Permalink
Browse files

Whitespace

  • Loading branch information...
1 parent 25b62b0 commit f5dac03682ea79c4bfc8373911fd0679ee41a1d3 Andrew Tulloch committed Apr 1, 2012
Showing with 53 additions and 48 deletions.
  1. +2 −2 config.json
  2. +24 −10 converted_latex_sample.md
  3. +3 −4 latex2markdown.py
  4. +24 −32 latex_sample.tex
View
4 config.json
@@ -6,7 +6,7 @@
},
"enumerate": {
"line_indent_char": "",
- "list_heading": "1.",
+ "list_heading": "1. ",
"markdown_heading": "",
"pretty_name": "",
"show_count": false
@@ -19,7 +19,7 @@
},
"itemize": {
"line_indent_char": "",
- "list_heading": "*",
+ "list_heading": "* ",
"markdown_heading": "",
"pretty_name": "",
"show_count": false
View
34 converted_latex_sample.md
@@ -1,6 +1,12 @@
-### Example Section
+## Usage
-#### Theorem 1 (Euclid)
+
+### Simple Examples
+
+
+This section introduces the usage of the LaTeX2Markdown tool, showing an example of the various environments available.
+
+#### Theorem 1 (Euclid, 300 BC)
> There are infinitely many primes.
@@ -25,14 +31,14 @@ To solve this exercise, we first introduce the following lemma.
#### Proof
-It is easy to show by induction that \[
-F_m - 2 = F_0 F_1 \dots F_{m-1}.
-\] This means that if $d$ divides both $F_n$ and $F_m$ (with $n < m$), then $d$ also divides $F_m - 2$. Hence, $d$ divides 2. But every Fermat number is odd, so $d$ is necessarily one. This proves the lemma.
+It is easy to show by induction that
+\[ F_m - 2 = F_0 F_1 \dots F_{m-1}. \]
+This means that if $d$ divides both $F_n$ and $F_m$ (with $n < m$), then $d$ also divides $F_m - 2$. Hence, $d$ divides 2. But every Fermat number is odd, so $d$ is necessarily one. This proves the lemma.
We can now provide a solution to the exercise.
-#### Theorem 2 (Goldbach's proof of the infinitude of primes)
+#### Theorem 2 (Goldbach, 1750)
> There are infinitely many prime numbers.
@@ -42,21 +48,29 @@ We can now provide a solution to the exercise.
Choose a prime divisor $p_n$ of each Fermat number $F_n$. By the lemma we know these primes are all distinct, showing there are infinitely many primes.
-### LaTeX examples
+### Available environments
We can format *italic text*, **bold text**, and `code` blocks.
-1. A list item
-1. Another list item
+1. A numbered list item
+1. Another numbered list item
+
+
+
+
+* A bulleted list item
+* Another bulleted list item
+
#### Theorem 3
-> This is a theorem. It contains an `align` block.
+> This is a theorem. It contains an `align` block. All math environments supported by MathJaX should work with LaTeX
>
+> Maxwell's equations, differential form.
> \begin{align}
> \nabla \cdot \mathbf{E} &= \frac {\rho} {\varepsilon_0} \\\\
> \nabla \cdot \mathbf{B} &= 0 \\\\
View
7 latex2markdown.py
@@ -8,7 +8,6 @@
with open("config.json", "r") as f:
_block_configuration = json.load(f)
-
#------------------------------------------------------------------------------
class LaTeX2Markdown(object):
@@ -197,7 +196,7 @@ def latex_to_markdown(self):
# Throw away content in IGNORE/END block
output = re.sub(r"% LaTeX2Markdown IGNORE(.*?)\% LaTeX2Markdown END",
"", output, flags=re.DOTALL)
- return output
+ return output.lstrip().rstrip()
#------------------------------------------------------------------------------
@@ -208,10 +207,10 @@ def latex_to_markdown(self):
output_file = "converted_latex_sample.md"
else:
input_file, output_file = sys.argv[1], sys.argv[2]
-
+
with open(input_file, 'r') as f:
latex_string = f.read()
y = LaTeX2Markdown(latex_string)
- markdown_string = y.latex_to_markdown().lstrip().rstrip()
+ markdown_string = y.latex_to_markdown()
with open(output_file, 'w') as f_out:
f_out.write(markdown_string)
View
56 latex_sample.tex
@@ -4,43 +4,28 @@
\usepackage{listings}
\onehalfspacing
-\usepackage[usenames, dvipsnames]{color}
-\definecolor{graphblue}{RGB}{52, 138, 189}
-\definecolor{graphpurple}{RGB}{122, 104, 166}
-
\theoremstyle{plain}% default
\newtheorem{thm}{Theorem}[section]
\newtheorem{lem}[thm]{Lemma}
\newtheorem{prop}[thm]{Proposition}
\newtheorem{exer}[thm]{Exercise}
-\lstset{
-language=bash,
-stepnumber=0,
-showspaces=false,
-breaklines=true,
-basicstyle=\ttfamily\scriptsize,
-frame=single,
-commentstyle=\scriptsize,
-prebreak=\raisebox{0ex}[0ex][0ex]{\ensuremath{\hookleftarrow}},
-showstringspaces=false,
-showtabs=false,
-identifierstyle=\ttfamily,
-commentstyle=\color{graphpurple},
-keywordstyle=\color{graphblue},
-tabsize=2
-}
-
-\title{Introduction to LaTeX2Markdown}
+\title{LaTeX2Markdown Examples}
\author{Andrew Tulloch}
\begin{document}
% LaTeX2Markdown IGNORE
\maketitle
% LaTeX2Markdown END
-\section{Example Section}
-\begin{thm}[Euclid]
+
+\chapter{Usage}
+
+\section{Simple Examples}
+
+This section introduces the usage of the LaTeX2Markdown tool, showing an example of the various environments available.
+
+\begin{thm}[Euclid, 300 BC]
There are infinitely many primes.
\end{thm}
@@ -60,33 +45,40 @@ \section{Example Section}
\end{lem}
\begin{proof}
- It is easy to show by induction that \[
- F_m - 2 = F_0 F_1 \dots F_{m-1}.
- \] This means that if $d$ divides both $F_n$ and $F_m$ (with $n < m$), then $d$ also divides $F_m - 2$. Hence, $d$ divides 2. But every Fermat number is odd, so $d$ is necessarily one. This proves the lemma.
+ It is easy to show by induction that
+ \[ F_m - 2 = F_0 F_1 \dots F_{m-1}. \]
+ This means that if $d$ divides both $F_n$ and $F_m$ (with $n < m$), then $d$ also divides $F_m - 2$. Hence, $d$ divides 2. But every Fermat number is odd, so $d$ is necessarily one. This proves the lemma.
\end{proof}
We can now provide a solution to the exercise.
-\begin{thm}[Goldbach's proof of the infinitude of primes]
+\begin{thm}[Goldbach, 1750]
There are infinitely many prime numbers.
\end{thm}
\begin{proof}
Choose a prime divisor $p_n$ of each Fermat number $F_n$. By the lemma we know these primes are all distinct, showing there are infinitely many primes.
\end{proof}
-\section{LaTeX examples}
+\section{Available environments}
We can format \emph{italic text}, \textbf{bold text}, and \texttt{code} blocks.
\begin{enumerate}
- \item A list item
- \item Another list item
+ \item A numbered list item
+ \item Another numbered list item
\end{enumerate}
+\begin{itemize}
+ \item A bulleted list item
+ \item Another bulleted list item
+\end{itemize}
+
+
\begin{thm}
- This is a theorem. It contains an \texttt{align} block.
+ This is a theorem. It contains an \texttt{align} block. All math environments supported by MathJaX should work with LaTeX
+ Maxwell's equations, differential form.
\begin{align*}
\nabla \cdot \mathbf{E} &= \frac {\rho} {\varepsilon_0} \\
\nabla \cdot \mathbf{B} &= 0 \\

0 comments on commit f5dac03

Please sign in to comment.