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Abstract
Nowadays, mobile devices have become the necessities
of everyday life. However, users may notice that after
a long period of usage, mobile devices will start experi-
encing sluggish response. In this paper, by conducting
an empirical study of filesystem fragmentation on sev-
eral aged mobile devices, we found that: 1) Files may
suffer from severe fragmentation, and database files are
among the most severely fragmented files; 2) Filesys-
tem fragmentation does affect the performance of mobile
devices, and the impact varies from devices to devices.
Conventional defragmentation schemes do not work well
on mobile devices because they do not consider the char-
acteristics specific to mobile storage. Two pilot solutions
were then suggested to enhance file defragmentation for
mobile devices.

1 Introduction
Mobile devices, including smartphones, tablets and
wearable devices, have become the necessities of daily
life. For mobile devices, storage performance has been
identified as a critical factor of the overall device per-
formance [7]. However, recent studies reported that the
underlying flash-based storages of mobile devices are not
efficiently used when the operations of file system and
database are combined [9]. In addition to the inefficient
usage, another factor, fragmentation in file systems, has
not been well studied in the literature.

Fragmentation in file systems is highly correlated with
the space management methods of file systems. As
the default file system of many mobile devices, EXT4
employs extent-based allocation and delayed allocation
schemes to alleviate file fragmentation. However, our
experiments show that with EXT4 file systems, SQLite
database files still suffer from severe fragmentation. As
we shall explain later, this result is closely related to
how SQLite files grow and how free space is allocated
to them.

In this work, we conducted several studies on file

fragmentation in mobile devices. First of all, we ex-
amined how files are fragmented in several aged smart-
phones with normal user usages, such as social network-
ing, web browsing, and instant messaging. We found
that files are either severely or barely fragmented, and
database files are among the mostly fragmented files.
For example, on an one-year-old Google Nexus 5, the
file newsfeed db-journal of the Facebook application
is fragmented into several pieces whose average size is
only 7 KB, and its fragments are widely dispersed over a
range of 1.5 GB storage space.

Next, we evaluated how file fragmentation impacts I/O
performance, and identified at least two reasons for I/O
latency degradation: First, accessing fragmented files re-
sults in frequent block I/Os, which accumulate a large
time overhead on the I/O path. Second, file fragmenta-
tion incurs highly dispersed I/O patterns, which dimin-
ish spatial localities. To enable efficient random access
with limited resource, flash storages may adopt demand-
based caching of the page-level mapping table. Access-
ing highly fragmented files imposes high overhead on
the management of the mapping cache and amplifies the
latencies of block reading and writing.

Conventional disk defragmentation methods are con-
sidered harmful to flash memory because they involve
intensive data copy. They do not proactively avoid file
fragmentation either. To the best of our knowledge, no
file defragmentation schemes have been proposed for
mobile devices. Finally, we suggested two pilot solutions
with the consideration of the flash management overhead
and file access characteristics in mobile storage systems.

This study makes following contributions: 1) We i-
dentified that file fragmentation is a serious problem in
mobile devices, and SQLite database files were among
the mostly fragmented files. 2) We evaluated how ap-
plication performance of mobile devices can be affected
by fragmentation in mobile devices; 3) We suggested two
pilot solutions to optimize file defragmentation in mobile
devices.



2 Background and Related Work
2.1 Fragmentation in File Systems
File systems, including EXT4, FAT, and even the log-
structured file system, F2FS, suffer from fragmentation.
Fragmentation in file systems is caused by the aging
problem [12], and it emerges when the file system cannot
find continuous free space for files. Take EXT4 as an
example, which is the default file system since Android
version 4.0.4, it suffers from three types of fragmenta-
tion: single file fragmentation, relevant file fragmenta-
tion, and free space fragmentation [11]. These types of
fragmentation did affect the performance of hard disk
drives [4]. However, there is little work targeting on how
they affect the performance of mobile storage systems.

2.2 Conventional Defragmentation
Previous studies propose to restore the continuity of frag-
mented files through re-locating file fragments to a con-
tinuous free space. The DFS [2] file system proacti-
valy performs file defragmentation when severe frag-
mentation is detected. EXT4 employs a user-mode tool,
e4defrag [11], to defragment files in an on-demand
manner. Defragmenting Solid-State Disks (SSDs) of
desktop computers was reported having little effect and
even considered harmful to SSD lifetime [6]. Howev-
er, applications in smartphones exhibit very unique file
accessing behaviors, and the design of flash storage for
smartphones is resource conservative. We observed that
fragmentation is a serious problem in smartphones and
it noticeably affects the performance of file accessing on
flash storage.

3 Fragment Measurement Setup
In this section, we present the setups for our fragmenta-
tion study including the mobile platforms, measurement
softwares and benchmarks.

3.1 Smartphone Platforms
Our study is based on four Android phones, including
Google Nexus 5, Google Nexus 6, Huawei Honor 6,
and Huawei Ascend P7. These phones were from ran-
domly selected people to avoid potential biases. These
phones had underwent at least six months of daily use of
their owners. The use patterns of these phones involved
common Android user activities, including web surfin-
g, sending/receiving emails, social networking, instant
messaging, and taking pictures. These activities were
based on popular Android applications, including Face-
book, Twitter, WeChat, Chrome, Gmail, Google Earth,
and the built-in applications like Camera. Observations
and experiments regarding file fragmentation were con-
ducted on the Android data partition, which was for-
matted in EXT4. The data partition sizes of the selected
phones were 26.8, 26.0, 11.6 and 11.8 (GB), respectively.

Upon the arrivals of these phones, the file system utiliza-
tions of their data partitions were 93%, 57%, 44%, and
90%, respectively.

3.2 Measurement Softwares and Applica-
tion Benchmarks

e4defrag is used for inspecting the file fragmentation
and performing file defragmentation if needed. To man-
ually execute SQL statements on a SQLite database, we
use the command-line utility sqlite3. To study the I/O
pattern of the fragmented files, we use blktrace to col-
lect block-level traces for device I/O and use MOST [5] to
identify the source file of each I/O request.

Several popular Android applications, including Face-
book, Twitter, WeChat and Google Earth are used to
assess the impacts of fragmentation. With these appli-
cations, we read news feed, chat with friends, and view
online satellite maps for one minute, respectively.

4 Characteristics of Fragmentation
In this section, we characterize fragmentation in Android
devices. Degree of Fragmentation (DoF) is used to repre-
sent the degree of single file fragmentation. DoF is com-
puted by Equation 1, where next is the current number
of extents and nlowest ext is the ideal (smallest) number
of extents of the file, respectively. The larger the DoF
is, the more serious the fragmentation is. In the follow-
ing, fragmentation is analyzed against file types and file
system utilizations.

DoF = next/nlowest ext (1)

Fragmentation vs. File Types: We examined the
fragmentation of different types of files using the smart-
phones described in Section 3.1. Figure 1 shows the DoF
of database files (with extensions .db, .db-journal,
and .wal), executable files (with extensions .apk, .dex,
.odex, and .so) and all files. We found that the file frag-
mentation has two extremes: most of the executable files
are barely fragmented, while the database files, especial-
ly those with the .db and .db-journal extensions, are
severely fragmented.

We are particularly interested in the fragmentation of
database files, because they contribute to about 70% of
all block writes in Android devices [9]. We examined the
single file fragmentation of database files from a selected
set of Android applications on the Google Nexus 5. As
shown in Figure 2(b), almost all the database files are
severely fragmented. Particularly, each of the database
file of Facebook is fragmented into four pieces on aver-
age (47 files have 162 fragments). Most fragmented files
are those with extensions .db and .db-journal, and
their fragment sizes range from tens to hundreds of kilo-
bytes. This is because when database files are appended
with new data, record by record, an aged file system can
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Revisiting Defragmentation for Mobile Storage Systems

app Files Fragments Average Size
Facebook 47 162 26 KB

Twitter 14 83 55 KB
Wechat 68 237 19 KB

Google Earth 2 46 4408KB
Messenger 27 107 15 KB

QQ 52 394 20KB
Youtube 18 44 8KB

... ... ... ...
Total 483 1704 185KB

Table 1: Fragmentation of SQLite database files of a s-
elected set of applications on an aged Google Nexus 5.
The total file number, the total number of fragments, and
the average fragment sizes were evaluated.

References

(b)

Figure 1: (a) The degree of fragmentation (DoF) of
SQLite database files, executable files, and all files. (b)
Fragment count of SQLite database files of a selected set
of applications on an aged Google Nexus 5. The total file
number, the total number of fragments, and the average
fragment sizes were reported.

barely find continuous free space for them to grow, espe-
cially when multiple database files in the same directory
are growing in parallel. Similar results are obtained on
the other three smartphones.

Fragmentation vs. File System Utilizations: Even
when the space utilization of file system is low or moder-
ate, database journal files are still prone to fragmentation,
regardless of any specific Android device. To verify this,
we performed a factory reset on the Nexus 5 described
in Section 3.1 to clear up the file system. After the reset,
we re-installed all applications back and manually ran
the applications for one hour. By the end of this test, the
file system utilization was only 19% (previously 93%).
However, we found that many database files, especially
the .db-journal files, were still severely fragmented
as they were in aged file systems. Take Facebook as
example, where the SQLite library employed the default
DELETE mode for database journaling, the DoF of Face-
book’s database files was 4, which was not lower than
the DoF shown in Figure 1(a), and the fragmented pieces
of several files (9 out of 48) were dispersed over 1 GB
storage space. This is closely related to the way how
database files grow, as explained in the previous para-
graph. Based on our observations, the way how SQLite
writes database files plays a more important role than
application-level usage patterns do in terms of fragmen-
tation production. Because most of Android apps em-
ploy SQLite for structural data management, as Figure 1
shows, the DoF of different phones appear quite similar.

5 Evaluation of Fragmentation
In this section, we investigate how file fragmentation im-
pact the file access performance in Android devices.

5.1 Overall Problem
We performed experiments to illustrate the performance
degradation caused by fragmentation on the Huawei P7.
We emulated an aged file system by creating large files
(≥ 100 MB) and small files (≤ 100 KB) alternatively
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Figure 2: Normalized total I/O time in replaying file-
system call traces on Ascend P7. The number above each
bar is the file fragment counts at the end of the replay.

until the file system is completely full, and then randomly
deleting some small files until the file system utilization
dropped to 95%. Specifically, during an instance of the
aging process, 86 large files of 9.4 GB and 24,000 small
files of 1.8 GB were created, and about 10,000 small files
were then deleted. To ensure that our experiments are
repeatable, we cleaned up all previously created files and
performed the same aging procedure again before each
experiment. We then used Mobibench [5] to replay the
file-system traces collected from Twitter, Facebook, and
WeChat. Figure 2 shows that, during the trace replays,
the replay time increased as the file fragmentation got
worse. This observation confirms that file fragmentation
affects the I/O performance in mobile devices.

5.2 Increased Block I/O Frequency
Accessing fragmented files will result in a high I/O fre-
quency. We used Google Earth to examine how fragmen-
tation increases the I/O frequency, and show the impact
of an increased I/O frequency on I/O performance. We
aged the Google Nexus 5 in the same way as that de-
scribed in Section 5.1. We then viewed maps online, and
129 MB of new map resources were downloaded and ap-
pended to the file mirth cache.db. At the end of map
viewing, we found that the database file was fragment-
ed into 1605 pieces. Next, we manually performed an
SQLite query to scan the entire database tables in the file.
Block level trace was collected during the scan. Finally,
we defragment the file and performed the same query on
the defragmented file again. Results show that, after the
database file is defragmented, the total block I/O count
is reduced by 13%, and the elapsed time of the database
table scan is reduced by 10%. The results confirm that,
accessing fragmented files introduces a high overhead on
the I/O path of mobile storage system.

5.3 Dispersed Block I/O Pattern
5.3.1 Characteristics of Dispersed I/O
Since database files are among the mostly fragmented
files and they contribute to the majority of all block
writes, we are interested in the block write patterns as-
sociated with the database files. We ran the benchmarks
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Figure 3: I/O pattern of writes on fragmented database files.
(described in Section 3.2) on the aged Google Nexus
5, and collected the block I/O traces. We extracted the
block I/Os associated with database files only. Figure 3
shows that the block writes on the fragmented database
files were widely dispersed over the entire address space.

5.3.2 Impacts of Dispersed I/O
As fragmented database files contribute to random block
writes, we are interested in how bad the performance
of random writes will be on different smartphones. For
comparison, on each of the phones listed in Section 3.1,
we performed 10,000 synchronous file writes on an 1
GB file that had been defragmented beforehand. The
synchronous file writes were randomly distributed with
a region in the file, and the region size varied from 1 MB
to 1 GB.

Figure 4(a) shows that, on the P7 and Honor 6, ran-
dom writes in large regions are significantly slower than
in small regions. As the write region is enlarged, the av-
erage write latency is increased by 130% and 69% on the
P7 and Honor 6, respectively. On the Nexus 5 and Nexus
6, the write latency is less sensitive to the write region
size, and noticeable degradation appeared only when the
write region was as large as 1GB.

We further performed a similar test to evaluate the
performance of dispersed reads. Interestingly, Figure
4(b) also indicates that random reads are unfavorable
to flash storage. As pointed out in [3], random writes
should be confined to a small area of disk space; other-
wise, dispersed random writes can cause serious write
performance degradation due to the amplified garbage
collection overhead. However, as flash reads do not incur
garbage collection, the results in Figures 4(a) and 4(b)
suggest that dispersed I/O patterns impose some over-
heads on flash management other than garbage collec-
tion.

5.3.3 Mapping Cache Management Overhead
To deploy page-mapping FTL with a limited map-
ping structure size, demand-based page-level mapping
scheme [1] is proposed to selectively cache an active
portion of the entire mapping table. Map caching is a
popular design option for flash storage in mobile devices
[8], including eMMCs in smartphones. Demand-based
map caching exploits spatial locality by prefetching mul-
tiple mapping entries of a set of continuous logical pages
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Figure 4: Normalized elapsed time when changing the
size of I/O region. I/O size: 4 KB, I/O number: 10000,
direct IO mode is used in read.

[10]. The poor performance of the dispersed I/Os may
be related to the management overhead of the mapping
cache. If the access pattern appears random, the prefetch-
ing mechanism not only has little effect but also imposes
a high pressure on the mapping cache.

Cache Simulation: To verify our theory, we imple-
mented a page-mapping FTL simulator with a demand-
based mapping cache. The simulated flash page size is
4KB, which consists of 1024 mapping entries. The unit
for cache fetching and evicting is one page, and the cache
replacement policy is the LRU algorithm. The simulation
settings are based on the mostly common features that
we learned from industry. We believe that our simulation
results can reflect the performance characteristics of real
eMMC mapping cache designs.

Our simulation involves two sets of block I/O traces
from the same applications. The first set of traces were
those collected in Section 5.3.1, and they were collected
under severe file fragmentation. We produce the second
set of traces based on the first set of traces, as follows:
First, we defragmented the database files (which were
severely fragmented) and recorded the block migration
history during the defragmentation. Second, based on
the block migration history, we converted the old block
traces into a set of new traces. The old (dispersed) and
new (defragmented) trace sets were both replayed.

We measured the increases in translation page reads
and writes due to file fragmentation. Cache Write Ratio
is the ratio of the total number of translation page writes
with fragmentation to that without fragmentation. Cache
Read Ratio is defined accordingly. Figure 5 shows that
Cache Write (and Read) Ratios are larger than 1 under
all applications, and therefore the mapping cache incurs
a much higher overhead under the dispersed I/O patterns
than it does under the defragmented patterns.
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Figure 5: Amplifications of translation page writes and
translation page reads.

6 Pilot Solutions
Conventional defragmentation methods are based on da-
ta copying and may unnecessarily wear flash memory
in mobile storage. They do not proactively avoid frag-
mentation either. We suggest two pilot solutions to the
fragmentation problem in mobile storage.

Defragmenting Flash Storage: We suggest to exploit
the mapping scheme in the FTL to speed up the defrag-
mentation process without actual data copying.
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Figure 6: Defragmentation based on FTL re-mapping.
A new block command REMAP is introduced. As

shown in Figure 6, by adjusting the FTL mapping in-
formation, the logical addresses of two pieces of data are
exchanged for file defragmentation. The implementation
of REMAP is similar to that of TRIM in EXT4. The de-
fragment tool (i.e., e4defrag) makes ioctl() requests
to inform the file system of moving all data from a frag-
mented file to a contiguous donor file. The file system
then prepares corresponding REMAP commands, which
will be flushed to the flash storage on transaction com-
mitting. Upon receiving a REMAP command, the FTL ad-
justs the mapping information accordingly. During this
process, file system metadata does not employ REMAP

and they must undergo data copy operations.
Proactive Fragmentation Avoidance: Based on the

accessing behaviors of files, we suggest to proactive-
ly avoid fragmentation by allocating sufficient contin-
uous space for files to grow. To minimize the impact
on the current space allocation method in file system-
s, we suggest to perform fragmentation avoidance on
database files only, because they are most likely to be
fragmented and their sizes are usually small. Applica-
tions can pre-allocate free space for SQLite database files

via the posix fallocate() system call. For example, most
.db-journal files are smaller than 100KB, which can
be a good choice of the pre-allocation size.

7 Conclusion
In this study, we examined how severe file fragmenta-
tion is in real Android devices. We found that SQLite
database files are among the most severely fragmented
files, and also identified that fragmentation really affects
mobile device performance: frequent block I/Os increase
the time overhead on the I/O path, and dispersed I/O pat-
terns impose a high pressure on the mapping-cache man-
agement. Two pilot solutions were suggested to enhance
conventional disk defragmentation methods by consider-
ing the characteristics of mobile storages.
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