclear distance of the H2 vibrational ground state
Rm = 1.448 a0.

The H2 structure model allows for an expansion over the
two electrons (nlm n l m, ¢ ¢ ¢). In the present model, one-electron
orbitals in the two-electron configurations (58) were constructed
from a Laguerre basis that had N l17l = - , l 3max = func-
tions, with exponential fall offs 0.77la » . For this model the
‘inner’ and ‘outer’ electrons were expanded by all n n, 2¢
one-electron orbitals that were constructed from short-ranged
Laguerre functions with exponential-fall offs of 1.85la = . The
s1 gs orbital (n n 1= ¢ = ) is represented by a converged (at an
internuclear distance of Rm = 1.448 a0) molecular-orbital of H2

+

that was constructed from a Laguerre basis that had
N l60l = - , 0.9la = functions up to l 8max = .

Diagonalising the target Hamiltonian with two-electron
configurations built from the above model generated N=491
target states, with 91 states in the discrete spectrum. At the
equilibrium distance of R0 = 1.4 a0, the static dipole polari-
sability of the ground state is a6.427 0

3a = and
a4.637 0

3a =^ , which compares well with the accurate cal-
culations of Kolos and Wolniewicz [113] ( a6.380 0

3a = and
a4.578 0

3a =^ ). At R0 = 1.4 a0 the low-lying electronic
excited states energies and oscillator strengths are presented
in [48], and the X Bg u

1 1S  S+ + transition length gauge
oscillator strength is 0.277, which compares reasonably well
with the accurate theoretical value of 0.301 [119, 136].

9.2. Results

We start the presentation of results with the GTCS of the H2

ground state in figure 12. Fixed-nuclei Rm = 1.448 a0 CCC
results are compared with the measurements of Ferch et al
[137], van Wingerden et al [138], Hoffman et al [123],
Deuring et al [126], Jones [139], Subramanian and Kumar
[140], Nickel et al [141], and Zhou et al [125] from 0.1 to
300 eV. As far as we are aware these are the only ab initio
calculations of the GTCS across the entire energy range and
they are in excellent agreement with all measurements. This

excellent agreement with experiment indicates that we have
accurately taken into account elastic scattering, excitation and
ionisation processes.

In figure 13 we compare the CCC elastic integrated cross
section with the measurements of Shyn and Sharp [142],
Nishimuraet al [143], Khakoo and Trajmar [144],
Srivastavaet al [145], and Museet al [146] from 10 to 100 eV.
For energies below 10 eV see figure 12. CCC results are found
to be in excellent agreement with all measurements except those
of Srivastavaet al [145], which are consistently lower than the
CCC results and other measurements. The excellent agreement
with experiment for the elastic scattering cross section indicates
that we have accurately accounted for the polarisability of the
target, where approximately 30% of the ground state polarisa-
bility of H2 comes from the continuum.

Low-energy (6 eV) and intermediate-energy (30 eV) elastic
DCS are presented in figure 14. The CCC results are compared
with the VCC calculations of Morrisonet al [147] (private
communication reported in [148]) and the measurements of
Museet al [146], Furstet al [148], Linder and Schmidt [149],
Shyn and Sharp [142], Nishimuraet al [143], Khakoo and
Trajmar [144], and Srivastavaet al [145]. In general the CCC
results are in excellent agreement with experiment, where the
CCC results are within the uncertainty bars of almost all mea-
surements. However a noticeable difference is seen at the 30 eV
backward scattering angles, where our results seem to favour
the trend of measurements performed by Museet al [146]. At
6 eV our DCS are in excellent agreement with the VCC

Figure 13. Elastic cross section of electron scattering from H2. CCC
results are compared with the measurements of Shyn and Sharp
[142], Nishimuraet al [143], Khakoo and Trajmar [144],
Srivastavaet al [145], and Museet al [146].

Figure 14. Electron scattering from the ground state of H2 for the
elastic differential cross section (DCS) at 6 and 30 eV. CCC results
are compared with the vibrational close-coupling (VCC) calculations
of Morrisonet al [147] (private communication reported in [148])
and the measurements of Museet al [146], Furstet al [148], Linder
and Schmidt [149], Shyn and Sharp [142], Nishimuraet al [143],
Khakoo and Trajmar [144], and Srivastavaet al [145].
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calculations of Morrisonet al [147]. Here the theoretical results
are more forward peaked than the measurements of Museet al
[146] but seem to agree with the measurements of Furstet al
[148]. Considering that in the present CCC structure model the
electronic ground state has 0.33 eV error in energy (at R0 = 1.4
a0), this good agreement with experiment for the elastic inte-
grated and DCSs over a broad range of energies indicates that
the CCC ground electronic state is sufficiently accurate.

The CCC TICS is presented in figure 15. Firstly, the
CCC results are indistinguishable from ab initio 41-state
RMPS [53] calculations, which are only available from the
ionisation threshold to 30 eV. However in the RMPS calcu-
lations only the ground and first excited state of H2 were
represented accurately and there was a problem with pseu-
doresonances. Final RMPS results were taken as an average
of several RMPS calculations. The ab initio one-electron
TDCC method utilised a local-exchange approximation and
performed calculations (only available at 25, 50, and 75 eV)
with a similar sized partial-wave expansion as the H2

+ cal-
culations (L 5max = , 2max = ) [87] together with a poly-
nomial extrapolation technique. Despite these differences (in
the methods, the calculation models and approximations used
in the TDCC calculations), the CCC results are surprisingly in
excellent agreement with both the RMPS and TDCC results.

CCC TICS are also compared with the ionisation mea-
surements of Krishnakumar and Srivastava [150], Straub et al
[151], Rapp and Englander-Golden [152], and Lindsay and
Mangan [153] in figure 15. From ionisation threshold up to the
cross section maximum (at approximately 60 eV) CCC results
are in excellent agreement all experiments. However at higher
energies, CCC results are higher than the measurements of
Straub et al [151] and Lindsay and Mangan [153], and favour
the measurements of Rapp and Englander-Golden [152] and
Krishnakumar and Srivastava [150]. The excellent agreement

between the CCC results and measurements of the GTCS,
elastic scattering cross section and TICS indicates that the
electron scattering flux has been correctly distributed to
the continuum and discrete spectrum. Hence by noting that the
excited target states are accurate and the unitarity of the form-
alism, the CCC excitations cross sections should be accurate.

The electronic X Bg u
1 1S  S+ + excitation cross section

(summed over all vibrational and rotational excitations) is pre-
sented in figure 16. CCC results are compared with the 9-state
RM calculations of Branchettet al [155] and 9-state SMC
calculations of da Costaet al [46]. The 9-state ab initio RM and
SMC results rise sharply from threshold and are in general,
much larger than the CCC results. Our investigation [48]
identified this difference as a lack of convergence in the RM
and SMC calculations with respect to the number target states
in the close-coupling calculation. As more states are included
in the close-coupling calculations pseudoresonances effectively
disappear and the results decrease and converge to the present
CCC results [48].

The experiments of Khakoo and Trajmar [156], Srivastava
and Jensen [157], Wrkichet al [158], and Katoet al [159] have
measured the X Bg u

1 1S  S+ + excitation cross section by ana-
lysing the energy-loss spectrum of the scattered electrons. Due
to the overlapping electronic and vibrational manifolds of H2

the analysis of the measurements is a difficult procedure that
incurs a large uncertainty in the final cross sections (approxi-
mately 25%). Comparing CCC results to the measurements, the
CCC results are within the error bars of the measurements
performed by Katoet al [159], Khakoo and Trajmar [156], and
the low-energy measurements of Srivastava and Jensen [157].
The measurements of Srivastava and Jensen [157] imply a
mostly flat cross section, while the measurements of
Wrkichet al [158] are too high compared to the CCC results.
The high-energy measurements of Katoet al [159] derived the
total (summed over vibrational and rotational transitions) optical

Figure 15. Ionisation cross sections of electron scattering from H2. The
CCC total (single) ionisation cross section (TICS) is compared with the
H2

+ production measurements of Krishnakumar and Srivastava [150]
and Straub et al [151], the TICS measurements of Lindsay and
Mangan [153], and the total (sum of single and double) ionisation cross
section measurements of Rapp and Englander-Golden [152]. R-matrix
with pseudostates (RMPS) [53] results end at 30 eV and are
indistinguishable from CCC results. Time-dependent close-coupling
(TDCC) [154] results are available only at 25, 50 and 75 eV.

Figure 16. Electron scattering from the ground state of H2 for the
electronic X Bg u

1 1S  S+ + excitation cross section (summed over all
vibrational and rotational excitations). CCC results are compared
with the R-matrix (RM) calculations of Branchettet al [155] and
Schwinger multichannel (SMC) of da Costaet al [46], and the
measurements of Katoet al [159], Wrkichet al [158], Khakoo and
Trajmar [156], and Srivastava and Jensen [157].
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oscillator strength of this transition (0.241±0.048), which
compares well with the Rm = 1.448 a0 CCC oscillator strength
of 0.288 and accurate theory 0.274 [160].

10. Summary and conclusions

10.1. Summary

In this tutorial the molecular CCC method was developed
within the adiabatic-nuclei approximation. The CCC method
was applied to electron scattering from vibrationally excited
H2

+, electron scattering from the ground state of H2, and posi-
tron scattering from ground vi = 0 and vi = 1 vibrationally
excited state of H2 within the single-centre close-coupling
method. Similarly to the atomic implementation of the method,
the molecular CCC method has had success in calculating the
elastic scattering, electronic excitation, ionisation and total cross
sections, where comparison with accurate experiments ranges
from good to excellent. The success of the method stems from
the use of a near-complete (Laguerre basis) expansion of both
the discrete spectrum and continuum of the target, the ability to
efficiently couple all reaction channels including ionisation, and
to represent the target states sufficiently accurately.

Electron– and positron–molecule scattering calculations
demonstrated convergence in the fixed-nuclei close-coupling
(target state) and projectile partial-wave expansions. As far as
we are aware these are the only electron– and positron–
molecule scattering calculations that have rigorously
demonstrated convergence over a broad energy range. Hence
by noting the accuracy of the target states, the results pre-
sented here are expected to be the most accurate in the lit-
erature. All of these and future data sets will be made
available via the LXCat database [90] and should be useful in
astrophysical, plasma, and transport modelling.

Electron scattering from H+
2 and its isotopologues

Adiabatic-nuclei CCC calculations were performed for elec-
tron scattering from vibrationally excited H2

+ and its iso-
topologues (D2

+, T2
+, HD+, HT+ and TD+). Ionisation and

electronic excitation cross sections were calculated from 10 to
1000 eV as a function of the initial vibrational state of the
isotopologues. To compare with experiments, CCC vibra-
tionally resolved cross sections were weighted according to
the vibrational populations of experiment (FC factors).
Adiabatic-nuclei CCC results were found to be in excellent
agreement with experiment. The present results have been
published in [89, 42], while convergence in the fixed-nuclei
calculations was demonstrated here.

Positron scattering from H2

Adiabatic-nuclei single-centre CCC calculations were per-
formed for positron scattering from the ground and first
vibrationally excited state of H2. Here results were presented
from threshold to 1000 eV for the electronic X Bg u

1 1S  S+ +

excitation cross section, GTCS and TICS. In general these
results are in good agreement with experiment. Convergence

of the present calculations was demonstrated in [80]. In [49]
we give details of these calculations, the present results, and
in addition present results for the elastic scattering DCS,
elastic scattering integrated cross section, the 0 1 vibra-
tional excitation cross section and the scattering length, which
was found to be in excellent agreement with the accurate
calculations of Zhang et al [63, 64]. Preliminary CCC results
were published as rapid communications in [50]. Detailed
manuscripts are currently in preparation on the electronic
excitation, vibrational and rotational excitation cross sections.

Electron scattering from H2

Fixed-nuclei CCC calculations have been performed for electron
scattering from the ground state of H2. Results of the GTCS,
TICS, elastic scattering cross section and selected electronic
excitation cross sections have been presented here and in [67]. A
comprehensive set of convergence studies and recommended
results for the GTCS, TICS and electronic excitation integrated
and DCSs is given in [48]. In the near future we will investigate
the elastic scattering, rotational and vibrational excitation cross
sections. The molecular CCC method formulated in a spheroidal
coordinate system will be used to perform adiabatic-nuclei cal-
culations, and study scattering from electronic vibrationally
excited states and the vibrational excitation cross sections.

10.2. Conclusions

As a first attempt at electron– and positron–molecule CCC
calculations, the method has shown great promise. Integrated
cross sections for the elastic, electronic excitation and single-
ionisation processes are in good agreement with accurate
experiment over a broad energy-range. The accurate structure
models used in these calculations are calculated from a
complete Laguerre basis. Achieving convergent results with
respect to the size of the projectile partial-wave and target state
(Laguerre basis) expansions indicate that scattering cross
sections are accurate. With this solid foundation the CCC
method is expected to be successful describing more compli-
cated molecular collision systems.

The adiabatic-nuclei approximation (derived in section 2.2)
is the foundation on which techniques are built to describe
resonance, dissociative processes, vibrational and rotational
excitations in molecules [32, 35, 37, 38]. This approximation as
well as various corrections methods [32] (that satisfy the con-
servation of energy in nuclei excitation processes) will allow us
to model such processes and address some long-standing pro-
blems, such as the controversy over the vibrational excitation
cross sections for molecular hydrogen [161].

10.3. Future research directions

The atomic and molecular CCC methods are fundamentally
the same, and are expected to have the same advantages and
disadvantages. Future development of the molecular CCC
code will be aligned with the interest of the scientific com-
munity and successful developments of the atomic CCC
method [75–77, 162].
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Like the atomic implementation for electron scattering,
the molecular CCC formalism will be suited to dealing with
molecules where the interaction is dominated by one or two-
electron excitations above an inert Hartree–Fock frozen-core
[43, 44, 73]. The single-centre expansion approach is parti-
cularly suited for modelling targets with a heavy centre, like
molecular hydrides [163–165]. Electron scattering from the
hydrides HeH+, LiH+, LiH and BeH+ and He2

+ are particu-
larly important in the modelling of fusion plasmas [166] and
hence will be investigated with the CCC method. It is worth
noting that hydrides have a strong permanent dipole moment,
which in scattering calculations require a large partial-wave
expansion to achieve convergence [20]. This can be overcome
by utilising the ABS technique described in section 5.

In addition, the molecular CCC method is being for-
mulated in the prolate spheroidal coordinate system to take
advantage of the physical configuration of diatomic mole-
cules. Doing so improves the accuracy of the low-lying states
and T-matrix elements calculated at intermediate and high R,
where the molecule is highly non-spherical. However from
our experience spheroidal coordinate calculations are com-
putationally more expensive than the spherical coordinate
calculations. This formulation is ideal for the study of diffuse
and hot (vibrationally excited) diatomic molecules, which will
be particularly useful for plasma modelling [1–4, 166, 167].

Currently the atomic CCC method is being extended to
perform single-centre close-coupling calculations of positron
scattering from arbitrary atomic targets. Similarly, we expect that
by utilising these techniques the molecular CCC method will be
able to perform single-centre calculations of positron scattering
from arbitrary linear molecules, such as N2, O2, CO2, CO, OH
and HCl etc. N2 and CF4 (nonlinear) gasses are interesting tar-
gets because they are used as energy loss mechanisms to cool
down positrons in beam line experiments [168].

A major development of the molecular CCC method
worth considering is an an extension of the method to
polyatomic hydrides such as H3

+, CH4 and H2O. H3
+ is one of

the most common ions in the Universe and plays a key role in
hydrogen plasmas [4, 8]. Electron scattering from this tightly
bound two-electron target should be accurately modelled
within the single-centre expansion CCC method. Positron
scattering from CH4 and H2O is synonymous with positron
scattering from isoelectronic Ne. Recently single-centre CCC
calculations of positron–Ne scattering produced results in
good agreement with experiment [169], and hence the same
success is expected for these molecular scattering systems.
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Appendix A. Orientation averaged DCSs

Here we derive the orientationally averaged DCS and integrated
cross section. Starting with the adiabatic-nuclei scattering
amplitude (resolved for the transition iv J m fv J mi i J f f Ji f ) (36)
and substituting the rigid rotor rotational wave functions (32),
the scattering amplitude has the form
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where L L2 1= +ˆ ( ) . Substituting the above scattering
amplitude (A.1) into the DCS (18), the DCS resolved for the
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Summing the DCS over all final rotational states with the closure
property (D.7) of the rotational wave functions
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We note that vibrational wave functions Rnv Jn n
n ( ) have a very

minor dependence on J and we assume that they are independent
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of J and are taken for J = 0 here, i.e. nvnn . Scattering from the
ground state, i.e. Ji = 0, the DCS (A.4) becomes
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This form of the DCS is equivalent to the orientation averaged
DCS [47, 60–62] (for diatomic molecules), which is resolved for
the transition iv fvi f and can be expressed as
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Hence, the orientation averaging procedure is equivalent to
scattering from the Ji = 0 state of the molecule and summing the
adiabatic-nuclei DCS over all final rotational states (within the
rigid rotor approximation). Substituting the lab-frame scattering
amplitude (A.7) into the DCS (A.6) and noting that the rotation
matrices Euler angles are chosen such that b =

R, , 0R R
labf q =( ) ˆˆ ˆ

( ), the orientation averaged DCS has the form
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denotes Clebsch–Gordan coefficients. Sub-

stituting the above into (A.8) and noting the conservation of
orbital angular momentum projection (m M m Mi i f f+ = +
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Now 0,d k k- ¢ implies k k¢ = , and the spherical harmonics are
collapsed using (D.5)
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Summing over κ with the Clebsch–Gordan orthogonality con-
dition (D.24), the final form of the orientation averaged DCS is
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The integrated cross section is calculated by integrating
over all final angles of the scattered particle
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over all final angles
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Utilising (A.16) to integrate over all final angles of the DCS
and noting the Clebsch–Gordan coefficient Cl m l m
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triangle
rule m l∣ ∣ , the orientation averaged integrated cross section
is calculated

A.17

q

q
L L L L

A A

C C C C

d
d

d
1

4
1

.

fv iv q
fv iv

f

i L L

M M
L L

M M

M M
i i f f

fv fL M iL M iv R fv fL M iL M iv R

L L L M L M L M L M L L M M M M

,

,

lab

,

,
,

,

,
b

,
b

0, 0
00

,
00

,
00

0, 0
00

,

f i f

f i

f i

f i

f i

f i

i f

f f f i i i f f f i i i

i i i i i i f f f f f f i i f f

* * *




 

ò
å å ¢ ¢

s
s

p

n n n n

d

= W
W

= -

´ á ñ á ñ

´

¢ ¢

¢ ¢

¢+ ¢

¢ ¢ ¢ ¢ ¢

¢ - ¢ ¢ ¢- ¢ ¢ - ¢ - ¢

( )

( ) ˆ ˆ ˆ ˆ

∣ ∣ ∣ ∣

( )

( ) ( )

Using definition (D.27) to evaluate the Clebsch–Gordan
coefficients
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The final form of the integrated cross section is
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Analytic Born cross section

Following from section 5.1, the analytic Born body-frame
scattering amplitude for the transition iv fvi f is given in
equation (106). The analytic Born lab-frame scattering
amplitude (112) is given as
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where the momentum transfer is Q q qi f= - and A QAB b
f i,
lm

( )( ) ( )
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into the orientation averaged DCS equation (A.6), the analytic
Born DCS is
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where the ,dm m¢ term comes from the analytic Born matrix
elements having m mf im m= ¢ = - as discussed at the end
of section 5. Utilising definition (D.15) to evaluate the
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integration over R̂
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Summing the spherical harmonics over ρ with definition
(D.3), the final form of the analytic Born DCS is
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Appendix B. Laguerre basis functions analytic
properties and target state matrix elements

Here we list some of the analytic properties of Laguerre basis
functions of order l2 1+ (55) and evaluate the one-electron
(or positron) matrix elements. Laguerre functions of order
l2 1+ satisfy the following differential equation
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where the first two terms on the left hand side have the same
form as the kinetic energy operator rK ( ) (48). Laguerre
functions with the same exponential fall-offs la have the
following properties

r r rd 1, B.2kl kl
0ò j j =
¥

( ) ( ) ( )

r r r

k k

k k

d

0, 1
1

2
1 , 1

, B.3

k l kl

l l

k l k l

0

1

1

ò j j

=
> ¢ +

- - = ¢ +

¥

¢

+
¢ + ¢ + +

⎧
⎨⎪
⎩⎪

( ) ( )

( )( )
( )( )

r r
r

r
k l

d
1

. B.4k l kl
l

k k
0

,ò j j
a

d=
+

¥

¢ ¢( ) ( )
( )

( )

Utilising the above properties, the kinetic energy and Cou-
lomb repulsion term matrix elements can be evaluated

analytically, such that
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where xf ( ) are the one-electron orbitals (54) and we have
dropped the overlap of the spin eigenfunctions from here
onwards for convenience.

The angular term in the electron–nuclei (or positron–
nuclei) potential V (50) matrix element is evaluated analyti-
cally with equation (D.8). The electron–nuclei (or positron–
nuclei) matrix element is then given by
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where v r r,i jl ( ) is defined in equation (51).
The overlap of the one-electron orbitals
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is conveniently evaluated with the Laguerre basis properties
(B.2) and (B.3). Integrations that are not evaluated analyti-
cally (i.e. (B.7), (C.5), (C.7), (C.9), (C.10) and (C.15)) are
calculated numerically with Simpson’s rule.

Appendix C. V-matrix elements

Here we give explicit forms of the V-matrix elements
V k k,fL M iL M f i,f f i i

 P ( ), which are represented in equation (86). For
electron scattering the V-matrix interaction terms are a sum of
the direct VU

D and exchange interaction VU
Exch terms, where
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Noting that the exchange-interaction is only present in electron
scattering. For single-centre positron scattering the V-matrix
interaction term is given by the direct interaction term (C.1).

All angular integrations are carried out analytically using
equation (D.8). For convenience we have neglected the overlaps
of the spin functions in the following matrix elements.

Electron scattering from H+
2

The electron–H2
+ V-matrix elements are given by
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, 0 1
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where kLMñ∣ is from the projectile wave function (84) such that

k k

r

k
i kLM Y

kLM
r

u r k Z Y

1
e

2 1
; ; , C.4

L M

L
LM

L LM

,

i

Ion

L L *å

p

ñ = ñ

ñ=

s d
¥

 +∣ ∣ ( ˆ)

∣ ( ) (ˆ) ( )

( ) ( )

and for notational purposes the target states of H2
+ nmpñ∣ are

represented by the form of equation (53). The direct part of the
V-matrix element is given by

where the overlap of the one-electron orbitals f fá ña g∣ is given

in equation (B.8). For electron scattering from H2
+ the

exchange potential (C.2) can have the form
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where we have included the non-uniqueness matrix elements
that enforce the antisymmetrisation property of r r R, ;i
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(76), and IN0 is given in equation (75). The above exchange term
can be split into one-electron terms and the electron–electron
term. Firstly evaluating the exchange electron–electron term

The one-electron terms are given by

where the one-electron matrix elements for H0 and H1 are
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The V-matrix element V k k,fL M iL M f i,f f i i

 P ( ) in (86) is the sum of
(C.5), (C.7) and (C.8).
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Electron scattering from H2

Applying the CCC method to electron or positron scattering
from H2, the the V-matrix elements V k k,fL M iL M f i,f f i i

 P ( ) in the
corresponding equations in section 4 are calculated with the
direct part of the interaction potential

V V V U2 . C.11U
D

0 01 0= + - ( )

and in the case of electron scattering, the exchange part of the
interaction potential is
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Δ is a logical operator that is defined below, the projection
operator
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and N is the total number of one-electron orbitals in the basis.
Note in the case of electron scattering, the one-electron
orbitals in the target states and projection operator are made
orthogonal via the Gram–Schmidt process.

The direct part of the V-matrix elements are relatively
straightforward and are given by

Here the target states of H2 are represented by the form of
equation (59).

The exchange matrix element that includes the solution
to non-uniqueness is given by

The one-electron matrix elements kLMfá ñ∣ , V U kLMfá - ñ∣ ∣ ,
and n nf fá ñ¢∣ have similar forms to the matrix elements given in
(C.9), (C.10) and (B.8) respectively. Hn i n

Elecf fá ñ¢∣ ∣ terms are
evaluated in appendix B. The electron–electron terms can be
evaluated in a similar fashion to the direct matrix element
electron–electron term, which is given in the last term of
equation (C.15).

The logical operator Δ is used to solve the non-unique-
ness problem. To do this we need to identify the space where
the projectile and two target electrons are spanned by the
same set of one-electron orbitals. In order to identify this
space we separate the set of two-electron configurations in to
two categories. The first category is the configurations that
represent both target electrons in a symmetric manner
n l m nlm,¢ ¢ ¢( ) with n n n, ¢ ˜, where in the present e−–H2

structure model n n, 2¢ (as described in section 9.1). The
second category is for frozen-core type configurations
n l m n l m, c c c¢ ¢ ¢( ), where n l m¢ ¢ ¢( ) span all possible one-electron
functions while n l mc c c( ) span only a few low lying orbitals.
Note that in the present structure model nc = 1. The Δ

operator is applied, i.e. 1D = if: j ñd∣ is a core orbital
n l mc c c( ), or when j ñd∣ forms a symmetric configuration and
j ña∣ is either a core orbital or forms a symmetric configura-
tion. If these conditions are not satisfied 0D = .

Appendix D. Useful definitions

The following definitions have been taken from
Varshalovichet al [59] unless explicitly stated. In some
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explicitly noted cases, additional definitions are derived.
These definitions assume integer value quantum numbers.

Spherical harmonics

The spherical harmonics have the following properties
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assumed integer quantum numbers in the last step. In this
derivation definitions (D.2), (D.21) and (D.23) are utilised.

Wigner-D functions

The Wigner-D functions satisfy the following properties
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which is derived explicitly in Zare [170]. Utilising the same
steps taken in Zare [170], it can be shown that
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Clebsch–Gordan coefficients and Wigner 3-j symbols
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