
Testing: Areas of Concern
The following are areas of concern that should be tested. The range in brackets
‘[file.c:start-stop]’ correspond to the lines of code in files recorder/main.c and
recorder/recorder_helpers.c, which are in the directory:

/opt/ti-sdk-am335x-evm-07.00.00.00/example-applications-dt78xx-examples/

that should be further inspected and tested. These areas of concern are sorted by priority. It
can be assumed for know that the dependency libraries (RingBuf.c, libaiff.c, and
sunriset.c) function properly. Any bugs in these programs can be addressed as is necessary;
they, if any, will crop up as functions in the recorder program are tested. These areas also
apply to the version of the recorder program as of 2018-07-18 at 14h00.

1. Command line interface cases, that is setting [main.c:71-111]:

1.1. Samples per file

1.1.1. Check for correct change of samples_per_file

1.2. Clock frequency (sample rate)
1.2.1. Check for correct change of clk.clk_freq
1.2.2. Check for correct change of buffer_object.sample_rate

1.3. Sampling duration in days

1.3.1. Check for correct change of duration_days

1.4. Daemonise (on/off by default); run in background
1.4.1. Check that program is running in background as daemon

1.5. Number of buffers

1.5.1. Check for correct change of num_buffers

1.6. Auto trigger (on by default/off)
1.6.1. Check the status of the trigger (auto if 0 or default/threshold if 1)

1.7. Enabled channels

1.7.1. Check that all channels that were to be enabled are enabled (chan_mask)
1.7.2. Check that all channels that were to be disabled are disabled

(chan_mask)

1.8. Safety margin
1.8.1. Check for correct change of safety_margin

1

https://github.com/aidanjohnson/dt7816/tree/master/example-applications/dt78xx-examples/recorder
https://github.com/aidanjohnson/dt7816/tree/master/example-applications/dt78xx-examples/recorder

1.9. Check that the program exits in error when a flag not of the set {s, c, d, r,

b, t, i, m} is used

2. In general, check that all error checks that result in goto _exit have expected
behaviour. These error checks are:

2.1. Sample rate configuration [main.c136-142]

2.2. Trigger configuration [main.c:147-156; recorder_helpers.c: configTrig()]

2.3. Create channel mask [main.c:158-163]

2.4. Channel configuration [main.c:165-173]

2.5. Initialise AIO structures [main.c:175-181]

2.6. Allocation of array buffer dynamic memory [main.c:183=194].

2.6.1. That is, check that buffer dynamically allocated correctly (that is correct
size). (Note that this uses a manufacturer provided function.)

2.7. Allocation of circular buffer dynamic memory [main.c:196-202]

2.8. Submission of buffers [main.c:242-247]

2.9. Initialisation of ARM [main.c:249-254]

2.10. Software start [main.c:256-262]

2.11. Status check of active channels [main.c:266-273]

2.12. AIFF file creation:

2.12.1. Formatting of file [main.c:283-285]
2.12.2. Opening of file [main.c:287-303]
2.12.3. Starting of writing [main.c:305-308]
2.12.4. Sampling writing [main.c:310-315; main.c: writeBuffer()]
2.12.5. Finishing of writing [main.c:317-322]
2.12.6. Closing of file [main.c:324-333]

3. Check that ‘Ctrl+C’ aborts the program at any and all stages.

3.1. Especially check that during sampling for both when active and inactive; that is
awake at night and asleep during day.

2

4. Circular buffer (RingBuf.c implementation) [recorder_helpers.c: writeBuffer()];

check that:

4.1. ‘Read’ pointer that reads the circular buffer and writes to file lags the ‘Write’
pointer that reads from the linear buffer array and writes to the circular buffer by
the number of channels; no accidental overwriting

4.2. ‘Write’ makes one cycle after writing all samples per a file

4.3. Cycle continues in the circular path (see RingBuf.c)

4.4. Repeats in one cycle for num_buffers (per file)

4.5. If samples_per_chan * num_buffs * num_channels > 65536 samples, fatal
error occurs [recorder_helpers.c: checkFatal()]

5. Day/night (asleep/awake) on/off cycling [main.c:214-237]:

5.1. Disable NIGHT_CYCLE to make sure samples (on) regardless of time

[recorder_helpers.h:90]

5.2. On during time period when present within (sunset-safety_margin) through
(sunrise+safety_margin) [recorder_helpers.c: calcSunUpDown()]

5.3. Off during time period when present outside (sunset-safety_margin) through
(sunrise+safety_margin) [recorder_helpers.h: calcSunUpDown()]

5.4. Updates elapsed day after present time ahead of sunrise [main.c:237]

6. Miscellaneous recorder_helpers.c functions, check that:

6.1. ledIndicators():
6.1.1. if status is 1 & streaming is 1 -> LEDs on (a digital output)

6.2. getTime():
6.2.1. pres_time is equal to time gotten by testing file (within some margin of

error)

6.3. getTimeEpoch():
6.3.1. GMT Unix epoch time returned equal to time gotten (within some margin

of error)

3

6.4. timestamp():
6.4.1. String is unique

6.5. getPresentTime():
6.5.1. Same as for getTime()

6.6. createChanMask():
6.6.1. Created channel mask chan_mask same as that returned by

IOCTL_CHAN_GET

6.7. configChan():
6.7.1. All channels are configured

6.8. initTrig():
6.8.1. All triggers are configured

6.9. calcSunUpDown():
6.9.1. Calculated times same as pre-calculated and known times

6.10. writeBuffer():

6.10.1. Measure delay/lag time
6.10.1.1. Between each channel
6.10.1.2. Between loops for saving files
6.10.1.3. Scaling with the number of channels being recorded

6.10.2. Measure time it takes to write file
6.10.3. Produce complete series of files
6.10.4. Measure sample drop

6.10.4.1. Loss of data
6.10.4.2. Scaling with number of channels being recorded

6.10.5. Write pointer does not overwrite read pointer
6.10.6. Satisfactory fidelity

6.10.6.1. Qualitatively: does recording sound like the test input (from a
waveform generator)?

6.10.6.2. Objectively: is the spectrum of the recorded waveform sufficiently
equivalent to the spectrum of the input?

6.10.6.2.1. Threshold the peaks
6.10.6.2.2. Cross correlation?
6.10.6.2.3. Self loop analog out to analog

6.11. checkID():
6.11.1. Any arbitrary, non-zero length string successful as ID

6.12. checkRate():

4

6.12.1. Any arbitrary, positive, non-zero float successful as sampling frequency

6.13. openStream():
6.13.1. Confirm that opening a real stream is successful, and that opening a

bogus stream is a failure

6.14. openAIN():
6.14.1. Given above, confirm that opening a real analog input is successful, and

that opening a bogus analog input is a failure

6.15. waitBuffering():
6.15.1. No segmentation fault occurs after calling this function, regardless of

size of buffer and number of channels

5

